Several histone deacetylase (HDAC) inhibitors have been shown to play beneficial roles in treating obesity and its related metabolic syndromes. However, the underlying mechanisms are still not understood well. In this study, we examined the potential roles of SAHA, a potent inhibitor of HDACs, on energy expenditure and explored the molecular mechanism involved. Our data showed that SAHA induces less lipid accumulation and smaller lipid droplets in cultured adipocytes. In vivo studies showing SAHA reduces body weight gain and increases core temperature in lean and obese mice. Furthermore, SAHA accelerates blood glucose disposal, improves insulin sensitivity and attenuates fatty liver in obese animals. Transcriptome sequencing found that a group of zinc finger proteins (Zfps) was up-regulated by SAHA. Functional studies showed that the knockdown of Zfp691 or Zfp719 largely abolishes SAHA-induced Ucp1 expression in adipocytes. ChIP assay showed that SAHA stimulates histone H3 acetylation at Zfp719 promoter. Luciferase reporter analysis revealed that Zfp719 activates Ucp1 promoter. As a consequence, forced expression of Zfp719 increases Ucp1 expression and promotes lipid catabolism in adipocytes. Taken together, our data indicate that by stimulating axis of ZFPs-UCP1, SAHA induces white fat browning and energy consumption, which makes it a potential drug for treating obesity and related metabolic dysfunctions.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 766 | 18 | 2 |
PDF Downloads | 522 | 22 | 4 |