SAHA induces white fat browning and rectifies metabolic dysfunctions via activation of ZFPs

in Journal of Endocrinology
Authors:
Jinyu Ma Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University,Nantong, China

Search for other papers by Jinyu Ma in
Current site
Google Scholar
PubMed
Close
,
Yuejun Wang Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University,Nantong, China

Search for other papers by Yuejun Wang in
Current site
Google Scholar
PubMed
Close
,
Jie Ding Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University,Nantong, China

Search for other papers by Jie Ding in
Current site
Google Scholar
PubMed
Close
,
Shouping Zhang Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University,Nantong, China

Search for other papers by Shouping Zhang in
Current site
Google Scholar
PubMed
Close
,
Yinuo Yang Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University,Nantong, China

Search for other papers by Yinuo Yang in
Current site
Google Scholar
PubMed
Close
, and
Cheng Sun Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University,Nantong, China
Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Institute of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China

Search for other papers by Cheng Sun in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to C Sun: suncheng1975@ntu.edu.cn
Restricted access
Rent on DeepDyve

Sign up for journal news

Several histone deacetylase (HDAC) inhibitors have been shown to play beneficial roles in treating obesity and its related metabolic syndromes. However, the underlying mechanisms are still not understood well. In this study, we examined the potential roles of SAHA, a potent inhibitor of HDACs, on energy expenditure and explored the molecular mechanism involved. Our data showed that SAHA induces less lipid accumulation and smaller lipid droplets in cultured adipocytes. In vivo studies showing SAHA reduces body weight gain and increases core temperature in lean and obese mice. Furthermore, SAHA accelerates blood glucose disposal, improves insulin sensitivity and attenuates fatty liver in obese animals. Transcriptome sequencing found that a group of zinc finger proteins (Zfps) was up-regulated by SAHA. Functional studies showed that the knockdown of Zfp691 or Zfp719 largely abolishes SAHA-induced Ucp1 expression in adipocytes. ChIP assay showed that SAHA stimulates histone H3 acetylation at Zfp719 promoter. Luciferase reporter analysis revealed that Zfp719 activates Ucp1 promoter. As a consequence, forced expression of Zfp719 increases Ucp1 expression and promotes lipid catabolism in adipocytes. Taken together, our data indicate that by stimulating axis of ZFPs-UCP1, SAHA induces white fat browning and energy consumption, which makes it a potential drug for treating obesity and related metabolic dysfunctions.

Supplementary Materials

    • Supplemental file

 

  • Collapse
  • Expand
  • Arias N, Picó C, Macarulla MT, Oliver P & Portillo MP 2016 A combination of resveratrol and quercetin induces browning in white adipose tissue of rats fed an obesogenic diet: polyphenol combination and brite cell induction. Obesity 25 111121. (https://doi.org/10.1002/oby.21706)0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Au-Yong IT, Thorn N, Ganatra R, Perkins AC & Symonds ME 2009 Brown adipose tissue and seasonal variation in humans. Diabetes 58 25832587. (https://doi.org/10.2337/db09-0833)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bagchi RA, Ferguson BS, Stratton MS, Hu T, Cavasin MA, Sun L, Lin YH, Liu D, Londono P & Song K et al.2018 HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. Journal of Clinical Investigation Insight 3 e120159. (https://doi.org/10.1172/jci.insight.120159)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bonet ML, Oliver P & Palou A 2013 Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochimica et Biophysica Acta 1831 969985. (https://doi.org/10.1016/j.bbalip.2012.12.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cannon B & Nedergaard J 2004 Brown adipose tissue: function and physiological significance. Physiological Reviews 84 277359. (https://doi.org/10.1152/physrev.00015.2003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carneheim C, Nedergaard J & Cannon B 1984 Beta-adrenergic stimulation of lipoprotein lipase in rat brown adipose tissue during acclimation to cold. American Journal of Physiology 246 E327E333. (https://doi.org/10.1152/ajpendo.1984.246.4.E327)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE & Papavassiliou AG 2011 Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Molecular Medicine 17 736740. (https://doi.org/10.2119/molmed.2011.00075)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dempersmier J, Sambeat A, Gulyaeva O, Paul SM, Hudak CS, Raposo HF, Kwan HY, Kang C, Wong RH & Sul HS 2015 Cold-inducible Zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat. Molecular Cell 57 235246. (https://doi.org/10.1016/j.molcel.2014.12.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Deshpande AD, Harris-Hayes M & Schootman M 2008 Epidemiology of diabetes and diabetes-related complications. Physical Therapy 88 12541264. (https://doi.org/10.2522/ptj.20080020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ezenwaka CE, Okoye O, Esonwune C, Onuoha P, Dioka C, Osuji C, Oguejiofor C & Meludu S 2014 High prevalence of abdominal obesity increases the risk of the metabolic syndrome in Nigerian type 2 diabetes patients: using the International Diabetes Federation worldwide definition. Metabolic Syndrome and Related Disorders 12 277282. (https://doi.org/10.1089/met.2013.0139)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferrari A, Fiorino E, Longo R, Barilla S & Crestani M 2016 Attenuation of diet-induced obesity and induction of white fat browning with a chemical inhibitor of histone deacetylases. International Journal of Obesity 41 289298. (https://doi.org/10.1038/ijo.2016.191)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferrari A, Longo R, Peri C, Coppi L, Caruso D, Mai A, Mitro N, De Fabiani E & Crestani M 2020 Inhibition of class I HDACs imprints adipogenesis toward oxidative and brown-like phenotype. Biochimica et Biophysica Acta 1865 158594. (https://doi.org/10.1016/j.bbalip.2019.158594).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galmozzi A, Mitro N, Ferrari A, Gers E, Gilardi F, Godio C, Cermenati G, Gualerzi A, Donetti E & Rotili D et al.2013 Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 62 732742. (https://doi.org/10.2337/db12-0548)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT & Ye J 2009 Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58 15091517. (https://doi.org/10.2337/db08-1637)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gesta S, Tseng YH & Kahn CR 2007 Developmental origin of fat: tracking obesity to its source. Cell 131 242256. (https://doi.org/10.1016/j.cell.2007.10.004)

  • Hanssen MJ, Hoeks J, Brans B, van der Lans AA, Schaart G, van den Driessche JJ, Jorgensen JA, Boekschoten MV, Hesselink MK & Havekes B et al.2015 Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nature Medicine 21 863865. (https://doi.org/10.1038/nm.3891)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hanssen MJ, van der Lans AA, Brans B, Hoeks J, Jardon KM, Schaart G, Mottaghy FM, Schrauwen P & van Marken Lichtenbelt WD 2016 Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes 65 11791189. (https://doi.org/10.2337/db15-1372)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heianza Y, Kato K, Kodama S, Ohara N, Suzuki A, Tanaka S, Hanyu O, Sato K & Sone H 2015 Risk of the development of type 2 diabetes in relation to overall obesity, abdominal obesity and the clustering of metabolic abnormalities in Japanese individuals: does metabolically healthy overweight really exist? The Niigata Wellness Study. Diabetic Medicine 32 665672. (https://doi.org/10.1111/dme.12646)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herz CT & Kiefer FW 2019 Adipose tissue browning in mice and humans. Journal of Endocrinology 241 R97R109. (https://doi.org/10.1530/JOE-18-0598)

  • Hossain P, Kawar B & El Nahas M 2007 Obesity and diabetes in the developing world--a growing challenge. New England Journal of Medicine 356 213215. (https://doi.org/10.1056/NEJMp068177)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ikeda K, Maretich P & Kajimura S 2018 The common and distinct features of brown and beige adipocytes. Trends in Endocrinology and Metabolism 29 191200. (https://doi.org/10.1016/j.tem.2018.01.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaelin WG Jr & McKnight SL 2013 Influence of metabolism on epigenetics and disease. Cell 153 5669. (https://doi.org/10.1016/j.cell.2013.03.004)

  • Kyung KE, Hoon LS, Yeon JJ, Kyeong BJ, Hee JJ, Seon-Young L, Kyung KJ, Young CJ & Mi-La C 2016 Metformin prevents fatty liver and improves balance of white/brown adipose in an obesity mouse model by inducing FGF21. Mediators of Inflammation 2016 113.(https://doi.org/10.1155/2016/5813030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li F, Wu R, Cui X, Zha L, Yu L, Shi H & Xue B 2016 Histone deacetylase 1 (HDAC1) negatively regulates thermogenic program in brown adipocytes via coordinated regulation of histone H3 lysine 27 (H3K27) deacetylation and methylation. Journal of Biological Chemistry 291 45234536. (https://doi.org/10.1074/jbc.M115.677930)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liao J, Jiang J, Jun H, Qiao X, Emont MP, Kim DI & Wu J 2018 HDAC3-selective inhibition activates brown and beige fat through PRDM16. Endocrinology 159 25202527. (https://doi.org/10.1210/en.2018-00257)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lo KA & Sun L 2013 Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Bioscience Reports 33 e00065. (https://doi.org/10.1042/BSR20130046)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lundh M, Galbo T, Poulsen SS & Mandrup-Poulsen T 2015 Histone deacetylase 3 inhibition improves glycaemia and insulin secretion in obese diabetic rats. Diabetes, Obesity and Metabolism 17 703707. (https://doi.org/10.1111/dom.12470)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • NCD Risk Factor Collaboration (NCD-RisC) 2016 Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 387 13771396. (https://doi.org/10.1016/S0140-6736(16)30054-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nedergaard J & Cannon B 2014 The browning of white adipose tissue: some burning issues. Cell Metabolism 20 396407. (https://doi.org/10.1016/j.cmet.2014.07.005)

  • Sharma S & Taliyan R 2016 Epigenetic modifications by inhibiting histone deacetylases reverse memory impairment in insulin resistance induced cognitive deficit in mice. Neuropharmacology 105 285297. (https://doi.org/10.1016/j.neuropharm.2016.01.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shi SY, Zhang W, Luk CT, Sivasubramaniyam T, Brunt JJ, Schroer SA, Desai HR, Majerski A & Woo M 2016 JAK2 promotes brown adipose tissue function and is required for diet- and cold-induced thermogenesis in mice. Diabetologia 59 187196. (https://doi.org/10.1007/s00125-015-3786-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Song NJ, Choi S, Rajbhandari P, Chang SH, Kim S, Vergnes L, Kwon SM, Yoon JH, Lee S & Ku JM et al.2016 Prdm4 induction by the small molecule butein promotes white adipose tissue browning. Nature Chemical Biology 12 479481. (https://doi.org/10.1038/nchembio.2081)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stevens GA, Singh GM, Lu Y, Danaei G, Lin JK, Finucane MM, Bahalim AN, McIntire RK, Gutierrez HR & Cowan M et al.2012 National, regional, and global trends in adult overweight and obesity prevalences. Population Health Metrics 10 22. (https://doi.org/10.1186/1478-7954-10-22)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun C, Wang M, Liu X, Luo L, Li K, Zhang S, Wang Y, Yang Y, Ding F & Gu X 2014 PCAF improves glucose homeostasis by suppressing the gluconeogenic activity of PGC-1alpha. Cell Reports 9 22502262. (https://doi.org/10.1016/j.celrep.2014.11.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Teruel T, Hernandez R, Rial E, Martin-Hidalgo A & Lorenzo M 2005 Rosiglitazone up-regulates lipoprotein lipase, hormone-sensitive lipase and uncoupling protein-1, and down-regulates insulin-induced fatty acid synthase gene expression in brown adipocytes of Wistar rats. Diabetologia 48 11801188. (https://doi.org/10.1007/s00125-005-1744-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xia B, Shi XC, Xie BC, Zhu MQ, Chen Y, Chu XY, Cai GH, Liu M, Yang SZ & Mitchell GA et al.2020 Urolithin A exerts antiobesity effects through enhancing adipose tissue thermogenesis in mice. PLoS Biology 18 e3000688. (https://doi.org/10.1371/journal.pbio.3000688)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu J, Zhang S, Cui L, Wang W, Na H, Zhu X, Li L, Xu G, Yang F & Christian M et al.2015 Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment. Biochimica and Biophysica Acta 1853 918928. (https://doi.org/10.1016/j.bbamcr.2015.01.020)

    • PubMed
    • Search Google Scholar
    • Export Citation