IGF1 does not overcome sexual dimorphism of body and muscle size in Mstn−/− mice

in Journal of Endocrinology
Authors:
Ryan Paul University of Auckland Waikato Clinical School, Hamilton, New Zealand

Search for other papers by Ryan Paul in
Current site
Google Scholar
PubMed
Close
,
Kim Whiteman ManukaMed LP, Hamilton, New Zealand

Search for other papers by Kim Whiteman in
Current site
Google Scholar
PubMed
Close
,
Shelley J Falconer AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Shelley J Falconer in
Current site
Google Scholar
PubMed
Close
,
Jenny M Oldham AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Jenny M Oldham in
Current site
Google Scholar
PubMed
Close
,
Ferenc Jeanplong AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Ferenc Jeanplong in
Current site
Google Scholar
PubMed
Close
,
Kenneth G Matthews AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Kenneth G Matthews in
Current site
Google Scholar
PubMed
Close
,
Heather K Smith Department of Exercise Sciences, University of Auckland, Auckland Mail Centre, Auckland, New Zealand

Search for other papers by Heather K Smith in
Current site
Google Scholar
PubMed
Close
,
Mark Thomas ManukaMed LP, Hamilton, New Zealand

Search for other papers by Mark Thomas in
Current site
Google Scholar
PubMed
Close
,
Trevor Watson AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Trevor Watson in
Current site
Google Scholar
PubMed
Close
, and
Christopher D McMahon ManukaMed LP, Hamilton, New Zealand
AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Christopher D McMahon in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3635-177X

Correspondence should be addressed to C D McMahon: mcmahonc@xtra.co.nz
Restricted access
Rent on DeepDyve

Sign up for journal news

Insulin-like growth factor-1 (IGF1) is crucial for regulating post-natal growth and, along with myostatin (MSTN), regulates muscle size. Here, we sought to clarify the roles of these two genes in regulating sexually dimorphic growth of body and muscle mass. In the first study, we established that Igf1 mRNA was increased to a greater extent and Igf1 receptor mRNA increased earlier in male, than in female, gastrocnemius muscles during the rapid phase of growth (from 2 to 6 weeks) were unchanged, thereafter, to 32 weeks of age in WT mice (P < 0.001). In the second study, we sought to determine if supplemental IGF1 could overcome the sexual dimorphism of muscle and body mass, when myostatin is absent. We crossed myostatin null (Mstn–/–) mice with mice over-expressing Igf1 in skeletal muscle (Igf1+) to generate six genotypes; control (Mstn+/+), Mstn+/–, Mstn–/–, Mstn+/+:Igf1+, Mstn+/–:Igf1+ and Mstn–/–:Igf1+ (n = 8 per genotype and sex). In both sexes, body mass at 12 weeks was increased by at least 1.6-fold and muscle mass by at least 3-fold in Mstn–/–:Igf1+ compared with Mstn+/+ mice (P < 0.001). The abundance of AKT was increased in muscles of mice transgenic for Mstn, while phosphorylation of AKTS473 was increased in both male and female mice transgenic for Igf1+. The ratio of phosphorylated to total AKT was 1.9-fold greater in male mice (P < 0.001). Thus, despite increased growth of skeletal muscle and body size when myostatin was absent and IGF1 was in excess, sexual dimorphism persisted, an effect consistent with greater IGF1-induced activation of AKT in skeletal muscles of males.

 

  • Collapse
  • Expand
  • Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F, Vrbova G & Partridge T et al.2007 Lack of myostatin results in excessive muscle growth but impaired force generation. PNAS 104 183518 40. (https://doi.org/10.1073/pnas.0604893104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Artaza JN, Bhasin S, Magee TR, Reisz-Porszasz S, Shen R, Groome NP, Meerasahib MF & Gonzalez-Cadavid NF 2005 Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells. Endocrinology 146 354735 57. (https://doi.org/10.1210/en.2005-0362)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Augusto V, Padovani CR & Campos GER 2004 Skeletal muscle fiber types in C57BL6J mice. Brazilian Journal of Morphological Sciences 21 8994.

  • Baker J, Liu JP, Robertson EJ & Efstratiadis A 1993 Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75 7382. (https://doi.org/10.1016/S0092-8674(0580085-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beilharz MW, Lareu RR, Garrett KL, Grounds MD & Fletcher S 1992 Quantitation of muscle precursor cell activity in skeletal muscle by Northern blot analysis of MyoD and myogenin expression: application to dystrophic (mdx) mouse muscle. Molecular and Cellular Neurosciences 3 326331. (https://doi.org/10.1016/1044-7431(9290029-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blough ER, Rennie ER, Zhang F & Reiser PJ 1996 Enhanced electrophoretic separation and resolution of myosin heavy chains in mammalian and avian skeletal muscles. Analytical Biochemistry 233 313 5. (https://doi.org/10.1006/abio.1996.0003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Callewaert F, Venken K, Kopchick JJ, Torcasio A, van Lenthe GH, Boonen S & Vanderschueren D 2010 Sexual dimorphism in cortical bone size and strength but not density is determined by independent and time-specific actions of sex steroids and IGF-1: evidence from pubertal mouse models. Journal of Bone and Mineral Research 25 6176 26. (https://doi.org/10.1359/jbmr.090828)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark DL, Clark DI, Hogan EK, Kroscher KA & Dilger AC 2015 Elevated insulin-like growth factor 2 expression may contribute to the hypermuscular phenotype of myostatin null mice. Growth Hormone and IGF Research 25 2072 18. (https://doi.org/10.1016/j.ghir.2015.06.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Donoghue MJ, Alvarez JD, Merlie JP & Sanes JR 1991 Fiber type- and position-dependent expression of a myosin light chain-CAT transgene detected with a novel histochemical stain for CAT. Journal of Cell Biology 115 4234 34. (https://doi.org/10.1083/jcb.115.2.423)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fiorotto ML, Schwartz RJ & Delaughter MC 2003 Persistent IGF-I overexpression in skeletal muscle transiently enhances DNA accretion and growth. FASEB Journal 17 5960. (https://doi.org/10.1096/fj.02-0289fje)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Girgenrath S, Song K & Whittemore LA 2005 Loss of myostatin expression alters fiber-type distribution and expression of myosin heavy chain isoforms in slow- and fast-type skeletal muscle. Muscle and Nerve 31 3440. (https://doi.org/10.1002/mus.20175)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Griffin GE & Goldspink G 1973 The increase in skeletal muscle mass in male and female mice. Anatomical Record 177 46546 9. (https://doi.org/10.1002/ar.1091770311)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hagdorn QAJ, Bossers GPL, Koop AC, Piek A, Eijgenraam TR, van der Feen DE, Sillje HHW, de Boer RA & Berger RMF 2019 A novel method optimizing the normalization of cardiac parameters in small animal models: the importance of dimensional indexing. American Journal of Physiology: Heart and Circulatory Physiology 316 H1552H1557. (https://doi.org/10.1152/ajpheart.00182.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hamalainen N & Pette D 1993 The histochemical profiles of fast fiber types IIB, IID, and IIA in skeletal muscles of mouse, rat, and rabbit. Journal of Histochemistry and Cytochemistry 41 7337 43. (https://doi.org/10.1177/41.5.8468455)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hamrick MW, Pennington C, Webb CN & Isales CM 2006 Resistance to body fat gain in ‘double-muscled’ mice fed a high-fat diet. International Journal of Obesity 30 8688 70. (https://doi.org/10.1038/sj.ijo.0803200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Handelsman DJ, Spaliviero JA, Scott CD & Baxter RC 1987 Hormonal regulation of the peripubertal surge of insulin-like growth factor-I in the rat. Endocrinology 120 49149 6. (https://doi.org/10.1210/endo-120-2-491)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hennebry A, Oldham J, Shavlakadze T, Grounds MD, Sheard P, Fiorotto ML, Falconer S, Smith HK, Berry C & Jeanplong F et al.2017 IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice. Journal of Endocrinology 234 187200. (https://doi.org/10.1530/JOE-17-0032)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu Z, Friberg RD & Barkan AL 1993 Ontogeny of GH mRNA and GH secretion in male and female rats: regulation by GH-releasing hormone. American Journal of Physiology 265 E236E2 42. (https://doi.org/10.1152/ajpendo.1993.265.2.E236)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hwa V 2016 STAT5B deficiency: impacts on human growth and immunity. Growth Hormone and IGF Research 28 1620. (https://doi.org/10.1016/j.ghir.2015.12.006)

  • Klover P & Hennighausen L 2007 Postnatal body growth is dependent on the transcription factors signal transducers and activators of transcription 5a/b in muscle: a role for autocrine/paracrine insulin-like growth factor I. Endocrinology 148 148914 97. (https://doi.org/10.1210/en.2006-1431)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Klover P, Chen W, Zhu BM & Hennighausen L 2009 Skeletal muscle growth and fiber composition in mice are regulated through the transcription factors STAT5a/b: linking growth hormone to the androgen receptor. FASEB Journal 23 3140314 8. (https://doi.org/10.1096/fj.08-128215)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, Pratt KL, Bezrodnik L, Jasper H & Tepper A et al.2003 Growth hormone insensitivity associated with a STAT5b mutation. New England Journal of Medicine 349 113911 47. (https://doi.org/10.1056/NEJMoa022926)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Le Roith D, Bondy C, Yakar S, Liu JL & Butler A 2001 The somatomedin hypothesis: 2001. Endocrine Reviews 22 5374. (https://doi.org/10.1210/edrv.22.1.0419)

  • Lee SJ & McPherron AC 1999 Myostatin and the control of skeletal muscle mass. Current Opinion in Genetics and Development 9 60460 7. (https://doi.org/10.1016/s0959-437x(9900004-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu JL & LeRoith D 1999 Insulin-like growth factor I is essential for postnatal growth in response to growth hormone. Endocrinology 140 517851 84. (https://doi.org/10.1210/endo.140.11.7151)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu JP, Baker J, Perkins AS, Robertson EJ & Efstratiadis A 1993 Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75 5972. (https://doi.org/10.1016/S0092-8674(0580084-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lundby C, Nordsborg N, Kusuhara K, Kristensen KM, Neufer PD & Pilegaard H 2005 Gene expression in human skeletal muscle: alternative normalization method and effect of repeated biopsies. European Journal of Applied Physiology 95 3513 60. (https://doi.org/10.1007/s00421-005-0022-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lupu F, Terwilliger JD, Lee K, Segre GV & Efstratiadis A 2001 Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Developmental Biology 229 1411 62. (https://doi.org/10.1006/dbio.2000.9975)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mathews LS, Hammer RE, Brinster RL & Palmiter RD 1988 Expression of insulin-like growth factor I in transgenic mice with elevated levels of growth hormone is correlated with growth. Endocrinology 123 43343 7. (https://doi.org/10.1210/endo-123-1-433)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McMahon CD, Popovic L, Jeanplong F, Oldham JM, Kirk SP, Osepchook CC, Wong KW, Sharma M, Kambadur R & Bass JJ 2003 Sexual dimorphism is associated with decreased expression of processed myostatin in males. American Journal of Physiology: Endocrinology and Metabolism 284 E377E3 81. (https://doi.org/10.1152/ajpendo.00282.2002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McPherron AC, Lawler AM & Lee SJ 1997 Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387 8390. (https://doi.org/10.1038/387083a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morissette MR, Cook SA, Buranasombati C, Rosenberg MA & Rosenzweig A 2009 Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt. American Journal of Physiology: Cell Physiology 297 C1124C11 32. (https://doi.org/10.1152/ajpcell.00043.2009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL & Rosenthal N 2001 Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nature Genetics 27 195200. (https://doi.org/10.1038/84839)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oldham JM, Osepchook CC, Jeanplong F, Falconer SJ, Matthews KG, Conaglen JV, Gerrard DF, Smith HK, Wilkins RJ & Bass JJ et al.2009 The decrease in mature myostatin protein in male skeletal muscle is developmentally regulated by growth hormone. Journal of Physiology 587 6696 77. (https://doi.org/10.1113/jphysiol.2008.161521)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paul RG, Hennebry AS, Elston MS, Conaglen JV & McMahon CD 2019 Regulation of murine skeletal muscle growth by STAT5B is age- and sex-specific. Skeletal Muscle 9 19. (https://doi.org/10.1186/s13395-019-0204-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ & Attisano L 2003 Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Molecular and Cellular Biology 23 723072 42. (https://doi.org/10.1128/mcb.23.20.7230-7242.2003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reisz-Porszasz S, Bhasin S, Artaza JN, Shen R, Sinha-Hikim I, Hogue A, Fielder TJ & Gonzalez-Cadavid NF 2003 Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. American Journal of Physiology: Endocrinology and Metabolism 285 E876E8 88. (https://doi.org/10.1152/ajpendo.00107.2003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Retamales A, Zuloaga R, Valenzuela CA, Gallardo-Escarate C, Molina A & Valdes JA 2015 Insulin-like growth factor-1 suppresses the myostatin signaling pathway during myogenic differentiation. Biochemical and Biophysical Research Communications 464 596602. (https://doi.org/10.1016/j.bbrc.2015.07.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodgers BD, Interlichia JP, Garikipati DK, Mamidi R, Chandra M, Nelson OL, Murry CE & Santana LF 2009 Myostatin represses physiological hypertrophy of the heart and excitation-contraction coupling. Journal of Physiology 587 487348 86. (https://doi.org/10.1113/jphysiol.2009.172544)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rogers P & Webb GP 1980 Estimation of body fat in normal and obese mice. British Journal of Nutrition 43 838 6. (https://doi.org/10.1079/bjn19800066)

  • Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD & Glass DJ 2001 Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biology 3 10091 01 3. (https://doi.org/10.1038/ncb1101-1009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosenthal N, Kornhauser JM, Donoghue M, Rosen KM & Merlie JP 1989 Myosin light chain enhancer activates muscle-specific, developmentally regulated gene expression in transgenic mice. PNAS 86 7780778 4. (https://doi.org/10.1073/pnas.86.20.7780)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rozengurt E, Soares HP & Sinnet-Smith J 2014 Suppression of feedback loops mediated by PI3K/mTOR induces multiple overactivation of compensatory pathways: an unintended consequence leading to drug resistance. Molecular Cancer Therapeutics 13 247724 88. (https://doi.org/10.1158/1535-7163.MCT-14-0330)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Safranski TJ, Lamberson WR & Keisler DH 1993 Correlations among three measures of puberty in mice and relationships with estradiol concentration and ovulation. Biology of Reproduction 48 6696 73. (https://doi.org/10.1095/biolreprod48.3.669)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shanely RA, Zwetsloot KA, Childs TE, Lees SJ, Tsika RW & Booth FW 2009 IGF-I activates the mouse type IIb myosin heavy chain gene. American Journal of Physiology: Cell Physiology 297 C1019C10 27. (https://doi.org/10.1152/ajpcell.00169.2009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shavlakadze T, Winn N, Rosenthal N & Grounds MD 2005 Reconciling data from transgenic mice that overexpress IGF-I specifically in skeletal muscle. Growth Hormone and IGF Research 15 418. (https://doi.org/10.1016/j.ghir.2004.11.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shavlakadze T, Chai J, Maley K, Cozens G, Grounds G, Winn N, Rosenthal N & Grounds MD 2010 A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo. Journal of Cell Science 123 9609 71. (https://doi.org/10.1242/jcs.061119)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shimizu H & Awata T 1984 Growth of skeletal bones and their sexual differences in mice. Jikken Dobutsu 33 6976. (https://doi.org/10.1538/expanim1978.33.1_69)

  • Sjogren K, Liu JL, Blad K, Skrtic S, Vidal O, Wallenius V, LeRoith D, Tornell J, Isaksson OG & Jansson JO et al.1999 Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. PNAS 96 708870 92. (https://doi.org/10.1073/pnas.96.12.7088)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith HK, Matthews KG, Oldham JM, Jeanplong F, Falconer SJ, Bass JJ, Senna-Salerno M, Bracegirdle JW & McMahon CD 2014 Translational signalling, atrogenic and myogenic gene expression during unloading and reloading of skeletal muscle in myostatin-deficient mice. PLoS ONE 9 e94356. (https://doi.org/10.1371/journal.pone.0094356)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sordella R, Jiang W, Chen GC, Curto M & Settleman J 2003 Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell 113 1471 58. (https://doi.org/10.1016/s0092-8674(0300271-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stratikopoulos E, Szabolcs M, Dragatsis I, Klinakis A & Efstratiadis A 2008 The hormonal action of IGF1 in postnatal mouse growth. PNAS 105 19378193 83. (https://doi.org/10.1073/pnas.0809223105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S & Glass DJ 2009 Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. American Journal of Physiology: Cell Physiology 296 C1258C12 70. (https://doi.org/10.1152/ajpcell.00105.2009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ & Davey HW 1997 Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. PNAS 94 723972 44. (https://doi.org/10.1073/pnas.94.14.7239)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Welle S, Burgess K & Mehta S 2009 Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice. American Journal of Physiology: Endocrinology and Metabolism 296 E567E5 72. (https://doi.org/10.1152/ajpendo.90862.2008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • White Z, Terrill J, White RB, McMahon C, Sheard P, Grounds MD & Shavlakadze T 2016 Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice. Skeletal Muscle 6 45. (https://doi.org/10.1186/s13395-016-0117-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B & LeRoith D 1999 Normal growth and development in the absence of hepatic insulin-like growth factor I. PNAS 96 7324732 9. (https://doi.org/10.1073/pnas.96.13.7324)

    • PubMed
    • Search Google Scholar
    • Export Citation