Glucocorticoids reset circadian clock in choroid plexus via period genes

in Journal of Endocrinology
Authors:
Karolína Liška Laboratory of Biological Rhythms, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
Third Faculty of Medicine, Charles University, Prague, Czech Republic

Search for other papers by Karolína Liška in
Current site
Google Scholar
PubMed
Close
,
Martin Sládek Laboratory of Biological Rhythms, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic

Search for other papers by Martin Sládek in
Current site
Google Scholar
PubMed
Close
,
Vendula Čečmanová Laboratory of Biological Rhythms, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic

Search for other papers by Vendula Čečmanová in
Current site
Google Scholar
PubMed
Close
, and
Alena Sumová Laboratory of Biological Rhythms, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic

Search for other papers by Alena Sumová in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4126-5470

Correspondence should be addressed to A Sumová: alena.sumova@fgu.cas.cz
Restricted access
Rent on DeepDyve

Sign up for journal news

The epithelial cells of choroid plexus (CP) in brain ventricles produce cerebrospinal fluid and act as the blood-cerebrospinal fluid barrier. In this study, we confirmed that CP in the 4th ventricle is composed of cellular oscillators that all harbor glucocorticoid receptors and are mutually synchronized to produce a robust clock gene expression rhythm detectable at the tissue level in vivo and in vitro. Animals lacking glucocorticoids (GCs) due to surgical removal of adrenal glands had Per1, Per2, Nr1d1 and Bmal1 clock gene rhythmicity in their CP significantly dampened, whereas subjecting them to daily bouts of synthetic GC analog, dexamethasone (DEX), reinforced those rhythms. We verified these in vivo effects using an in vitro model of organotypic CP explants; depending on the time of its application, DEX significantly increased the amplitude and efficiently reset the phase of the CP clock. The results are the first description of a PRC for a non-neuronal clock in the brain, demonstrating that CP clock shares some properties with the non-neuronal clocks elsewhere in the body. Finally, we found that DEX exhibited multiple synergic effects on the CP clock, including acute activation of Per1 expression and change of PER2 protein turnover rate. The DEX-induced shifts of the CP clock were partially mediated via PKA-ERK1/2 pathway. The results provide the first evidence that the GC rhythm strengthens and entrains the clock in the CP helping thus fine-tune the brain environment according to time of day.

 

  • Collapse
  • Expand
  • Adcock IM, Maneechotesuwan K & Usmani O 2002 Molecular interactions between glucocorticoids and long-acting β2-agonists. Journal of Allergy and Clinical Immunology 110 (Supplement) S261S268. (https://doi.org/10.1067/mai.2002.129705)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Amir S, Lamont EW, Robinson B & Stewart J 2004 A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. Journal of Neuroscience 24 781790. (https://doi.org/10.1523/JNEUROSCI.4488-03.2004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Asare K 2007 Diagnosis and treatment of adrenal insufficiency in the critically ill patient. Pharmacotherapy 27 15121528. (https://doi.org/10.1592/phco.27.11.1512)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schütz G & Schibler U 2000 Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289 23442347. (https://doi.org/10.1126/science.289.5488.2344)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Čečmanová V, Houdek P, Šuchmanová K, Sládek M & Sumová A 2019 Development and entrainment of the fetal clock in the suprachiasmatic nuclei: the role of glucocorticoids. Journal of Biological Rhythms 34 307322. (https://doi.org/10.1177/0748730419835360)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cheifetz PN 1971 The daily rhythm of the secretion of corticotrophin and corticosterone in rats and mice. Journal of Endocrinology 49 xixii.

  • Cheon S, Park N, Cho S & Kim K 2013 Glucocorticoid-mediated Period2 induction delays the phase of circadian rhythm. Nucleic Acids Research 41 61616174. (https://doi.org/10.1093/nar/gkt307)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chiu C, Miller MC, Caralopoulos IN, Worden MS, Brinker T, Gordon ZN, Johanson CE & Silverberg GD 2012 Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months. Fluids and Barriers of the CNS 9 3. (https://doi.org/10.1186/2045-8118-9-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davies SP, Reddy H, Caivano M & Cohen P 2000 Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochemical Journal 351 95–105. (https://doi.org/10.1042/0264-6021:3510095).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dibner C, Schibler U & Albrecht U 2010 The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annual Review of Physiology 72 517549. (https://doi.org/10.1146/annurev-physiol-021909-135821)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Doi M, Shimatani H, Atobe Y, Murai I, Hayashi H, Takahashi Y, Fustin JM, Yamaguchi Y, Kiyonari H & Koike N et al.2019 Non-coding cis-element of Period2 is essential for maintaining organismal circadian behaviour and body temperature rhythmicity. Nature Communications 10 2563. (https://doi.org/10.1038/s41467-019-10532-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Groeneweg FL, Karst H, de Kloet ER & Joëls M 2012 Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Molecular and Cellular Endocrinology 350 299309. (https://doi.org/10.1016/j.mce.2011.06.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harrington MG, Salomon RM, Pogoda JM, Oborina E, Okey N, Johnson B, Schmidt D, Fonteh AN & Dalleska NF 2010 Cerebrospinal fluid sodium rhythms. Cerebrospinal Fluid Research 7 3. (https://doi.org/10.1186/1743-8454-7-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Houdek P & Sumová A 2014 In vivo initiation of clock gene expression rhythmicity in fetal rat suprachiasmatic nuclei. PLoS ONE 9 e107360. (https://doi.org/10.1371/journal.pone.0107360)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Impey S, Obrietan K, Wong ST, Poser S, Yano S, Wayman G, Deloulme JC, Chan G & Storm DR 1998 Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21 869883. (https://doi.org/10.1016/s0896-6273(0080602-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Johnson CH 1992 Phase response curves: what can they tell us about circadian clocks. In Circadian Clocks from Cell to Human, pp. 209249. Eds T Hiroshige & K Honma. Sapporo: Hokkaido University Press.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW, Downes M & Evans RM 2011 Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480 552556. (https://doi.org/10.1038/nature10700)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lamont EW, Robinson B, Stewart J & Amir S 2005 The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. PNAS 102 41804184. (https://doi.org/10.1073/pnas.0500901102)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee B, Almad A, Butcher GQ & Obrietan K 2007 Protein kinase C modulates the phase-delaying effects of light in the mammalian circadian clock. European Journal of Neuroscience 26 451462. (https://doi.org/10.1111/j.1460-9568.2007.05664.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lindvall M & Owman C 1981 Autonomic nerves in the mammalian choroid plexus and their influence on the formation of cerebrospinal fluid. Journal of Cerebral Blood Flow and Metabolism 1 245266. (https://doi.org/10.1038/jcbfm.1981.30)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martinho A, Gonçalves I, Costa M & Santos CR 2012 Stress and glucocorticoids increase transthyretin expression in rat choroid plexus via mineralocorticoid and glucocorticoid receptors. Journal of Molecular Neuroscience 48 113. (https://doi.org/10.1007/s12031-012-9715-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Murayama Y, Yahagi N, Takeuchi Y, Aita Y, Mehrazad Saber Z, Wada N, Li EX, Piao X, Sawada Y & Shikama A et al.2019 Glucocorticoid receptor suppresses gene expression of Rev-erbα (Nr1d1) through interaction with the CLOCK complex. FEBS Letters 593 423432. (https://doi.org/10.1002/1873-3468.13328)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Myung J, Schmal C, Hong S, Tsukizawa Y, Rose P, Zhang Y, Holtzman MJ, De Schutter E, Herzel H & Bordyugov G et al.2018 The choroid plexus is an important circadian clock component. Nature Communications 9 1062. (https://doi.org/10.1038/s41467-018-03507-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nader N, Chrousos GP & Kino T 2009 Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB Journal 23 15721583. (https://doi.org/10.1096/fj.08-117697)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nilsson C, Stahlberg F, Thomsen C, Henriksen O, Herning M & Owman C 1992 Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. American Journal of Physiology 262 R20R24. (https://doi.org/10.1152/ajpregu.1992.262.1.R20)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Quintela T, Sousa C, Patriarca FM, Gonçalves I & Santos CRA 2015 Gender associated circadian oscillations of the clock genes in rat choroid plexus. Brain Structure and Function 220 12511262. (https://doi.org/10.1007/s00429-014-0720-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Quintela T, Albuquerque T, Lundkvist G, Carmine Belin A, Talhada D, Gonçalves I, Carro E & Santos CRA 2018 The choroid plexus harbors a circadian oscillator modulated by estrogens. Chronobiology International 35 270279. (https://doi.org/10.1080/07420528.2017.1400978)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sathyanesan M, Girgenti MJ, Banasr M, Stone K, Bruce C, Guilchicek E, Wilczak-Havill K, Nairn A, Williams K & Sass S et al.2012 A molecular characterization of the choroid plexus and stress-induced gene regulation. Translational Psychiatry 2 e139e139. (https://doi.org/10.1038/tp.2012.64)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Segall LA, Perrin JS, Walker CD, Stewart J & Amir S 2006 Glucocorticoid rhythms control the rhythm of expression of the clock protein, Period2, in oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala in rats. Neuroscience 140 753757. (https://doi.org/10.1016/j.neuroscience.2006.03.037)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silverberg GD, Mayo M, Saul T, Rubenstein E & McGuire D 2003 Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet: Neurology 2 506511. (https://doi.org/10.1016/s1474-4422(0300487-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sinclair AJ, Onyimba CU, Khosla P, Vijapurapu N, Tomlinson JW, Burdon MA, Stewart PM, Murray PI, Walker EA & Rauz S 2007 Corticosteroids, 11β-hydroxysteroid dehydrogenase isozymes and the rabbit choroid plexus. Journal of Neuroendocrinology 19 614620. (https://doi.org/10.1111/j.1365-2826.2007.01569.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skipor J & Thiery JC 2008 The choroid plexus – cerebrospinal fluid system: undervaluated pathway of neuroendocrine signaling into the brain. Acta Neurobiologiae Experimentalis 68 414428.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • So AY-L, Bernal TU, Pillsbury ML, Yamamoto KR & Feldman BJ 2009 Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. PNAS 106 1758217587. (https://doi.org/10.1073/pnas.0909733106)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Soták M, Bryndová J, Ergang P, Vagnerová K, Kvapilová P, Vodička M, Pácha J & Sumová A 2016 Peripheral circadian clocks are diversely affected by adrenalectomy. Chronobiology International 0528 110. (https://doi.org/10.3109/07420528.2016.1161643)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spencer RL, Chun LE, Hartsock MJ & Woodruff ER 2018 Glucocorticoid hormones are both a major circadian signal and major stress signal: how this shared signal contributes to a dynamic relationship between the circadian and stress systems. Frontiers in Neuroendocrinology 49 5271. (https://doi.org/10.1016/j.yfrne.2017.12.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Srinivasan M & Lahiri DK 2017 Glucocorticoid-induced leucine zipper in central nervous system health and disease. Molecular Neurobiology 54 80638070. (https://doi.org/10.1007/s12035-016-0277-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sumová A, Sládek M, Jáč M & Illnerová H 2002 The circadian rhythm of Per1 gene product in the rat suprachiasmatic nucleus and its modulation by seasonal changes in daylength. Brain Research 947 260270. (https://doi.org/10.1016/s0006-8993(0202933-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sumová A, Jác M, Sládek M, Šauman I & Illnerová H 2003 Clock gene daily profiles and their phase relationship in the rat suprachiasmatic nucleus are affected by photoperiod. Journal of Biological Rhythms 18 134144. (https://doi.org/10.1177/0748730403251801)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takahashi JS, Hong HK, Ko CH & McDearmon EL 2008 The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nature Reviews: Genetics 9 764775. (https://doi.org/10.1038/nrg2430)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tischkau SA, Mitchell JW, Tyan SH, Buchanan GF & Gillette MU 2003 Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. Journal of Biological Chemistry 278 718723. (https://doi.org/10.1074/jbc.M209241200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Torra IP, Tsibulsky V, Delaunay F, Saladin R, Laudet V, Fruchart JC, Kosykh V & Staels B 2000 Circadian and glucocorticoid regulation of Rev-erbα expression in liver. Endocrinology 141 37993806. (https://doi.org/10.1210/endo.141.10.7708)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weikum ER, Knuesel MT, Ortlund EA & Yamamoto KR 2017 Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nature Reviews: Molecular Cell Biology 18 159174. (https://doi.org/10.1038/nrm.2016.152)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wolburg H & Paulus W 2010 Choroid plexus: biology and pathology. Acta Neuropathologica 119 7588. (https://doi.org/10.1007/s00401-009-0627-8)

  • Woodruff ER, Chun LE, Hinds LR & Spencer RL 2016 Diurnal corticosterone presence and phase modulate clock gene expression in the male rat prefrontal cortex. Endocrinology 157 15221534. (https://doi.org/10.1210/en.2015-1884)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wostyn P, Audenaert K & De Deyn PP 2011 Choroidal proteins involved in cerebrospinal fluid production may be potential drug targets for Alzheimer’s disease therapy. Perspectives in Medicinal Chemistry 5 1117. (https://doi.org/10.4137/PMC.S6509)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamaguchi T, Hamada T, Matsuzaki T & Iijima N 2020 Characterization of the circadian oscillator in the choroid plexus of rats. Biochemical and Biophysical Research Communications 524 497501. (https://doi.org/10.1016/j.bbrc.2020.01.125)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamamoto T, Nakahata Y, Tanaka M, Yoshida M, Soma H, Shinohara K, Yasuda A, Mamine T & Takumi T 2005 Acute physical stress elevates mouse Period1 mRNA expression in mouse peripheral tissues via a glucocorticoid-responsive element. Journal of Biological Chemistry 280 4203642043. (https://doi.org/10.1074/jbc.M509600200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yoshiya M, Komatsuzaki Y, Hojo Y, Ikeda M, Mukai H, Hatanaka Y, Murakami G, Kawata M, Kimoto T & Kawato S 2013 Corticosterone rapidly increases thorns of CA3 neurons via synaptic/extranuclear glucocorticoid receptor in rat hippocampus. Frontiers in Neural Circuits 7 191. (https://doi.org/10.3389/fncir.2013.00191)

    • PubMed
    • Search Google Scholar
    • Export Citation