SGLT2-i improves markers of islet endothelial cell function in db/db diabetic mice

in Journal of Endocrinology
View More View Less
  • 1 Division of Metabolism, Endocrinology and Nutrition, VA Puget Sound Health Care System, Seattle, Washington, USA
  • 2 Department of Medicine, University of Washington, Seattle, Washington, USA
  • 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA

Correspondence should be addressed to R L Hull: rhull@uw.edu
Restricted access

Islet endothelial cells produce paracrine factors important for islet beta-cell function and survival. Under conditions of type 2 diabetes, islet endothelial cells exhibit a dysfunctional phenotype including increased expression of genes involved in cellular adhesion and inflammation. We sought to determine whether treatment of hyperglycemia with the sodium glucose co-transporter 2 inhibitor empagliflozin, either alone or in combination with metformin, would improve markers of endothelial cell function in islets, assessed ex vivo, and if such an improvement is associated with improved insulin secretion in a mouse model of diabetes in vivo. For these studies, db/db diabetic mice and non-diabetic littermate controls were treated for 6 weeks with empagliflozin or metformin, either alone or in combination. For each treatment group, expression of genes indicative of islet endothelial dysfunction was quantified. Islet endothelial and beta-cell area was assessed by morphometry of immunochemically stained pancreas sections. Measurements of plasma glucose and insulin secretion during an intravenous glucose tolerance test were performed on vehicle and drug treated diabetic animals. We found that expression of endothelial dysfunction marker genes is markedly increased in diabetic mice. Treatment with either empagliflozin or metformin lowered expression of the dysfunction marker genes ex vivo, which correlated with improved glycemic control, and increased insulin release in vivo. Empagliflozin treatment was more effective than metformin alone, with a combination of the two drugs demonstrating the greatest effects. Improving islet endothelial function through strategies such as empagliflozin/metformin treatment may provide an effective approach for improving insulin release in human type 2 diabetes.

 

Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 341 341 318
Full Text Views 74 74 71
PDF Downloads 39 39 38
  • Ayala JE, Bracy DP, Mcguinness OP & Wasserman DH 2006 Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes 55 39039 7. (https://doi.org/10.2337/diabetes.55.02.06.db05-0686)

    • Search Google Scholar
    • Export Citation
  • Ayala JE, Samuel VT, Morton GJ, Obici S, Croniger CM, Shulman GI, Wasserman DH, Mcguinness OPConsortium NIHMMPC 2010 Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Disease Models and Mechanisms 3 5255 34. (https://doi.org/10.1242/dmm.006239)

    • Search Google Scholar
    • Export Citation
  • Brissova M, Shostak A, Fligner CL, Revetta FL, Washington MK, Powers AC & Hull RL 2015 Human islets have fewer blood vessels than mouse islets and the density of islet vascular structures is increased in type 2 diabetes. Journal of Histochemistry and Cytochemistry 63 637645. (https://doi.org/10.1369/0022155415573324)

    • Search Google Scholar
    • Export Citation
  • Brownlee M 2005 The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54 161516 25. (https://doi.org/10.2337/diabetes.54.6.1615)

    • Search Google Scholar
    • Export Citation
  • DCCT Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L & Siebert C 1993 The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New England Journal of Medicine 329 9779 86. (https://doi.org/10.1056/NEJM199309303291401)

    • Search Google Scholar
    • Export Citation
  • Ganbaatar B, Fukuda D, Shinohara M, Yagi S, Kusunose K, Yamada H, Soeki T, Hirata KI & Sata M 2020 Empagliflozin ameliorates endothelial dysfunction and suppresses atherogenesis in diabetic apolipoprotein E-deficient mice. European Journal of Pharmacology 875 173040. (https://doi.org/10.1016/j.ejphar.2020.173040)

    • Search Google Scholar
    • Export Citation
  • Hadjadj S, Rosenstock J, Meinicke T, Woerle HJ & Broedl UC 2016 Initial combination of empagliflozin and metformin in patients with type 2 diabetes. Diabetes Care 39 171817 28. (https://doi.org/10.2337/dc16-0522)

    • Search Google Scholar
    • Export Citation
  • Hogan MF & Hull RL 2017 The islet endothelial cell: a novel contributor to beta cell secretory dysfunction in diabetes. Diabetologia 60 952959. (https://doi.org/10.1007/s00125-017-4272-9)

    • Search Google Scholar
    • Export Citation
  • Hogan MF, Liu AW, Peters MJ, Willard JR, Rabbani Z, Bartholomew EC, Ottley A & Hull RL 2017 Markers of islet endothelial dysfunction occur in male B6.BKS(D)-Leprdb/J mice and may contribute to reduced insulin release. Endocrinology 158 293303. (https://doi.org/10.1210/en.2016-1393)

    • Search Google Scholar
    • Export Citation
  • Horie K, Miyata T, Maeda K, Miyata S, Sugiyama S, Sakai H, Van Ypersole De Strihou C, Monnier VM, Witztum JL & Kurokawa K 1997 Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. Journal of Clinical Investigation 100 29953004. (https://doi.org/10.1172/JCI119853)

    • Search Google Scholar
    • Export Citation
  • Hummel KP, Coleman DL & Lane PW 1972 The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains. Biochemical Genetics 7 113. (https://doi.org/10.1007/BF00487005)

    • Search Google Scholar
    • Export Citation
  • Johansson M, Mattsson G, Andersson A, Jansson L & Carlsson PO 2006 Islet endothelial cells and pancreatic beta-cell proliferation: studies in vitro and during pregnancy in adult rats. Endocrinology 147 23152 32 4. (https://doi.org/10.1210/en.2005-0997)

    • Search Google Scholar
    • Export Citation
  • Johansson A, Lau J, Sandberg M, Borg LA, Magnusson PU & Carlsson PO 2009 Endothelial cell signalling supports pancreatic beta cell function in the rat. Diabetologia 52 238523 94. (https://doi.org/10.1007/s00125-009-1485-6)

    • Search Google Scholar
    • Export Citation
  • Kado S, Wakatsuki T, Yamamoto M & Nagata N 2001 Expression of intercellular adhesion molecule-1 induced by high glucose concentrations in human aortic endothelial cells. Life Sciences 68 7277 37. (https://doi.org/10.1016/s0024-3205(0000968-1)

    • Search Google Scholar
    • Export Citation
  • Lacraz G, Giroix MH, Kassis N, Coulaud J, Galinier A, Noll C, Cornut M, Schmidlin F, Paul JL & Janel N 2009 Islet endothelial activation and oxidative stress gene expression is reduced by IL-1RA treatment in the type 2 diabetic GK rat. PLoS ONE 4 e6963. (https://doi.org/10.1371/journal.pone.0006963)

    • Search Google Scholar
    • Export Citation
  • Li CY, Wang LX, Dong SS, Hong Y, Zhou XH, Zheng WW & Zheng C 2018 Phlorizin exerts direct protective effects on palmitic acid (PA)-induced endothelial dysfunction by activating the PI3K/AKT/eNOS signaling pathway and increasing the levels of nitric oxide (NO). Medical Science Monitor Basic Research 24 19. (https://doi.org/10.12659/msmbr.907775)

    • Search Google Scholar
    • Export Citation
  • Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 40240 8. (https://doi.org/10.1006/meth.2001.1262)

    • Search Google Scholar
    • Export Citation
  • Lupi R, Del Guerra S, Tellini C, Giannarelli R, Coppelli A, Lorenzetti M, Carmellini M, Mosca F, Navalesi R & Marchetti P 1999 The biguanide compound metformin prevents desensitization of human pancreatic islets induced by high glucose. European Journal of Pharmacology 364 205209. (https://doi.org/10.1016/s0014-2999(9800807-3)

    • Search Google Scholar
    • Export Citation
  • Lupi R, Del Guerra S, Fierabracci V, Marselli L, Novelli M, Patane G, Boggi U, Mosca F, Piro S & Del Prato S 2002 Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes 51 (Supplement 1) S134S137. (https://doi.org/10.2337/diabetes.51.2007.s134)

    • Search Google Scholar
    • Export Citation
  • Lytrivi M, Castell AL, Poitout V & Cnop M 2020 Recent insights into mechanisms of beta-cell lipo- and glucolipotoxicity in type 2 diabetes. Journal of Molecular Biology 432 15141534. (https://doi.org/10.1016/j.jmb.2019.09.016)

    • Search Google Scholar
    • Export Citation
  • Maiti R & Agrawal NK 2007 Atherosclerosis in diabetes mellitus: role of inflammation. Indian Journal of Medical Sciences 61 292306. (https://doi.org/10.4103/0019-5359.32098)

    • Search Google Scholar
    • Export Citation
  • Majewski C & Bakris GL 2015 Blood pressure reduction: an added benefit of sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes. Diabetes Care 38 4294 30. (https://doi.org/10.2337/dc14-1596)

    • Search Google Scholar
    • Export Citation
  • Nakamura M, Kitamura H, Konishi S, Nishimura M, Ono J, Ina K, Shimada T & Takaki R 1995 The endocrine pancreas of spontaneously diabetic db/db mice: microangiopathy as revealed by transmission electron microscopy. Diabetes Research and Clinical Practice 30 89100. (https://doi.org/10.1016/0168-8227(9501155-2)

    • Search Google Scholar
    • Export Citation
  • Nauck MA, Del Prato S, Meier JJ, Duran-Garcia S, Rohwedder K, Elze M & Parikh SJ 2011 Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care 34 20152 02 2. (https://doi.org/10.2337/dc11-0606)

    • Search Google Scholar
    • Export Citation
  • Olsson R & Carlsson PO 2006 The pancreatic islet endothelial cell: emerging roles in islet function and disease. International Journal of Biochemistry and Cell Biology 38 49249 7. (https://doi.org/10.1016/j.biocel.2005.06.021)

    • Search Google Scholar
    • Export Citation
  • Patane G, Piro S, Rabuazzo AM, Anello M, Vigneri R & Purrello F 2000 Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic beta-cells. Diabetes 49 735740. (https://doi.org/10.2337/diabetes.49.5.735)

    • Search Google Scholar
    • Export Citation
  • Peiris H, Bonder CS, Coates PT, Keating DJ & Jessup CF 2014 The beta-cell/EC axis: how do islet cells talk to each other? Diabetes 63 311. (https://doi.org/10.2337/db13-0617)

    • Search Google Scholar
    • Export Citation
  • Piconi L, Quagliaro L, Da Ros R, Assaloni R, Giugliano D, Esposito K, Szabo C & Ceriello A 2004 Intermittent high glucose enhances ICAM-1, VCAM-1, E-selectin and interleukin-6 expression in human umbilical endothelial cells in culture: the role of poly(ADP-ribose) polymerase. Journal of Thrombosis and Haemostasis 2 1453145 9. (https://doi.org/10.1111/j.1538-7836.2004.00835.x)

    • Search Google Scholar
    • Export Citation
  • Richards OC, Raines SM & Attie AD 2010 The role of blood vessels, endothelial cells, and vascular pericytes in insulin secretion and peripheral insulin action. Endocrine Reviews 31 3433 63. (https://doi.org/10.1210/er.2009-0035)

    • Search Google Scholar
    • Export Citation
  • Saponaro C, Muhlemann M, Acosta-Montalvo A, Piron A, Gmyr V, Delalleau N, Moerman E, Thevenet J, Pasquetti G & Coddeville A 2020 Interindividual heterogeneity of SGLT2 expression and function in human pancreatic islets. Diabetes 69 902914. (https://doi.org/10.2337/db19-0888)

    • Search Google Scholar
    • Export Citation
  • Shah P, Lueschen N, Ardestani A, Oberholzer J, Olerud J, Carlsson PO & Maedler K 2016 Angiopoetin-2 signals do not mediate the hypervascularization of islets in type 2 diabetes. PLoS ONE 11 e0161834. (https://doi.org/10.1371/journal.pone.0161834)

    • Search Google Scholar
    • Export Citation
  • Shao J, Iwashita N, Ikeda F, Ogihara T, Uchida T, Shimizu T, Uchino H, Hirose T, Kawamori R & Watada H 2006 Beneficial effects of candesartan, an angiotensin II type 1 receptor blocker, on beta-cell function and morphology in db/db mice. Biochemical and Biophysical Research Communications 344 122412 33. (https://doi.org/10.1016/j.bbrc.2006.04.011)

    • Search Google Scholar
    • Export Citation
  • Shi Y & Vanhoutte PM 2017 Macro- and microvascular endothelial dysfunction in diabetes. Journal of Diabetes 9 434449. (https://doi.org/10.1111/1753-0407.12521)

    • Search Google Scholar
    • Export Citation
  • Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB & Vlassara H 1997 Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. American Journal of Pathology 150 5235 31.

    • Search Google Scholar
    • Export Citation
  • Windelov JA, Pedersen J & Holst JJ 2016 Use of anesthesia dramatically alters the oral glucose tolerance and insulin secretion in C57BL/6 mice. Physiological Reports 4 e12824. (https://doi.org/10.14814/phy2.12824)

    • Search Google Scholar
    • Export Citation
  • Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE & Woerle HJ 2015 Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. New England Journal of Medicine 373 21172 12 8. (https://doi.org/10.1056/NEJMoa1504720)

    • Search Google Scholar
    • Export Citation
  • Zraika S, Hull RL, Udayasankar J, Utzschneider KM, Tong J, Gerchman F & Kahn SE 2007 Glucose- and time-dependence of islet amyloid formation in vitro. Biochemical and Biophysical Research Communications 354 234239. (https://doi.org/10.1016/j.bbrc.2006.12.187)

    • Search Google Scholar
    • Export Citation