Diet-induced vitamin D deficiency reduces skeletal muscle mitochondrial respiration

in Journal of Endocrinology
Authors:
Stephen P Ashcroft School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research, Sydney, New South Wales, Australia

Search for other papers by Stephen P Ashcroft in
Current site
Google Scholar
PubMed
Close
,
Gareth Fletcher Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research, Sydney, New South Wales, Australia

Search for other papers by Gareth Fletcher in
Current site
Google Scholar
PubMed
Close
,
Ashleigh M Philp Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
St Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, New South Wales, Australia

Search for other papers by Ashleigh M Philp in
Current site
Google Scholar
PubMed
Close
,
Carl Jenkinson Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Carl Jenkinson in
Current site
Google Scholar
PubMed
Close
,
Shatarupa Das Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
UTS Centenary Centre for Inflammation, University Technology Sydney, New South Wales, Australia

Search for other papers by Shatarupa Das in
Current site
Google Scholar
PubMed
Close
,
Philip M Hansbro Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
UTS Centenary Centre for Inflammation, University Technology Sydney, New South Wales, Australia

Search for other papers by Philip M Hansbro in
Current site
Google Scholar
PubMed
Close
,
Philip J Atherton MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK

Search for other papers by Philip J Atherton in
Current site
Google Scholar
PubMed
Close
, and
Andrew Philp Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
St Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, New South Wales, Australia

Search for other papers by Andrew Philp in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to A Philp: a.philp@garvan.org.au
Restricted access
Rent on DeepDyve

Sign up for journal news

Vitamin D deficiency is associated with symptoms of skeletal muscle myopathy including muscle weakness and fatigue. Recently, vitamin D-related metabolites have been linked to the maintenance of mitochondrial function within skeletal muscle. However, current evidence is limited to in vitro models and the effects of diet-induced vitamin D deficiency upon skeletal muscle mitochondrial function in vivo have received little attention. In order to examine the role of vitamin D in the maintenance of mitochondrial function in vivo, we utilised an established model of diet-induced vitamin D deficiency in C57BL/6J mice. Mice were either fed a control diet (2200 IU/kg i.e. vitamin D replete) or a vitamin D-deplete (0 IU/kg) diet for periods of 1, 2 and 3 months. Gastrocnemius muscle mitochondrial function and ADP sensitivity were assessed via high-resolution respirometry and mitochondrial protein content via immunoblotting. As a result of 3 months of diet-induced vitamin D deficiency, respiration supported via complex I + II (CI + IIP) and the electron transport chain (ETC) were 35 and 37% lower when compared to vitamin D-replete mice (P < 0.05). Despite functional alterations, citrate synthase activity, AMPK phosphorylation, mitofilin, OPA1 and ETC subunit protein content remained unchanged in response to dietary intervention (P > 0.05). In conclusion, we report that 3 months of diet-induced vitamin D deficiency reduced skeletal muscle mitochondrial respiration in C57BL/6J mice. Our data, when combined with previous in vitro observations, suggest that vitamin D-mediated regulation of mitochondrial function may underlie the exacerbated muscle fatigue and performance deficits observed during vitamin D deficiency.

 

  • Collapse
  • Expand
  • Ashcroft SP, Bass JJ, Kazi AA, Atherton PJ & Philp A 2020 The vitamin D receptor (VDR) regulates mitochondrial function in C2C12 myoblasts. American Journal of Physiology: Cell Physiology 318 C536C541. (https://doi.org/10.1152/ajpcell.00568.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bass JJ, Kazi AA, Deane CS, Nakhuda A, Ashcroft SP, Brook MS, Wilkinson DJ, Phillips BE, Philp A & Tarum J et al. 2021 The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo. Journal of Physiology 599 963979. (https://doi.org/10.1113/JP280652)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beaudart C, Buckinx F, Rabenda V, Gillain S, Cavalier E, Slomian J, Petermans J, Reginster JY & Bruyere O 2014 The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. Journal of Clinical Endocrinology and Metabolism 99 43364345. (https://doi.org/10.1210/jc.2014-1742)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Belenchia AM, Johnson SA, Kieschnick AC, Rosenfeld CS & Peterson CA 2017 Time course of vitamin D depletion and repletion in reproductive-age female C57BL/6 mice. Comparative Medicine 67 483490.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bhan A, Rao AD & Rao DS 2010 Osteomalacia as a result of vitamin D deficiency. Endocrinology and Metabolism Clinics of North America 39 32133 1. (https://doi.org/10.1016/j.ecl.2010.02.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang Y, Karlson EW & Dawson-Hughes B 2004 Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or = 60 y. American Journal of Clinical Nutrition 80 752758. (https://doi.org/10.1093/ajcn/80.3.752)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bouillon R & Verstuyf A 2013 Vitamin D, mitochondria, and muscle. Journal of Clinical Endocrinology and Metabolism 98 961963. (https://doi.org/10.1210/jc.2013-1352)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Canto C & Garcia-Roves PM 2015 High-resolution respirometry for mitochondrial characterization of ex vivo mouse tissues. Current Protocols in Mouse Biology 5 135153. (https://doi.org/10.1002/9780470942390.mo140061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cardinale DA, Gejl KD, Ørtenblad N, Ekblom B, Blomstrand E & Larsen FJ 2018 Reliability of maximal mitochondrial oxidative phosphorylation in permeabilized fibers from the vastus lateralis employing high-resolution respirometry. Physiological Reports 6 e13611. (https://doi.org/10.14814/phy2.13611)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cashman KD, Dowling KG, Skrabakova Z, Gonzalez-Gross M, Valtuena J, De Henauw S, Moreno L, Damsgaard CT, Michaelsen KF & Molgaard C et al. 2016 Vitamin D deficiency in Europe: pandemic? American Journal of Clinical Nutrition 103 10331044. (https://doi.org/10.3945/ajcn.115.120873)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Duncan A, Talwar D, Mcmillan DC, Stefanowicz F & O'reilly DS 2012 Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. American Journal of Clinical Nutrition 95 6471. (https://doi.org/10.3945/ajcn.111.023812)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Forrest KY & Stuhldreher WL 2011 Prevalence and correlates of vitamin D deficiency in US adults. Nutrition Research 31 4854. (https://doi.org/10.1016/j.nutres.2010.12.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF & Gunton JE 2013 The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocrine Reviews 34 3383. (https://doi.org/10.1210/er.2012-1012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Girgis CM, Cha KM, Houweling PJ, Rao R, Mokbel N, Lin M, Clifton-Bligh RJ & Gunton JE 2015 Vitamin D receptor ablation and vitamin D deficiency result in reduced grip strength, altered muscle fibers, and increased myostatin in mice. Calcified Tissue International 97 602610. (https://doi.org/10.1007/s00223-015-0054-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Girgis CM, Cha KM, So B, Tsang M, Chen J, Houweling PJ, Schindeler A, Stokes R, Swarbrick MM & Evesson FJ et al. 2019 Mice with myocyte deletion of vitamin D receptor have sarcopenia and impaired muscle function. Journal of Cachexia, Sarcopenia and Muscle 10 12281240. (https://doi.org/10.1002/jcsm.12460)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ham AW & Lewis MD 1934 Hypervitaminosis D Rickets: the action of vitamin D. British Journal of Experimental Pathology 15 228234.

  • Health N, Council MR & Council AR 2013 Australian Code of Practice for the Care and Use of Animals for Scientific Purposes. National Health and Medical Research Council.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Houston DK, Tooze JA, Neiberg RH, Hausman DB, Johnson MA, Cauley JA, Bauer DC, Cawthon PM, Shea MK & Schwartz GG et al. 2012 25-Hydroxyvitamin D status and change in physical performance and strength in older adults: the health, aging, and body composition study. American Journal of Epidemiology 176 10251034. (https://doi.org/10.1093/aje/kws147)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jenkinson C, Taylor AE, Hassan-Smith ZK, Adams JS, Stewart PM, Hewison M & Keevil BG 2016 High throughput LC-MS/MS method for the simultaneous analysis of multiple vitamin D analytes in serum. Journal of Chromatography: B, Analytical Technologies in the Biomedical and Life Sciences 1014 5663. (https://doi.org/10.1016/j.jchromb.2016.01.049)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lanza IR & Nair KS 2010 Mitochondrial metabolic function assessed in vivo and in vitro. Current Opinion in Clinical Nutrition and Metabolic Care 13 511517. (https://doi.org/10.1097/MCO.0b013e32833cc93d)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mcpherron AC, Lawler AM & Lee SJ 1997 Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387 8390. (https://doi.org/10.1038/387083a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miotto PM, Leblanc PJ & Holloway GP 2018 High-fat diet causes mitochondrial dysfunction as a result of impaired ADP sensitivity. Diabetes 67 2199–2205. (https://doi.org/10.2337/db18-0417)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perry CG, Kane DA, Lin CT, Kozy R, Cathey BL, Lark DS, Kane CL, Brophy PM, Gavin TP & Anderson EJ et al. 2011 Inhibiting myosin-ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle. Biochemical Journal 437 215222. (https://doi.org/10.1042/BJ20110366)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pesta D & Gnaiger E 2012 High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods in Molecular Biology 810 2558. (https://doi.org/10.1007/978-1-61779-382-0_3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Picard M, Taivassalo T, Ritchie D, Wright KJ, Thomas MM, Romestaing C & Hepple RT 2011 Mitochondrial structure and function are disrupted by standard isolation methods. PLoS ONE 6 e18317. (https://doi.org/10.1371/journal.pone.0018317)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pleasure D, Wyszynski B, Sumner A, Schotland D, Feldman B, Nugent N, Hitz K & Goodman DB 1979 Skeletal muscle calcium metabolism and contractile force in vitamin D-deficient chicks. Journal of Clinical Investigation 64 11571167. (https://doi.org/10.1172/JCI109569)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pointon JJ, Francis MJ & Smith R 1979 Effect of vitamin D deficiency on sarcoplasmic reticulum function and troponin C concentration of rabbit skeletal muscle. Clinical Science 57 257263. (https://doi.org/10.1042/cs0570257)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rizzoli R, Boonen S, Brandi ML, Burlet N, Delmas P & Reginster JY 2008 The role of calcium and vitamin D in the management of osteoporosis. Bone 42 246249. (https://doi.org/10.1016/j.bone.2007.10.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodman JS & Baker T 1978 Changes in the kinetics of muscle contraction in vitamin D-depleted rats. Kidney International 13 189193. (https://doi.org/10.1038/ki.1978.28)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Romeu Montenegro K, Carlessi R, Cruzat V & Newsholme P 2019 Effects of vitamin D on primary human skeletal muscle cell proliferation, differentiation, protein synthesis and bioenergetics. Journal of Steroid Biochemistry and Molecular Biology 193 105423. (https://doi.org/10.1016/j.jsbmb.2019.105423)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ryan ZC, Craig TA, Folmes CD, Wang X, Lanza IR, Schaible NS, Salisbury JL, Nair KS, Terzic A & Sieck GC et al. 2016 1alpha,25-Dihydroxyvitamin D3 regulates mitochondrial oxygen consumption and dynamics in human skeletal muscle cells. Journal of Biological Chemistry 291 15141528. (https://doi.org/10.1074/jbc.M115.684399)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ryan ZC, Craig TA, Wang X, Delmotte P, Salisbury JL, Lanza IR, Sieck GC & Kumar R 2018 1alpha,25-Dihydroxyvitamin D3 mitigates cancer cell mediated mitochondrial dysfunction in human skeletal muscle cells. Biochemical and Biophysical Research Communications 496 746752. (https://doi.org/10.1016/j.bbrc.2018.01.092)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schnell DM, Walton RG, Vekaria HJ, Sullivan PG, Bollinger LM, Peterson CA & Thomas DT 2019 Vitamin D produces a perilipin 2-dependent increase in mitochondrial function in C2C12 myotubes. Journal of Nutritional Biochemistry 65 8392. (https://doi.org/10.1016/j.jnutbio.2018.11.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schubert L & Deluca HF 2010 Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Archives of Biochemistry and Biophysics 500 157161. (https://doi.org/10.1016/j.abb.2010.05.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schubert L & DeLuca HF 2010 Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Archives of Biochemistry and Biophysics 500 157161. (https://doi.org/10.1016/j.abb.2010.05.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Seldeen KL, Pang M, Rodríguez-Gonzalez M, Hernandez M, Sheridan Z, Yu P & Troen BR 2017 A mouse model of vitamin D insufficiency: is there a relationship between 25(OH) vitamin D levels and obesity? Nutrition and Metabolism 14 26. (https://doi.org/10.1186/s12986-017-0174-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Seldeen KL, Pang M, Leiker MM, Bard JE, Rodríguez-Gonzalez M, Hernandez M, Sheridan Z, Nowak N & Troen BR 2018 Chronic vitamin D insufficiency impairs physical performance in C57BL/6J mice. Aging 10 13381355. (https://doi.org/10.18632/aging.101471)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sinha A, Hollingsworth KG, Ball S & Cheetham T 2013 Improving the vitamin D status of vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. Journal of Clinical Endocrinology and Metabolism 98 E509E513. (https://doi.org/10.1210/jc.2012-3592)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spinazzi M, Casarin A, Pertegato V, Salviati L & Angelini C 2012 Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nature Protocols 7 12351246. (https://doi.org/10.1038/nprot.2012.058)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stocks B, Dent JR, Joanisse S, Mccurdy CE & Philp A 2017 Skeletal muscle fibre-specific knockout of p53 does not reduce mitochondrial content or enzyme activity. Frontiers in Physiology 8 941941. (https://doi.org/10.3389/fphys.2017.00941)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stockton KA, Mengersen K, Paratz JD, Kandiah D & Bennell KL 2011 Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporosis International 22 859871. (https://doi.org/10.1007/s00198-010-1407-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Visser M, Deeg DJ, Lips PLongitudinal Aging Study Amsterdam 2003 Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. Journal of Clinical Endocrinology and Metabolism 88 57665772. (https://doi.org/10.1210/jc.2003-030604)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wicherts IS, Van Schoor NM, Boeke AJ, Visser M, Deeg DJ, Smit J, Knol DL & Lips P 2007 Vitamin D status predicts physical performance and its decline in older persons. Journal of Clinical Endocrinology and Metabolism 92 20582065. (https://doi.org/10.1210/jc.2006-1525)

    • PubMed
    • Search Google Scholar
    • Export Citation