Decreased expression of the GLP-1 receptor after segmental artery injury in mice

in Journal of Endocrinology
Authors:
Katrine Dahl Bjørnholm Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
Department of Cardiovascular Disease Research, Novo Nordisk, Måløv, Denmark

Search for other papers by Katrine Dahl Bjørnholm in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6913-1012
,
Gro Klitgaard Povlsen Department of Diabetes Pharmacology 1, Novo Nordisk, Måløv, Denmark

Search for other papers by Gro Klitgaard Povlsen in
Current site
Google Scholar
PubMed
Close
,
Maria Elm Ougaard Department of Pathology and Imaging, Novo Nordisk, Måløv, Denmark

Search for other papers by Maria Elm Ougaard in
Current site
Google Scholar
PubMed
Close
,
Charles Pyke Department of Pathology and Imaging, Novo Nordisk, Måløv, Denmark

Search for other papers by Charles Pyke in
Current site
Google Scholar
PubMed
Close
,
Günaj Rakipovski Department of Cardiovascular Disease Research, Novo Nordisk, Måløv, Denmark

Search for other papers by Günaj Rakipovski in
Current site
Google Scholar
PubMed
Close
,
Pernille Tveden-Nyborg Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark

Search for other papers by Pernille Tveden-Nyborg in
Current site
Google Scholar
PubMed
Close
,
Jens Lykkesfeldt Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark

Search for other papers by Jens Lykkesfeldt in
Current site
Google Scholar
PubMed
Close
, and
Gry Freja Skovsted Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark

Search for other papers by Gry Freja Skovsted in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to K D Bjørnholm: katrine@dahlbjornholm.dk
Restricted access
Rent on DeepDyve

Sign up for journal news

The glucagon-like peptide-1 receptor (GLP1R) is expressed in the renal vasculature and known to be downregulated under hypertensive conditions in rats and humans. However, little is known about the regulation in other types of renal pathology involving vascular changes. This study investigates the expression of the GLP1R in renal vasculature after glomerular injury in the nephrotoxic nephritis mouse model, high cholesterol, and atherosclerosis in the Ldlr-/- mouse on Western diet, and ex vivo injury in an organ culture model. The immunohistochemical signal of the GLP1R was significantly decreased in arteries from mice with nephrotoxic nephritis after 42 days compared to 7 days and saline control (P < 0.05). Histological evaluation of kidneys from Ldlr-/- mice on Western diet showed a decreased GLP1R specific immunohistochemical signal (P < 0.05). The dilatory response to liraglutide was decreased in Western diet fed Ldlr-/- mice compared to C57Bl/6J controls (P < 0.05). Organ culture significantly decreased the immunohistochemical signal of the GLP1R (P <0.05) and the expression of Glp1r mRNA (P < 0.005) compared to fresh. Organ cultured vessels showed vascular smooth muscle cell remodelling as Acta2 expression was decreased (P < 0.005) and Ednrb was increased (P < 0.05). In conclusion, nephrotoxic nephritis and hypercholesterolaemia led to decreased GLP1R specific immunohistochemical signal. Ex vivo vascular injury in the organ culture model leads to a decrease in expression of GLP1R expressionand contractile VSMC specific markers and increase in expression of dedifferentiation markers suggestive of an inverse relationship between phenotypic switch of the VSMC and the expression of the GLP1R; however, the causal relationship remains elusive.

Supplementary Materials

    • Supplementary Fig. 1
    • Supplementary Fig. 2
    • Supplementary Fig. 3
    • Supplementary Fig. 4

 

  • Collapse
  • Expand
  • Adner M, Uddman E, Cardell LO & Edvinsson L 1998 Regional variation in appearance of vascular contractile endothelin-B receptors following organ culture. Cardiovascular Research 37 254262. (https://doi.org/10.1016/s0008-6363(9700206-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alscher MD, Erley C & Kuhlmann MK 2019 Acute renal failure of nosocomial origin. Deutsches Ärzteblatt International 116 149158. (https://doi.org/10.3238/arztebl.2019.0149)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Basile DP, Friedrich JL, Spahic J, Knipe N, Mang H, Leonard EC, Changizi-Ashtiyani S, Bacallao RL, Molitoris BA & Sutton TA 2011 Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. American Journal of Physiology: Renal Physiology 300 F721F 733. (https://doi.org/10.1152/ajprenal.00546.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berk B, Vallega G, Muslin AJ, Gordon H, Canessa M & Alexander RJT 1989 Spontaneously hypertensive rat vascular smooth muscle cells in culture exhibit increased growth and Na+/H+ exchange. Journal of Clinical Investigation 83 822829. (https://doi.org/10.1172/JCI113964)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bisgaard LS, Bosteen MH, Fink LN, Sorensen CM, Rosendahl A, Mogensen CK, Rasmussen SE, Rolin B, Nielsen LB & Pedersen TX 2016 Liraglutide reduces both atherosclerosis and kidney inflammation in moderately uremic LDLr-/- mice (Research Article) (Report). PLoS ONE 11 e0168396. (https://doi.org/10.1371/journal.pone.0168396)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bjørnholm KD, Skovsted GF, Mitgaard-Thomsen A, Rakipovski G, Tveden-Nyborg P, Lykkesfeldt J & Povlsen GK 2020 Liraglutide treatment improves endothelial function in the Ldlr-/- mouse model of atherosclerosis, and affects genes involved in vascular remodelling and inflammation. Basic and Clinical Pharmacology and Toxicology 128 103114. (https://doi.org/10.1111/bcpt.13486)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Briet M & Burns KD 2012 Chronic kidney disease and vascular remodelling: molecular mechanisms and clinical implications. Clinical Science 123 399416. (https://doi.org/10.1042/CS20120074)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carmines PK 2010 The renal vascular response to diabetes. Current Opinion in Nephrology and Hypertension 19 8590. (https://doi.org/10.1097/MNH.0b013e32833240fc)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chawla LS & Kimmel PL 2012 Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney International 82 516524. (https://doi.org/10.1038/ki.2012.208)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Choi YJ, Chakraborty S, Nguyen V, Nguyen C, Kim BK, Shim SI, Suki WN & Truong LD 2000 Peritubular capillary loss is associated with chronic tubulointerstitial injury in human kidney: altered expression of vascular endothelial growth factor. Human Pathology 31 14911497. (https://doi.org/10.1053/hupa.2000.20373)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Mey JG, Uitendaal MP, Boonen HC, Vrijdag MJ, Daemen MJ & Struyker-Boudier HA 1989 Acute and long-term effects of tissue culture on contractile reactivity in renal arteries of the rat. Circulation Research 65 11251135. (https://doi.org/10.1161/01.res.65.4.1125)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Doyle ME & Egan JM 2007 Mechanisms of action of GLP-1 in the pancreas. Pharmacology and Therapeutics 113 546593. (https://doi.org/10.1016/j.pharmthera.2006.11.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eberhardt W & Pfeilschifter J 2007 Nitric oxide and vascular remodeling: spotlight on the kidney. Kidney International: Supplement 106 S9S16. (https://doi.org/10.1038/sj.ki.5002381)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foote CA, Castorena-Gonzalez JA, Ramirez-Perez FI, Jia G, Hill MA, Reyes-Aldasoro CC, Sowers JR & Martinez-Lemus LA 2016 Arterial stiffening in western diet-fed mice is associated with increased vascular elastin, transforming growth factor-β, and plasma neuraminidase. Frontiers in Physiology 7 285. (https://doi.org/10.3389/fphys.2016.00285)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T & Drucker DJ et al.2014 The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney International 85 579589. (https://doi.org/10.1038/ki.2013.427)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hays TT, Ma B, Zhou N, Stoll S, Pearce WJ & Qiu H 2018 Vascular smooth muscle cells direct extracellular dysregulation in aortic stiffening of hypertensive rats. Aging Cell 17 e12748. (https://doi.org/10.1111/acel.12748)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hogan AE, Gaoatswe G, Lynch L, Corrigan MA, Woods C, O’Connell J & O’Shea D 2014 Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia 57 781784. (https://doi.org/10.1007/s00125-013-3145-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holst JJ 2007 The physiology of glucagon-like peptide 1. Physiological Reviews 87 14091439. (https://doi.org/10.1152/physrev.00034.2006)

  • Horbelt M, Lee SY, Mang HE, Knipe NL, Sado Y, Kribben A & Sutton TA 2007 Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury. American Journal of Physiology: Renal Physiology 293 F688F 695. (https://doi.org/10.1152/ajprenal.00452.2006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP & Duffield JS 2010 Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. American Journal of Pathology 176 8597. (https://doi.org/10.2353/ajpath.2010.090517)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W & King GL 1992 Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. PNAS 89 1105911063. (https://doi.org/10.1073/pnas.89.22.11059)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inscho EW, Imig JD, Cook AK & Pollock DM 2005 ETA and ETB receptors differentially modulate afferent and efferent arteriolar responses to endothelin. British Journal of Pharmacology 146 10191026. (https://doi.org/10.1038/sj.bjp.0706412)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE & Herz J 1993 Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. Journal of Clinical Investigation 92 883893. (https://doi.org/10.1172/JCI116663)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jensen EP, Poulsen SS, Kissow H, Holstein-Rathlou NH, Deacon CF, Jensen BL, Holst JJ & Sorensen CM 2015 Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow. American Journal of Physiology: Renal Physiology 308 F867F877. (https://doi.org/10.1152/ajprenal.00527.2014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jensen EP, Møller S, Hviid AVR, Veedfald S, Holst JJ, Pedersen J, Ørskov C & Sorensen CM 2020 GLP-1-induced renal vasodilation in rodents depends exclusively on the known GLP-1 receptor and is lost in pre-hypertensive rats. American Journal of Physiology: Renal Physiology 318 F1409F1417. (https://doi.org/10.1152/ajprenal.00579.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jones B, Buenaventura T, Kanda N, Chabosseau P, Owen BM, Scott R, Goldin R, Angkathunyakul N, Corrêa IR Jr & Bosco D et al.2018 Targeting GLP-1 receptor trafficking to improve agonist efficacy. Nature Communications 9 1602. (https://doi.org/10.1038/s41467-018-03941-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Katsurada K, Nandi SS, Sharma NM, Zheng H, Liu X & Patel KP 2019 Does glucagon-like peptide-1 induce diuresis and natriuresis by modulating afferent renal nerve activity? American Journal of Physiology: Renal Physiology 317 F1010F1021. (https://doi.org/10.1152/ajprenal.00028.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kimura T, Obata A, Shimoda M, Okauchi S, Hirukawa H, Kohara K, Kinoshita T, Nogami Y, Nakanishi S & Mune T et al.2017 Decreased glucagon-like peptide 1 receptor expression in endothelial and smooth muscle cells in diabetic db/db mice: TCF7L2 is a possible regulator of the vascular glucagon-like peptide 1 receptor. Diabetes and Vascular Disease Research 14 540548. (https://doi.org/10.1177/1479164117725898)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koelzer VH, Gisler A, Hanhart JC, Griss J, Wagner SN, Willi N, Cathomas G, Sachs M, Kempf W & Thommen DS et al.2018 Digital image analysis improves precision of PD-L1 scoring in cutaneous melanoma. Histopathology 73 397406. (https://doi.org/10.1111/his.13528)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kong L, Shen X, Lin L, Leitges M, Rosario R, Zou YS & Yan SF 2013 PKCbeta promotes vascular inflammation and acceleration of atherosclerosis in diabetic ApoE null mice. Arteriosclerosis, Thrombosis, and Vascular Biology 33 17791787. (https://doi.org/10.1161/ATVBAHA.112.301113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Korner M, Stockli M, Waser B & Reubi JC 2007 GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. Journal of Nuclear Medicine 48 736743. (https://doi.org/10.2967/jnumed.106.038679)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krawczyk KK, Skovsted GF, Perisic L, Dreier R, Berg JO, Hedin U, Rippe C & Sward K 2018 Expression of endothelin type B receptors (EDNRB) on smooth muscle cells is controlled by MKL2, ternary complex factors, and actin dynamics. American Journal of Physiology: Cell Physiology 315 C873C884. (https://doi.org/10.1152/ajpcell.00170.2018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu L, Liu J, Gao Y, Ng CF, Yu X, Dou D & Huang Y 2015 Protein kinase Cbeta mediates downregulated expression of glucagon-like peptide-1 receptor in hypertensive rat renal arteries. Journal of Hypertension 33 784790. (https://doi.org/10.1097/HJH.0000000000000480)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luyckx VA, Tonelli M & Stanifer JW 2018 The global burden of kidney disease and the sustainable development goals. Bulletin of the World Health Organization 96 414422D. (https://doi.org/10.2471/BLT.17.206441)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ma Y, Wang W, Zhang J, Lu Y, Wu W, Yan H & Wang Y 2012 Hyperlipidemia and atherosclerotic lesion development in Ldlr-deficient mice on a long-term high-fat diet. PLoS ONE 7 e35835. (https://doi.org/10.1371/journal.pone.0035835)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mann JFE, Orsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, Tornoe K, Zinman B, Buse JBCommittee LS 2017 Liraglutide and renal outcomes in Type 2 diabetes. New England Journal of Medicine 377 839848. (https://doi.org/10.1056/NEJMoa1616011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J & Warren ML et al.2016a Semaglutide and cardiovascular outcomes in patients with Type 2 diabetes. New England Journal of Medicine 375 18341844. (https://doi.org/10.1056/NEJMoa1607141)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR & Ravn LS et al.2016b Liraglutide and cardiovascular outcomes in Type 2 diabetes. New England Journal of Medicine 375 311322. (https://doi.org/10.1056/NEJMoa1603827)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moreno C, Mistry M & Roman RJ 2002 Renal effects of glucagon-like peptide in rats. European Journal of Pharmacology 434 163167. (https://doi.org/10.1016/s0014-2999(0101542-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Motulsky HJ & Brown RE 2006 Detecting outliers when fitting data with nonlinear regression – a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics 7 123. (https://doi.org/10.1186/1471-2105-7-123)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ougaard ME, Jensen HE, Thuen ID, Petersen EG & Kvist PH 2018a Inhibitors of the renin-angiotensin system ameliorates clinical and pathological aspects of experimentally induced nephrotoxic serum nephritis. Renal Failure 40 640648. (https://doi.org/10.1080/0886022X.2018.1533867)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ougaard MKE, Kvist PH, Jensen HE, Hess C, Rune I & Søndergaard H 2018b Murine nephrotoxic nephritis as a model of chronic kidney disease. International Journal of Nephrology 2018 8424502. (https://doi.org/10.1155/2018/8424502)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ougaard ME, Sembach FE, Jensen HE, Pyke C, Knudsen LB & Kvist PH 2020 Liraglutide improves the kidney function in a murine model of chronic kidney disease. Nephron 144 595606. (https://doi.org/10.1159/000509418)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Owens GK, Schwartz SM & McCanna M 1988 Evaluation of medial hypertrophy in resistance vessels of spontaneously hypertensive rats 11. Hypertension 11 198207. (https://doi.org/10.1161/01.hyp.11.2.198)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parruti G, Peracchia F, Sallese M, Ambrosini G, Masini M, Rotilio D & De Blasi A 1993 Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing. Journal of Biological Chemistry 268 97539761. (https://doi.org/10.1016/S0021-9258(1898412-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peng Z, Dang A & Arendshorst WJ 2007 Increased expression and activity of phospholipase C in renal arterioles of young spontaneously hypertensive rats. American Journal of Hypertension 20 3843. (https://doi.org/10.1016/j.amjhyper.2006.06.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Preston E, Ellis MR, Kulinskaya E, Davies AH & Brown EA 2005 Association between carotid artery intima-media thickness and cardiovascular risk factors in CKD. American Journal of Kidney Diseases 46 856862. (https://doi.org/10.1053/j.ajkd.2005.07.048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Priksz D, Bombicz M, Varga B, Kurucz A, Gesztelyi R, Balla J, Toth A, Papp Z, Szilvassy Z & Juhasz B 2018 Upregulation of myocardial and vascular phosphodiesterase 9A in A model of atherosclerotic cardiovascular disease. International Journal of Molecular Sciences 19 2882. (https://doi.org/10.3390/ijms19102882)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pyke C, Heller RS, Kirk RK, Ørskov C, Reedtz-Runge S, Kaastrup P, Hvelplund A, Bardram L, Calatayud D & Knudsen LB 2014 GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155 1280–1290. (https://doi.org/10.1210/en.2013-1934)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richards P, Parker HE, Adriaenssens AE, Hodgson JM, Cork SC, Trapp S, Gribble FM & Reimann F 2014 Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes 63 1224–1233. (https://doi.org/10.2337/db13-1440)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ronn J, Jensen EP, Wewer Albrechtsen NJ, Holst JJ & Sorensen CM 2017 Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors. Physiological Reports 5 e13503. (https://doi.org/10.14814/phy2.13503)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scrocchi LA, Brown TJ, Maclusky N, Brubaker PL, Auerbach AB, Joyner AL & Drucker DJ 1996 Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nature Medicine 2 12541258. (https://doi.org/10.1038/nm1196-1254)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shah M & Vella A 2014 Effects of GLP-1 on appetite and weight. Reviews in Endocrine and Metabolic Disorders 15 181187. (https://doi.org/10.1007/s11154-014-9289-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silva EH, Wickramatilake CM, Lekamwasam S, Mudduwa LKB & Ubayasiri RA 2019 Vascular dysfunction and atherosclerosis in chronic kidney disease: a distinct entity. Journal of Nephropathology 8 1717. (https://doi.org/10.15171/jnp.2019.17)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silver PJ, Lepore RE, Cumiskey WR, Kiefer D & Harris AL 1988 Protein kinase C activity and reactivity to phorbol ester in vascular smooth muscle from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Biochemical and Biophysical Research Communications 154 272277. (https://doi.org/10.1016/0006-291x(8890680-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skov J, Dejgaard A, Frøkiær J, Holst JJ, Jonassen T, Rittig S & Christiansen JS 2013 Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. Journal of Clinical Endocrinology and Metabolism 98 E664E671. (https://doi.org/10.1210/jc.2012-3855)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skovsted GF, Pedersen AF, Larsen R, Sheykhzade M & Edvinsson L 2012 Rapid functional upregulation of vasocontractile endothelin ETB receptors in rat coronary arteries. Life Sciences 91 593599. (https://doi.org/10.1016/j.lfs.2012.02.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skovsted GF, Tveden-Nyborg P & Lykkesfeldt J 2019 Expression of endothelin type B receptors in uterine artery smooth muscle cells from pregnant Guinea pigs. Placenta 77 815. (https://doi.org/10.1016/j.placenta.2019.01.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Srivastava R, Zhang J, Go GW, Narayanan A, Nottoli TP & Mani A 2015 Impaired LRP6-TCF7L2 activity enhances smooth muscle cell plasticity and causes coronary artery disease. Cell Reports 13 746759. (https://doi.org/10.1016/j.celrep.2015.09.028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Srivastava R, Rolyan H, Xie Y, Li N, Bhat N, Hong L, Esteghamat F, Adeniran A, Geirsson A & Zhang J et al.2019 TCF7L2 (transcription factor 7-like 2) regulation of GATA6 (GATA-binding Protein 6)-dependent and -independent vascular smooth muscle cell plasticity and intimal hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology 39 250262. (https://doi.org/10.1161/ATVBAHA.118.311830)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thomas MC 2017 The potential and pitfalls of GLP-1 receptor agonists for renal protection in type 2 diabetes. Diabetes and Metabolism 43 (Supplement 1) 2S202S27. (https://doi.org/10.1016/S1262-3636(1730069-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Valdivielso JM, Rodriguez-Puyol D, Pascual J, Barrios C, Bermudez-Lopez M, Sanchez-Nino MD, Perez-Fernandez M & Ortiz A 2019 Atherosclerosis in chronic kidney disease: more, less, or just different? Arteriosclerosis, Thrombosis, and Vascular Biology 39 19381966. (https://doi.org/10.1161/ATVBAHA.119.312705)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yan SF, Harja E, Andrassy M, Fujita T & Schmidt AM 2006 Protein kinase C β/early growth response-1 pathway. Journal of the American College of Cardiology 48 (Supplement 1) A47A55. (https://doi.org/10.1016/j.jacc.2006.05.063)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu M, Moreno C, Hoagland KM, Dahly A, Ditter K, Mistry M & Roman RJ 2003 Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. Journal of Hypertension 21 11251135. (https://doi.org/10.1097/00004872-200306000-00012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yuan HT, Li XZ, Pitera JE, Long DA & Woolf AS 2003 Peritubular capillary loss after mouse acute nephrotoxicity correlates with down-regulation of vascular endothelial growth factor-A and hypoxia-inducible factor-1 alpha. American Journal of Pathology 163 22892301. (https://doi.org/10.1016/s0002-9440(1063586-9)

    • PubMed
    • Search Google Scholar
    • Export Citation