Lower threshold to NFκB activity sensitizes murine β-cells to streptozotocin

in Journal of Endocrinology
View More View Less
  • 1 Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
  • 2 Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA

Correspondence should be addressed to C J Wright: clyde.wright@cuanschutz.edu
Restricted access

The β-cell response to injury may be as critical for the development of diabetes as the specific insult. In the current study, we used streptozotocin (STZ) to injure the β-cell in order to study the response with a focus on NFκB. MIN6 cells were exposed to STZ (0.5–8 mM, 0–24h) ±TNFα (100 ng/mL) and ±IκBβ siRNA to lower the threshold to NFκB activation. Cell viability was determined by trypan blue exclusion. NFκB activation was determined by the expression of the target genes Nos2 and Cxcl10, localization of the NFκB proteins p65 and p50, and expression and localization of the NFκB inhibitors, IκBβ and IκBα. There was no NFκB activation in MIN6 cell exposed to STZ (2 mM) alone. However, knocking down IκBβ expression using siRNA resulted in STZ-induced expression of NFκB target genes and increased cell death, while co-incubation with STZ and TNFα enhanced cell death compared to either exposure alone. Adult male IκBβ−/− and WT mice were exposed to STZ and monitored for diabetes. The IκBβ−/− mice developed hyperglycemia and diabetes more frequently than controls following STZ exposure. Based on these results we conclude that STZ exposure alone does not induce NFκB activity. However, lowering the threshold to NFκB activation by co-incubation with TNFα or lowering IκBβ levels by siRNA sensitizes the NFκB response to STZ and results in a higher likelihood of developing diabetes in vivo. Therefore, increasing the threshold to NFκB activation through stabilizing NFκB inhibitory proteins may prevent β-cell injury and the development of diabetes.

 

Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 20 20 20
Full Text Views 2 2 2
PDF Downloads 4 4 4
  • Baker MS, Chen X, Cao XC & Kaufman DB 2001 Expression of a dominant negative inhibitor of NF-kappaB protects MIN6 beta-cells from cytokine-induced apoptosis. Journal of Surgical Research 97 117122. (https://doi.org/10.1006/jsre.2001.6121)

    • Search Google Scholar
    • Export Citation
  • Beg AA, Sha WC, Bronson RT & Baltimore D 1995 Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes and Development 9 27362746. (https://doi.org/10.1101/gad.9.22.2736)

    • Search Google Scholar
    • Export Citation
  • Bernal-Mizrachi E, Wen W, Shornick M & Permutt MA 2002 Activation of nuclear factor-kappaB by depolarization and Ca(2+) influx in min6 insulinoma cells. Diabetes 51 (Supplement 3) S484S488. (https://doi.org/10.2337/diabetes.51.2007.s484)

    • Search Google Scholar
    • Export Citation
  • Biswas G, Anandatheerthavarada HK, Zaidi M & Avadhani NG 2003 Mitochondria to nucleus stress signaling: a distinctive mechanism of NFkappaB/Rel activation through calcineurin-mediated inactivation of IkappaBbeta. Journal of Cell Biology 161 507519. (https://doi.org/10.1083/jcb.200211104)

    • Search Google Scholar
    • Export Citation
  • Biswas G, Tang W, Sondheimer N, Guha M, Bansal S & Avadhani NG 2008 A distinctive physiological role for IkappaBbeta in the propagation of mitochondrial respiratory stress signaling. Journal of Biological Chemistry 283 1258612594. (https://doi.org/10.1074/jbc.M710481200)

    • Search Google Scholar
    • Export Citation
  • Bollard J, Patte C, Massoma P, Goddard I, Gadot N, Benslama N, Hervieu V, Ferraro-Peyret C, Cordier-Bussat M & Scoazec JY et al. 2018 Combinatorial treatment with mTOR inhibitors and streptozotocin leads to synergistic in vitro and in vivo antitumor effects in insulinoma cells. Molecular Cancer Therapeutics 17 6072. (https://doi.org/10.1158/1535-7163.MCT-17-0325)

    • Search Google Scholar
    • Export Citation
  • Burke SJ, Karlstad MD, Eder AE, Regal KM, Lu D, Burk DH & Collier JJ 2016 Pancreatic beta-cell production of CXCR3 ligands precedes diabetes onset. BioFactors 42 703715. (https://doi.org/10.1002/biof.1304)

    • Search Google Scholar
    • Export Citation
  • Calderon B, Carrero JA, Ferris ST, Sojka DK, Moore L, Epelman S, Murphy KM, Yokoyama WM, Randolph GJ & Unanue ER 2015 The pancreas anatomy conditions the origin and properties of resident macrophages. Journal of Experimental Medicine 212 14971512. (https://doi.org/10.1084/jem.20150496)

    • Search Google Scholar
    • Export Citation
  • Cardozo AK, Heimberg H, Heremans Y, Leeman R, Kutlu B, Kruhoffer M, Orntoft T & Eizirik DL 2001 A comprehensive analysis of cytokine-induced and nuclear factor-kappa B-dependent genes in primary rat pancreatic beta-cells. Journal of Biological Chemistry 276 4887948886. (https://doi.org/10.1074/jbc.M108658200)

    • Search Google Scholar
    • Export Citation
  • Chang I, Kim S, Kim JY, Cho N, Kim YH, Kim HS, Lee MK, Kim KW & Lee MS 2003 Nuclear factor kappaB protects pancreatic beta-cells from tumor necrosis factor-alpha-mediated apoptosis. Diabetes 52 11691175. (https://doi.org/10.2337/diabetes.52.5.1169)

    • Search Google Scholar
    • Export Citation
  • Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S & Eizirik DL 2005 Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54 (Supplement 2) S97S107. (https://doi.org/10.2337/diabetes.54.suppl_2.s97)

    • Search Google Scholar
    • Export Citation
  • De Dios R, Nguyen L, Ghosh S, McKenna S & Wright CJ 2020 CpG-ODN-mediated TLR9 innate immune signalling and calcium dyshomeostasis converge on the NFkappaB inhibitory protein IkappaBbeta to drive IL1alpha and IL1beta expression. Immunology 160 6477. (https://doi.org/10.1111/imm.13182)

    • Search Google Scholar
    • Export Citation
  • Delaney CA, Dunger A, Di Matteo M, Cunningham JM, Green MH & Green IC 1995 Comparison of inhibition of glucose-stimulated insulin secretion in rat islets of Langerhans by streptozotocin and methyl and ethyl nitrosoureas and methanesulphonates. Lack of correlation with nitric oxide-releasing or O6-alkylating ability. Biochemical Pharmacology 50 20152020. (https://doi.org/10.1016/0006-2952(9502102-7)

    • Search Google Scholar
    • Export Citation
  • Eizirik DL & Mandrup-Poulsen T 2001 A choice of death – the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44 21152133. (https://doi.org/10.1007/s001250100021)

    • Search Google Scholar
    • Export Citation
  • Eldor R, Yeffet A, Baum K, Doviner V, Amar D, Ben-Neriah Y, Christofori G, Peled A, Carel JC & Boitard C et al. 2006 Conditional and specific NF-kappaB blockade protects pancreatic beta cells from diabetogenic agents. PNAS 103 50725077. (https://doi.org/10.1073/pnas.0508166103)

    • Search Google Scholar
    • Export Citation
  • Eleazu CO, Eleazu KC, Chukwuma S & Essien UN 2013 Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of Diabetes and Metabolic Disorders 12 60. (https://doi.org/10.1186/2251-6581-12-60)

    • Search Google Scholar
    • Export Citation
  • Fan HQ, He W, Xu KF, Wang ZX, Xu XY & Chen H 2015 FTO inhibits insulin secretion and promotes NF-kappaB activation through positively regulating ROS production in pancreatic beta cells. PLoS ONE 10 e0127705. (https://doi.org/10.1371/journal.pone.0127705)

    • Search Google Scholar
    • Export Citation
  • Friesen NT, Buchau AS, Schott-Ohly P, Lgssiar A & Gleichmann H 2004 Generation of hydrogen peroxide and failure of antioxidative responses in pancreatic islets of male C57BL/6 mice are associated with diabetes induced by multiple low doses of streptozotocin. Diabetologia 47 676685. (https://doi.org/10.1007/s00125-004-1367-x)

    • Search Google Scholar
    • Export Citation
  • Ghosh S, May MJ & Kopp EB 1998 NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annual Review of Immunology 16 225260. (https://doi.org/10.1146/annurev.immunol.16.1.225)

    • Search Google Scholar
    • Export Citation
  • Giannoukakis N, Rudert WA, Trucco M & Robbins PD 2000 Protection of human islets from the effects of interleukin-1beta by adenoviral gene transfer of an Ikappa B repressor. Journal of Biological Chemistry 275 3650936513. (https://doi.org/10.1074/jbc.M005943200)

    • Search Google Scholar
    • Export Citation
  • Gille L, Schott-Ohly P, Friesen N, Schulte im Walde S, Udilova N, Nowl H & Gleichmann H 2002 Generation of hydroxyl radicals mediated by streptozotocin in pancreatic islets of mice in vitro. Pharmacology and Toxicology 90 317326. (https://doi.org/10.1034/j.1600-0773.2002.900605.x)

    • Search Google Scholar
    • Export Citation
  • Hayden MS & Ghosh S 2004 Signaling to NF-kappaB. Genes and Development 18 21952224. (https://doi.org/10.1101/gad.1228704)

  • Hayden MS & Ghosh S 2008 Shared principles in NF-kappaB signaling. Cell 132 344362. (https://doi.org/10.1016/j.cell.2008.01.020)

  • Heimberg H, Heremans Y, Jobin C, Leemans R, Cardozo AK, Darville M & Eizirik DL 2001 Inhibition of cytokine-induced NF-kappaB activation by adenovirus-mediated expression of a NF-kappaB super-repressor prevents beta-cell apoptosis. Diabetes 50 22192224. (https://doi.org/10.2337/diabetes.50.10.2219)

    • Search Google Scholar
    • Export Citation
  • Hoffmann A, Levchenko A, Scott ML & Baltimore D 2002 The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298 12411245. (https://doi.org/10.1126/science.1071914)

    • Search Google Scholar
    • Export Citation
  • Ishizuka N, Yagui K, Tokuyama Y, Yamada K, Suzuki Y, Miyazaki J, Hashimoto N, Makino H, Saito Y & Kanatsuka A 1999 Tumor necrosis factor alpha signaling pathway and apoptosis in pancreatic beta cells. Metabolism: Clinical and Experimental 48 14851492. (https://doi.org/10.1016/s0026-0495(9990234-2)

    • Search Google Scholar
    • Export Citation
  • Jia L, Xing J, Ding Y, Shen Y, Shi X, Ren W, Wan M, Guo J, Zheng S & Liu Y et al. 2013 Hyperuricemia causes pancreatic beta-cell death and dysfunction through NF-kappaB signaling pathway. PLoS ONE 8 e78284. (https://doi.org/10.1371/journal.pone.0078284)

    • Search Google Scholar
    • Export Citation
  • Jiang X, Zhou Y, Wu KK, Chen Z, Xu A & Cheng KK 2017 APPL1 prevents pancreatic beta cell death and inflammation by dampening NFkappaB activation in a mouse model of type 1 diabetes. Diabetologia 60 464474. (https://doi.org/10.1007/s00125-016-4185-z)

    • Search Google Scholar
    • Export Citation
  • Kagi D, Ho A, Odermatt B, Zakarian A, Ohashi PS & Mak TW 1999 TNF receptor 1-dependent beta cell toxicity as an effector pathway in autoimmune diabetes. Journal of Immunology 162 45984605.

    • Search Google Scholar
    • Export Citation
  • Kearns JD, Basak S, Werner SL, Huang CS & Hoffmann A 2006 IkappaBepsilon provides negative feedback to control NF-kappaB oscillations, signaling dynamics, and inflammatory gene expression. Journal of Cell Biology 173 659664. (https://doi.org/10.1083/jcb.200510155)

    • Search Google Scholar
    • Export Citation
  • Kim HS, Kim S & Lee MS 2005 IFN-gamma sensitizes MIN6N8 insulinoma cells to TNF-alpha-induced apoptosis by inhibiting NF-kappaB-mediated XIAP upregulation. Biochemical and Biophysical Research Communications 336 847853. (https://doi.org/10.1016/j.bbrc.2005.08.183)

    • Search Google Scholar
    • Export Citation
  • Kim S, Millet I, Kim HS, Kim JY, Han MS, Lee MK, Kim KW, Sherwin RS, Karin M & Lee MS 2007 NF-kappa B prevents beta cell death and autoimmune diabetes in NOD mice. PNAS 104 19131918. (https://doi.org/10.1073/pnas.0610690104)

    • Search Google Scholar
    • Export Citation
  • Lamhamedi-Cherradi SE, Zheng S, Hilliard BA, Xu L, Sun J, Alsheadat S, Liou HC & Chen YH 2003 Transcriptional regulation of type I diabetes by NF-kappa B. Journal of Immunology 171 48864892. (https://doi.org/10.4049/jimmunol.171.9.4886)

    • Search Google Scholar
    • Export Citation
  • Lgssiar A, Hassan M, Schott-Ohly P, Friesen N, Nicoletti F, Trepicchio WL & Gleichmann H 2004 Interleukin-11 inhibits NF-kappaB and AP-1 activation in islets and prevents diabetes induced with streptozotocin in mice. Experimental Biology and Medicine 229 425436. (https://doi.org/10.1177/153537020422900511)

    • Search Google Scholar
    • Export Citation
  • Li X, Wu Y, Song Y, Ding N, Lu M, Jia L, Zhao Y, Liu M & Chen Z 2020 Activation of NF-kappaB-inducing kinase in islet beta cells causes beta cell failure and diabetes. Molecular Therapy 28 24302441. (https://doi.org/10.1016/j.ymthe.2020.07.016)

    • Search Google Scholar
    • Export Citation
  • Los M, Droge W, Stricker K, Baeuerle PA & Schulze-Osthoff K 1995 Hydrogen peroxide as a potent activator of T lymphocyte functions. European Journal of Immunology 25 159165. (https://doi.org/10.1002/eji.1830250127)

    • Search Google Scholar
    • Export Citation
  • Mabley JG, Hasko G, Liaudet L, Soriano FG, Southan GJ, Salzman AL & Szabo C 2002 NFkappaB1 (p50)-deficient mice are not susceptible to multiple low-dose streptozotocin-induced diabetes. Journal of Endocrinology 173 457464. (https://doi.org/10.1677/joe.0.1730457)

    • Search Google Scholar
    • Export Citation
  • Martin AP, Alexander-Brett JM, Canasto-Chibuque C, Garin A, Bromberg JS, Fremont DH & Lira SA 2007 The chemokine binding protein M3 prevents diabetes induced by multiple low doses of streptozotocin. Journal of Immunology 178 46234631. (https://doi.org/10.4049/jimmunol.178.7.4623)

    • Search Google Scholar
    • Export Citation
  • McCool KW & Miyamoto S 2012 DNA damage-dependent NF-kappaB activation: NEMO turns nuclear signaling inside out. Immunologic Research 246 311326. (https://doi.org/10.1111/j.1600-065X.2012.01101.x)

    • Search Google Scholar
    • Export Citation
  • Norlin S, Ahlgren U & Edlund H 2005 Nuclear factor-{kappa}B activity in {beta}-cells is required for glucose-stimulated insulin secretion. Diabetes 54 125132. (https://doi.org/10.2337/diabetes.54.1.125)

    • Search Google Scholar
    • Export Citation
  • Patel S & Santani D 2009 Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacological Reports 61 595603. (https://doi.org/10.1016/s1734-1140(0970111-2)

    • Search Google Scholar
    • Export Citation
  • Rahman A & Fazal F 2011 Blocking NF-kappaB: an inflammatory issue. Proceedings of the American Thoracic Society 8 497503. (https://doi.org/10.1513/pats.201101-009MW)

    • Search Google Scholar
    • Export Citation
  • Rao P, Hayden MS, Long M, Scott ML, West AP, Zhang D, Oeckinghaus A, Lynch C, Hoffmann A & Baltimore D et al. 2010 IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response. Nature 466 11151119. (https://doi.org/10.1038/nature09283)

    • Search Google Scholar
    • Export Citation
  • Raza H & John A 2012 Streptozotocin-induced cytotoxicity, oxidative stress and mitochondrial dysfunction in human hepatoma HepG2 cells. International Journal of Molecular Sciences 13 57515767. (https://doi.org/10.3390/ijms13055751)

    • Search Google Scholar
    • Export Citation
  • Salem HH, Trojanowski B, Fiedler K, Maier HJ, Schirmbeck R, Wagner M, Boehm BO, Wirth T & Baumann B 2014 Long-term IKK2/NF-kappaB signaling in pancreatic beta-cells induces immune-mediated diabetes. Diabetes 63 960975. (https://doi.org/10.2337/db13-1037)

    • Search Google Scholar
    • Export Citation
  • Sarkar SA, Kutlu B, Velmurugan K, Kizaka-Kondoh S, Lee CE, Wong R, Valentine A, Davidson HW, Hutton JC & Pugazhenthi S 2009 Cytokine-mediated induction of anti-apoptotic genes that are linked to nuclear factor kappa-B (NF-kappaB) signalling in human islets and in a mouse beta cell line. Diabetologia 52 10921101. (https://doi.org/10.1007/s00125-009-1331-x)

    • Search Google Scholar
    • Export Citation
  • Scheibel M, Klein B, Merkle H, Schulz M, Fritsch R, Greten FR, Arkan MC, Schneider G & Schmid RM 2010 IkappaBbeta is an essential co-activator for LPS-induced IL-1beta transcription in vivo. Journal of Experimental Medicine 207 26212630. (https://doi.org/10.1084/jem.20100864)

    • Search Google Scholar
    • Export Citation
  • Schreck R, Rieber P & Baeuerle PA 1991 Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO Journal 10 22472258. (https://doi.org/10.1002/j.1460-2075.1991.tb07761.x)

    • Search Google Scholar
    • Export Citation
  • Schulthess FT, Paroni F, Sauter NS, Shu L, Ribaux P, Haataja L, Strieter RM, Oberholzer J, King CC & Maedler K 2009 CXCL10 impairs beta cell function and viability in diabetes through TLR4 signaling. Cell Metabolism 9 125139. (https://doi.org/10.1016/j.cmet.2009.01.003)

    • Search Google Scholar
    • Export Citation
  • Stephens LA, Thomas HE, Ming L, Grell M, Darwiche R, Volodin L & Kay TW 1999 Tumor necrosis factor-alpha-activated cell death pathways in NIT-1 insulinoma cells and primary pancreatic beta cells. Endocrinology 140 32193227. (https://doi.org/10.1210/endo.140.7.6873)

    • Search Google Scholar
    • Export Citation
  • Sun SC, Ganchi PA, Ballard DW & Greene WC 1993 NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science 259 19121915. (https://doi.org/10.1126/science.8096091)

    • Search Google Scholar
    • Export Citation
  • Tergaonkar V, Correa RG, Ikawa M & Verma IM 2005 Distinct roles of IkappaB proteins in regulating constitutive NF-kappaB activity. Nature Cell Biology 7 921923. (https://doi.org/10.1038/ncb1296)

    • Search Google Scholar
    • Export Citation
  • Turk J, Corbett JA, Ramanadham S, Bohrer A & McDaniel ML 1993 Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochemical and Biophysical Research Communications 197 14581464. (https://doi.org/10.1006/bbrc.1993.2641)

    • Search Google Scholar
    • Export Citation
  • Wellen KE & Hotamisligil GS 2005 Inflammation, stress, and diabetes. Journal of Clinical Investigation 115 11111119. (https://doi.org/10.1172/JCI25102)

    • Search Google Scholar
    • Export Citation
  • You W, Wang K, Yu C & Song L 2018 Baicalin prevents tumor necrosis factor-alpha-induced apoptosis and dysfunction of pancreatic beta-cell line MIN6 via upregulation of miR-205. Journal of Cellular Biochemistry 119 85478554. (https://doi.org/10.1002/jcb.27095)

    • Search Google Scholar
    • Export Citation