Hypothalamic BMP9 suppresses glucose production by central PI3K/Akt/mTOR pathway

in Journal of Endocrinology
View More View Less
  • 1 The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing and Department of Endocrinology, Chongqing Three Gorges Central Hospital, Chongqing, China
  • 2 Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
  • 3 Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
  • 4 Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institutet, Huddinge, Stockholm, Sweden

Correspondence should be addressed to G Yang or X Zhang: gangyiyang@hospital.cqmu.edu.cn or xianxiangzhangcqsx@126.com

*(Y He and C Zhang contributed equally to this work)

Restricted access

Bone morphogenetic proteins (BMPs) are secreted ligands that belong to the transforming growth factor-β (TGF-β) superfamily. BMP7 has been reported to play a role in reversing obesity and regulating appetite in the hypothalamus. Whether BMP9 plays a central role in regulating glucose metabolism and insulin sensitivity remains unclear. Here, we investigated the impact of central BMP9 signaling and possible route of transmission. We performed intracerebroventricular (ICV) surgery and injected adenovirus expressing BMP9 (Ad-BMP9) into the cerebral ventricle of mice. Metabolic analysis, hyperinsulinemic-euglycemic clamp test, and analysis of phosphatidylinositol 3,4,5-trisphosphate (PIP3) formation were then performed. Real-time PCR and Western blotting were performed to detect gene expression and potential pathways involved. We found that hypothalamic BMP9 expression was downregulated in obese and insulin-resistant mice. Overexpression of BMP9 in the mediobasal hypothalamus reduced food intake, body weight, and blood glucose level, and elevated the energy expenditure in high-fat diet (HFD)-fed mice. Importantly, central treatment with BMP9 improved hepatic insulin resistance (IR) and inhibited hepatic glucose production in HFD-fed mice. ICV BMP9-induced increase in hepatic insulin sensitivity and related metabolic effects were blocked by ICV injection of rapamycin, an inhibitor of mammalian target of rapamycin (mTOR) signaling. In addition, ICV BMP9 promoted the ability of insulin to activate the insulin receptor/phosphoinositide 3-kinase (PI3K)/Akt pathway in the hypothalamus. Thus, this study provides insights into the potential mechanism by which central BMP9 ameliorates hepatic glucose metabolism and IR via activating the mTOR/PI3K/Akt pathway in the hypothalamus.

Supplementary Materials

    • Fig. S1 Identification of BMP9 antibody.
    • Fig. S2 BMP9 mRNA expression in kidney and hypothalamus. Data are means ± SE (n = 3/group). **p < 0.01 vs. kidney.
    • Fig. S3 Entire membrane for BMP9 western blot. (A) Entire membrane from Figure 1B. (B) Entire membrane from Figure 2A.
    • Fig. S4 Central BMP9 protects mice from HFD-induced obesity and insulin resistance. (A) Body composition, expressed as % total body weight. (B) GTT in HFD mice treated with Ad-BMP9 or Ad-GFP for three days. Data are means ± SE (n = 5/group). *p < 0.05, **p < 0.01 vs. Ad-GFP.
    • Fig. S5 Time course of blood glucose and GIR changes during the steady-state of HEC. (A) Blood glucose. (B) GIR. NCD, normal chow diet; HFD, high-fat diet. GIR, glucose infusion rate. Data are expressed as mean ± SE (n = 5/group).
    • Fig. S6 Hepatic innervation is required for hypothalamic BMP9 to regulate glucose metabolism. 8-week-old male C57BL/6J were fed an HFD for 12 weeks. Seven days before the HECs, mice were performed the HVG or SHAM and received ICV injection of Ad-BMP9 or Ad-GFP. (A) Body weight and food intake in mice with SHAM or HVG. (B) During the GTT, blood glucose, and AUC. (C) During the ITT, blood glucose, and AUC. AUC, the area under the curve for glucose; HVG, hepatic branch vagotomy; SHAM, sham-operation. Data are means ± SE (n = 5/group). *p < 0.05, **p < 0.01 vs. Ad-GFP.
    • Table S1. The specific primers sequence used for RT-PCR analysis
    • Table S2. Biochemical parameters in experimental animals
    • Table S3. Biochemical parameters during the hyperinsulinemic clamp studies

 

Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 187 187 134
Full Text Views 21 21 10
PDF Downloads 15 15 10
  • Barahona MJ, Llanos P, Recabal A, Escobar-Acuna K, Elizondo-Vega R, Salgado M, Ordenes P, Uribe E, Sepulveda FJ & Araneda RC et al. 2018 Glial hypothalamic inhibition of GLUT2 expression alters satiety, impacting eating behavior. Glia 66 592605. (https://doi.org/10.1002/glia.23267)

    • Search Google Scholar
    • Export Citation
  • Blouet C, Ono H & Schwartz GJ 2008 Mediobasal hypothalamic P70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metabolism 8 459467. (https://doi.org/10.1016/j.cmet.2008.10.004)

    • Search Google Scholar
    • Export Citation
  • Boini KM, Hennige AM, Huang DY, Friedrich B, Palmada M, Boehmer C, Grahammer F, Artunc F, Ullrich S & Avram D et al. 2006 Serum- and glucocorticoid-inducible kinase 1 mediates salt sensitivity of glucose tolerance. Diabetes 55 20592066. (https://doi.org/10.2337/db05-1038)

    • Search Google Scholar
    • Export Citation
  • Caperuto LC, Anhe GF, Cambiaghi TD, Akamine EH, Do Carmo Buonfiglio D, Cipolla-Neto J, Curi R & Bordin S 2008 Modulation of bone morphogenetic protein-9 expression and processing by insulin, glucose, and glucocorticoids: possible candidate for hepatic insulin-sensitizing substance. Endocrinology 149 63266335. (https://doi.org/10.1210/en.2008-0655)

    • Search Google Scholar
    • Export Citation
  • Chen D, Zhao M & Mundy GR 2004 Bone morphogenetic proteins. Growth Factors 22 233241. (https://doi.org/10.1080/08977190412331279890)

  • Contreras C, Gonzalez-Garcia I, Martinez-Sanchez N, Seoane-Collazo P, Jacas J, Morgan DA, Serra D, Gallego R, Gonzalez F & Casals N et al. 2014 Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Reports 9 366377. (https://doi.org/10.1016/j.celrep.2014.08.057)

    • Search Google Scholar
    • Export Citation
  • Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC & Seeley RJ 2006 Hypothalamic mTOR signaling regulates food intake. Science 312 927930. (https://doi.org/10.1126/science.1124147)

    • Search Google Scholar
    • Export Citation
  • Cota D, Matter EK, Woods SC & Seeley RJ 2008 The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. Journal of Neuroscience 28 72027208. (https://doi.org/10.1523/JNEUROSCI.1389-08.2008)

    • Search Google Scholar
    • Export Citation
  • Dattatreyamurty B, Roux E, Horbinski C, Kaplan PL, Robak LA, Beck HN, Lein P, Higgins D& Chandrasekaran V 2001 Cerebrospinal fluid contains biologically active bone morphogenetic protein-7. Experimental Neurology 172 273281. (https://doi.org/10.1006/exnr.2001.7728)

    • Search Google Scholar
    • Export Citation
  • de Moura RF, Nascimento LF, Ignacio-Souza LM, Morari J, Razolli DS, Solon C, De Souza GF, Festuccia WT & Velloso LA 2016 Hypothalamic stearoyl-CoA desaturase-2 (SCD2) controls whole-body energy expenditure. International Journal of Obesity 40 471478. (https://doi.org/10.1038/ijo.2015.188)

    • Search Google Scholar
    • Export Citation
  • Ebendal T, Bengtsson H & Soderstrom S 1998 Bone morphogenetic proteins and their receptors: potential functions in the brain. Journal of Neuroscience Research 51 139146. (https://doi.org/10.1002/(SICI)1097-4547(19980115)51:2<139::AID-JNR2>3.0.CO;2-E)

    • Search Google Scholar
    • Export Citation
  • Hu F, Xu Y & Liu F 2016 Hypothalamic roles of mTOR complex I: integration of nutrient and hormone signals to regulate energy homeostasis. American Journal of Physiology: Endocrinology and Metabolism 310 E994E1002. (https://doi.org/10.1152/ajpendo.00121.2016)

    • Search Google Scholar
    • Export Citation
  • Inquimbert P, Moll M, Kohno T & Scholz J 2013 Stereotaxic injection of a viral vector for conditional gene manipulation in the mouse spinal cord. Journal of Visualized Experiments 73 e50313. (https://doi.org/10.3791/50313)

    • Search Google Scholar
    • Export Citation
  • Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K & Tobe K 2006 Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. Journal of Clinical Investigation 116 17841792. (https://doi.org/10.1172/JCI29126)

    • Search Google Scholar
    • Export Citation
  • Kim YB, Uotani S, Pierroz DD, Flier JS & Kahn BB 2000 In vivo administration of leptin activates signal transduction directly in insulin-sensitive tissues: overlapping but distinct pathways from insulin. Endocrinology 141 23282339. (https://doi.org/10.1210/endo.141.7.7536)

    • Search Google Scholar
    • Export Citation
  • Kishigami S & Mishina Y 2005 BMP signaling and early embryonic patterning. Cytokine and Growth Factor Reviews 16 265278. (https://doi.org/10.1016/j.cytogfr.2005.04.002)

    • Search Google Scholar
    • Export Citation
  • Knight CM, Gutierrez-Juarez R, Lam TK, Arrieta-Cruz I, Huang L, Schwartz G, Barzilai N & Rossetti L 2011 Mediobasal hypothalamic SIRT1 is essential for resveratrol’s effects on insulin action in rats. Diabetes 60 26912700. (https://doi.org/10.2337/db10-0987)

    • Search Google Scholar
    • Export Citation
  • Könner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, Xu C, Enriori P, Hampel B & Barsh GS et al. 2007 Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metabolism 5 438449. (https://doi.org/10.1016/j.cmet.2007.05.004)

    • Search Google Scholar
    • Export Citation
  • Kooijman S, Wang Y, Parlevliet ET, Boon MR, Edelschaap D, Snaterse G, Pijl H, Romijn JA & Rensen PC 2015 Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice. Diabetologia 58 26372646. (https://doi.org/10.1007/s00125-015-3727-0)

    • Search Google Scholar
    • Export Citation
  • Kuo MM, Kim S, Tseng CY, Jeon YH, Choe S & Lee DK 2014 BMP-9 as a potent brown adipogenic inducer with anti-obesity capacity. Biomaterials 35 31723179. (https://doi.org/10.1016/j.biomaterials.2013.12.063)

    • Search Google Scholar
    • Export Citation
  • Lam CK, Chari M, Rutter GA & Lam TK 2011 Hypothalamic nutrient sensing activates a forebrain-hindbrain neuronal circuit to regulate glucose production in vivo. Diabetes 60 107113. (https://doi.org/10.2337/db10-0994)

    • Search Google Scholar
    • Export Citation
  • Li L, Yang G, Shi S, Yang M, Liu H & Boden G 2009 The adipose triglyceride lipase, adiponectin and visfatin are downregulated by tumor necrosis factor-alpha (TNF-alpha) in vivo. Cytokine 45 1219. (https://doi.org/10.1016/j.cyto.2008.10.006)

    • Search Google Scholar
    • Export Citation
  • Li L, Miao Z, Liu R, Yang M, Liu H & Yang G 2011 Liraglutide prevents hypoadiponectinemia-induced insulin resistance and alterations of gene expression involved in glucose and lipid metabolism. Molecular Medicine 17 11681178. (https://doi.org/10.2119/molmed.2011.00051)

    • Search Google Scholar
    • Export Citation
  • Lopez-Coviella I, Berse B, Krauss R, Thies RS & Blusztajn JK 2000 Induction and maintenance of the neuronal cholinergic phenotype in the central nervous system by BMP-9. Science 289 313316. (https://doi.org/10.1126/science.289.5477.313)

    • Search Google Scholar
    • Export Citation
  • Luo X, Li K, Zhang C, Yang G, Yang M, Jia Y, Zhang L, Ma ZA, Boden G & Li L 2016 Central administration of vaspin inhibits glucose production and augments hepatic insulin signaling in high-fat-diet-fed rat. International Journal of Obesity 40 947954. (https://doi.org/10.1038/ijo.2016.24)

    • Search Google Scholar
    • Export Citation
  • Luo Y, Li L, Xu X, Wu T, Yang M, Zhang C, Mou H, Zhou T, Jia Y & Cai C et al. 2017 Decreased circulating BMP-9 levels in patients with Type 2 diabetes is a signature of insulin resistance. Clinical Science 131 239246. (https://doi.org/10.1042/CS20160543)

    • Search Google Scholar
    • Export Citation
  • Mahli A, Seitz T, Beckroge T, Freese K, Thasler WE, Benkert M, Dietrich P, Weiskirchen R, Bosserhoff A & Hellerbrand C 2019 Bone morphogenetic protein-8B expression is induced in steatotic hepatocytes and promotes hepatic steatosis and inflammation in vitro. Cells 8 457. (https://doi.org/10.3390/cells8050457)

    • Search Google Scholar
    • Export Citation
  • Martins L, Seoane-Collazo P, Contreras C, Gonzalez-Garcia I, Martinez-Sanchez N, Gonzalez F, Zalvide J, Gallego R, Dieguez C & Nogueiras R et al. 2016 A functional link between AMPK and orexin mediates the effect of BMP8B on energy balance. Cell Reports 16 22312242. (https://doi.org/10.1016/j.celrep.2016.07.045)

    • Search Google Scholar
    • Export Citation
  • Miller AF, Harvey SA, Thies RS & Olson MS 2000 Bone morphogenetic protein-9. An autocrine/paracrine cytokine in the liver. Journal of Biological Chemistry 275 1793717945. (https://doi.org/10.1074/jbc.275.24.17937)

    • Search Google Scholar
    • Export Citation
  • Mori H, Inoki K, Munzberg H, Opland D, Faouzi M, Villanueva EC, Ikenoue T, Kwiatkowski D, Macdougald OA & Myers Jr MG et al. 2009 Critical role for hypothalamic mTOR activity in energy balance. Cell Metabolism 9 362374. (https://doi.org/10.1016/j.cmet.2009.03.005)

    • Search Google Scholar
    • Export Citation
  • Nectow AR, Moya MV, Ekstrand MI, Mousa A, Mcguire KL, Sferrazza CE, Field BC, Rabinowitz GS, Sawicka K & Liang Y et al. 2017 Rapid molecular profiling of defined cell types using viral TRAP. Cell Reports 19 655667. (https://doi.org/10.1016/j.celrep.2017.03.048)

    • Search Google Scholar
    • Export Citation
  • Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG, Seeley RJ & Schwartz MW 2003 Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52 227231. (https://doi.org/10.2337/diabetes.52.2.227)

    • Search Google Scholar
    • Export Citation
  • Ohyama K, Das R & Placzek M 2008 Temporal progression of hypothalamic patterning by a dual action of BMP. Development 135 33253331. (https://doi.org/10.1242/dev.027078)

    • Search Google Scholar
    • Export Citation
  • Ono H, Pocai A, Wang Y, Sakoda H, Asano T, Backer JM, Schwartz GJ & Rossetti L 2008 Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. Journal of Clinical Investigation 118 29592968. (https://doi.org/10.1172/JCI34277)

    • Search Google Scholar
    • Export Citation
  • Pellegrinelli V, Peirce VJ, Howard L, Virtue S, Turei D, Senzacqua M, Frontini A, Dalley JW, Horton AR & Bidault G et al. 2018 Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. Nature Communications 9 4974. (https://doi.org/10.1038/s41467-018-07453-x)

    • Search Google Scholar
    • Export Citation
  • Purkayastha S, Zhang H, Zhang G, Ahmed Z, Wang Y & Cai D 2011 Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. PNAS 108 29392944. (https://doi.org/10.1073/pnas.1006875108)

    • Search Google Scholar
    • Export Citation
  • Quaresma PG, Weissmann L, Zanotto TM, Santos AC, De Matos AH, Furigo IC, Simabuco FM, Donato J, Bittencourt JR & Lopes-Cendes JC et al. 2017 Cdc2-like kinase 2 in the hypothalamus is necessary to maintain energy homeostasis. International Journal of Obesity 41 268278. (https://doi.org/10.1038/ijo.2016.174)

    • Search Google Scholar
    • Export Citation
  • Sahu M, Anamthathmakula P & Sahu A 2017 Hypothalamic phosphodiesterase 3B pathway mediates anorectic and body weight-reducing effects of insulin in male mice. Neuroendocrinology 104 145156. (https://doi.org/10.1159/000445523)

    • Search Google Scholar
    • Export Citation
  • Saltiel AR & Kahn CR 2001 Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414 799806. (https://doi.org/10.1038/414799a)

    • Search Google Scholar
    • Export Citation
  • Saxton RA & Sabatini DM 2017 MTOR signaling in growth, metabolism, and disease. Cell 168 960976. (https://doi.org/10.1016/j.cell.2017.02.004)

    • Search Google Scholar
    • Export Citation
  • Schenk S, Saberi M & Olefsky JM 2008 Insulin sensitivity: modulation by nutrients and inflammation. Journal of Clinical Investigation 118 29923002. (https://doi.org/10.1172/JCI34260)

    • Search Google Scholar
    • Export Citation
  • Schulz TJ & Tseng YH 2009 Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine and Growth Factor Reviews 20 523531. (https://doi.org/10.1016/j.cytogfr.2009.10.019)

    • Search Google Scholar
    • Export Citation
  • Song JJ, Celeste AJ, Kong FM, Jirtle RL, Rosen V & Thies RS 1995 Bone morphogenetic protein-9 binds to liver cells and stimulates proliferation. Endocrinology 136 42934297. (https://doi.org/10.1210/endo.136.10.7664647)

    • Search Google Scholar
    • Export Citation
  • Stevanovic D, Trajkovic V, Muller-Luhlhoff S, Brandt E, Abplanalp W, Bumke-Vogt C, Liehl B, Wiedmer P, Janjetovic K & Starcevic V et al. 2013 Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling. Molecular and Cellular Endocrinology 381 280290. (https://doi.org/10.1016/j.mce.2013.08.009)

    • Search Google Scholar
    • Export Citation
  • Tobin JF & Celeste AJ 2006 Bone morphogenetic proteins and growth differentiation factors as drug targets in cardiovascular and metabolic disease. Drug Discovery Today 11 405411. (https://doi.org/10.1016/j.drudis.2006.03.016)

    • Search Google Scholar
    • Export Citation
  • Townsend KL, Suzuki R, Huang TL, Jing E, Schulz TJ, Lee K, Taniguchi CM, Espinoza DO, Mcdougall LE & Zhang H et al. 2012 Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway. FASEB Journal 26 21872196. (https://doi.org/10.1096/fj.11-199067)

    • Search Google Scholar
    • Export Citation
  • Tschöp MH, Speakman JR, Arch JR, Auwerx J, Brüning JC, Chan L, Eckel RH, Farese RV, Galgani JE & Hambly C et al. 2011 A guide to analysis of mouse energy metabolism. Nature Methods 9 5763. (https://doi.org/10.1038/nmeth.1806)

    • Search Google Scholar
    • Export Citation
  • Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vazquez MJ, Morgan D, Csikasz RI, Gallego R & Rodriguez-Cuenca S et al. 2012 BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149 871885. (https://doi.org/10.1016/j.cell.2012.02.066)

    • Search Google Scholar
    • Export Citation
  • Wu D, Yang M, Chen Y, Jia Y, Ma ZA, Boden G, Li L & Yang G 2014 Hypothalamic nesfatin-1/NUCB2 knockdown augments hepatic gluconeogenesis that is correlated with inhibition of mTOR-STAT3 signaling pathway in rats. Diabetes 63 12341247. (https://doi.org/10.2337/db13-0899)

    • Search Google Scholar
    • Export Citation
  • Yamamoto Y & Oelgeschlager M 2004 Regulation of bone morphogenetic proteins in early embryonic development. Naturwissenschaften 91 519534. (https://doi.org/10.1007/s00114-004-0575-z)

    • Search Google Scholar
    • Export Citation
  • Yang M, Zhang Z, Wang C, Li K, Li S, Boden G, Li L & Yang G 2012 Nesfatin-1 action in the brain increases insulin sensitivity through Akt/AMPK/TORC2 pathway in diet-induced insulin resistance. Diabetes 61 19591968. (https://doi.org/10.2337/db11-1755)

    • Search Google Scholar
    • Export Citation
  • Yang M, Wang J, Wu S, Yuan L, Zhao X, Liu C, Xie J, Jia Y, Lai Y & Zhao AZ et al. 2017 Duodenal GLP-1 signaling regulates hepatic glucose production through a PKC-delta-dependent neurocircuitry. Cell Death and Disease 8 e2609. (https://doi.org/10.1038/cddis.2017.28)

    • Search Google Scholar
    • Export Citation
  • Zhang Q, Yu J, Liu B, Lv Z, Xia T, Xiao F, Chen S & Guo F 2013 Central activating transcription factor 4 (ATF4) regulates hepatic insulin resistance in mice via S6K1 signaling and the vagus nerve. Diabetes 62 22302239. (https://doi.org/10.2337/db12-1050)

    • Search Google Scholar
    • Export Citation