Augmented glucose production is not contingent on high catecholamines in fetal sheep with IUGR

in Journal of Endocrinology
View More View Less
  • 1 School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA

Correspondence should be addressed to S W Limesand: limesand@ag.arizona.edu
Restricted access

Fetuses with intrauterine growth restriction (IUGR) have high concentrations of catecholamines, which lowers the insulin secretion and glucose uptake. Here, we studied the effect of hypercatecholaminemia on glucose metabolism in sheep fetuses with placental insufficiency-induced IUGR. Norepinephrine concentrations are elevated throughout late gestation in IUGR fetuses but not in IUGR fetuses with a bilateral adrenal demedullation (IAD) at 0.65 of gestation. Euglycemic (EC) and hyperinsulinemic–euglycemic (HEC) clamps were performed in control, intact-IUGR, and IAD fetuses at 0.87 of gestation. Compared to controls, basal oxygen, glucose, and insulin concentrations were lower in IUGR groups. Norepinephrine concentrations were five-fold higher in IUGR fetuses than in IAD fetuses. During the EC, rates of glucose entry (GER, umbilical + exogenous), glucose utilization (GUR), and glucose oxidation (GOR) were greater in IUGR groups than in controls. In IUGR and IAD fetuses with euglycemia and euinsulinemia, glucose production rates (GPR) remained elevated. During the HEC, GER and GOR were not different among groups. In IUGR and IAD fetuses, GURs were 40% greater than in controls, which paralleled the sustained GPR despite hyperinsulinemia. Glucose-stimulated insulin concentrations were augmented in IAD fetuses compared to IUGR fetuses. Fetal weights were not different between IUGR groups but were less than controls. Regardless of norepinephrine concentrations, IUGR fetuses not only develop greater peripheral insulin sensitivity for glucose utilization but also develop hepatic insulin resistance because GPR was maintained and unaffected by euglycemia or hyperinsulinemia. These findings show that adaptation in glucose metabolism of IUGR fetuses are independent of catecholamines, which implicate that hypoxemia and hypoglycemia cause the metabolic responses.

 

Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 406 406 301
Full Text Views 40 40 27
PDF Downloads 54 54 40
  • Adams MB & McMillen IC 2000 Actions of hypoxia on catecholamine synthetic enzyme mRNA expression before and after development of adrenal innervation in the sheep fetus. Journal of Physiology 529 519531. (https://doi.org/10.1111/j.1469-7793.2000.00519.x)

    • Search Google Scholar
    • Export Citation
  • Apatu RS & Barnes RJ 1991 Release of glucose from the liver of fetal and postnatal sheep by portal vein infusion of catecholamines or glucagon. Journal of Physiology 436 449468. (https://doi.org/10.1113/jphysiol.1991.sp018560)

    • Search Google Scholar
    • Export Citation
  • Bassett JM & Hanson C 1998 Catecholamines inhibit growth in fetal sheep in the absence of hypoxemia. American Journal of Physiology 274 R1536R1545. (https://doi.org/10.1152/ajpregu.1998.274.6.R1536)

    • Search Google Scholar
    • Export Citation
  • Bassett JM & Hanson C 2000 Prevention of hypoinsulinemia modifies catecholamine effects in fetal sheep. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 278 R1171R1181. (https://doi.org/10.1152/ajpregu.2000.278.5.R1171)

    • Search Google Scholar
    • Export Citation
  • Battaglia FC & Meschia G 1986 An Introduction to Fetal Physiology. London: Academic Press, Inc.

  • Bell AW, Wilkening RB & Meschia G 1987 Some aspects of placental function in chronically heat-stressed ewes. Journal of Developmental Physiology 9 1729.

    • Search Google Scholar
    • Export Citation
  • Benjamin JS, Culpepper CB, Brown LD, Wesolowski SR, Jonker SS, Davis MA, Limesand SW, Wilkening RB, Hay Jr WW & Rozance PJ 2017 Chronic anemic hypoxemia attenuates glucose-stimulated insulin secretion in fetal sheep. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 312 R492R500. (https://doi.org/10.1152/ajpregu.00484.2016)

    • Search Google Scholar
    • Export Citation
  • Brown LD & Hay Jr WW 2006 Effect of hyperinsulinemia on amino acid utilization and oxidation independent of glucose metabolism in the ovine fetus. American Journal of Physiology: Endocrinology and Metabolism 291 E1333E1340. (https://doi.org/10.1152/ajpendo.00028.2006)

    • Search Google Scholar
    • Export Citation
  • Brown LD, Rozance PJ, Bruce JL, Friedman JE, Hay Jr WW & Wesolowski SR 2015 Limited capacity for glucose oxidation in fetal sheep with intrauterine growth restriction. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 309 R920R928. (https://doi.org/10.1152/ajpregu.00197.2015)

    • Search Google Scholar
    • Export Citation
  • Camacho LE, Chen X, Hay Jr WW& Limesand SW 2017 Enhanced insulin secretion and insulin sensitivity in young lambs with placental insufficiency-induced intrauterine growth restriction. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 313 R101R109. (https://doi.org/10.1152/ajpregu.00068.2017)

    • Search Google Scholar
    • Export Citation
  • Chen X, Fahy AL, Green AS, Anderson MJ, Rhoads RP & Limesand SW 2010 beta2-adrenergic receptor desensitization in perirenal adipose tissue in fetuses and lambs with placental insufficiency-induced intrauterine growth restriction. Journal of Physiology 588 35393549. (https://doi.org/10.1113/jphysiol.2010.192310)

    • Search Google Scholar
    • Export Citation
  • Chen X, Green AS, Macko AR, Yates DT, Kelly AC & Limesand SW 2014 Enhanced insulin secretion responsiveness and islet adrenergic desensitization after chronic norepinephrine suppression is discontinued in fetal sheep. American Journal of Physiology: Endocrinology and Metabolism 306 E58E64. (https://doi.org/10.1152/ajpendo.00517.2013)

    • Search Google Scholar
    • Export Citation
  • Chen X, Kelly AC, Yates DT, Macko AR, Lynch RM & Limesand SW 2017 Islet adaptations in fetal sheep persist following chronic exposure to high norepinephrine. Journal of Endocrinology 232 285295. (https://doi.org/10.1530/JOE-16-0445)

    • Search Google Scholar
    • Export Citation
  • Cheung CY 1990 Fetal adrenal medulla catecholamine response to hypoxia-direct and neural components. American Journal of Physiology 258 R1340R1346. (https://doi.org/10.1152/ajpregu.1990.258.6.R1340)

    • Search Google Scholar
    • Export Citation
  • Comline RS & Silver M 1966 Development of activity in the adrenal medulla of the foetus and new-born animal. British Medical Bulletin 22 1620. (https://doi.org/10.1093/oxfordjournals.bmb.a070430)

    • Search Google Scholar
    • Export Citation
  • Connolly CC, Steiner KE, Stevenson RW, Neal DW, Williams PE, Alberti KG & Cherrington AD 1991 Regulation of glucose metabolism by norepinephrine in conscious dogs. American Journal of Physiology 261 E764E772. (https://doi.org/10.1152/ajpendo.1991.261.6.E764)

    • Search Google Scholar
    • Export Citation
  • Culpepper C, Wesolowski SR, Benjamin J, Bruce JL, Brown LD, Jonker SS, Wilkening RB, Hay Jr WW & Rozance PJ 2016 Chronic anemic hypoxemia increases plasma glucagon and hepatic PCK1 mRNA in late-gestation fetal sheep. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 311 R200R208. (https://doi.org/10.1152/ajpregu.00037.2016)

    • Search Google Scholar
    • Export Citation
  • Danielson L, McMillen IC, Dyer JL & Morrison JL 2005 Restriction of placental growth results in greater hypotensive response to alpha-adrenergic blockade in fetal sheep during late gestation. Journal of Physiology 563 611620. (https://doi.org/10.1113/jphysiol.2004.080523)

    • Search Google Scholar
    • Export Citation
  • Davis MA, Macko AR, Steyn LV, Anderson MJ & Limesand SW 2015 Fetal adrenal demedullation lowers circulating norepinephrine and attenuates growth restriction but not reduction of endocrine cell mass in an ovine model of intrauterine growth restriction. Nutrients 7 500516. (https://doi.org/10.3390/nu7010500)

    • Search Google Scholar
    • Export Citation
  • Davis MA, Camacho LE, Anderson MJ, Steffens NR, Pendleton AL, Kelly AC & Limesand SW 2020 Chronically elevated norepinephrine concentrations lower glucose uptake in fetal sheep. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 319 R255R263. (https://doi.org/10.1152/ajpregu.00365.2019)

    • Search Google Scholar
    • Export Citation
  • De Blasio MJ, Gatford KL, Harland ML, Robinson JS & Owens JA 2012 Placental restriction reduces insulin sensitivity and expression of insulin signaling and glucose transporter genes in skeletal muscle, but not liver, in young sheep. Endocrinology 153 21422151. (https://doi.org/10.1210/en.2011-1955)

    • Search Google Scholar
    • Export Citation
  • Digiacomo JE & Hay Jr WW 1990 Fetal glucose metabolism and oxygen consumption during sustained hypoglycemia. Metabolism: Clinical and Experimental 39 193202. (https://doi.org/10.1016/0026-0495(9090075-n)

    • Search Google Scholar
    • Export Citation
  • Fowden AL & Forhead AJ 2011 Adrenal glands are essential for activation of glucogenesis during undernutrition in fetal sheep near term. American Journal of Physiology: Endocrinology and Metabolism 300 E94E102. (https://doi.org/10.1152/ajpendo.00205.2010)

    • Search Google Scholar
    • Export Citation
  • Green AS, Macko AR, Rozance PJ, Yates DT, Chen X, Hay Jr WW & Limesand SW 2011 Characterization of glucose-insulin responsiveness and impact of fetal number and sex difference on insulin response in the sheep fetus. American Journal of Physiology: Endocrinology and Metabolism 300 E817E823. (https://doi.org/10.1152/ajpendo.00572.2010)

    • Search Google Scholar
    • Export Citation
  • Hamilton A, Zhang Q, Salehi A, Willems M, Knudsen JG, Ringgaard AK, Chapman CE, Gonzalez-Alvarez A, Surdo NC & Zaccolo et al. 2018 Adrenaline stimulates glucagon secretion by Tpc2-dependent Ca(2+) mobilization from acidic stores in pancreatic alpha-cells. Diabetes 67 11281139. (https://doi.org/10.2337/db17-1102)

    • Search Google Scholar
    • Export Citation
  • Hausdorff WP, Caron MG & Lefkowitz RJ 1990 Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB Journal 4 28812889. (https://doi.org/10.1096/fasebj.4.11.2165947)

    • Search Google Scholar
    • Export Citation
  • Hay Jr WW, Meznarich HK, Digiacomo JE, Hirst K & Zerbe G 1988 Effects of insulin and glucose concentrations on glucose utilization in fetal sheep. Pediatric Research 23 381387. (https://doi.org/10.1203/00006450-198804000-00008)

    • Search Google Scholar
    • Export Citation
  • Hay Jr WW, Digiacomo JE, Meznarich HK, Hirst K & Zerbe G 1989 Effects of glucose and insulin on fetal glucose oxidation and oxygen consumption. American Journal of Physiology 256 E704E713. (https://doi.org/10.1152/ajpendo.1989.256.6.E704)

    • Search Google Scholar
    • Export Citation
  • Jackson BT, Piasecki GJ, Cohn HE & Cohen WR 2000 Control of fetal insulin secretion. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 279 R2179R2188. (https://doi.org/10.1152/ajpregu.2000.279.6.R2179)

    • Search Google Scholar
    • Export Citation
  • Jones CT, Roebuck MM, Walker DW, Lagercrantz H & Johnston BM 1987 Cardiovascular, metabolic and endocrine effects of chemical sympathectomy and of adrenal demedullation in fetal sheep. Journal of Developmental Physiology 9 347367.

    • Search Google Scholar
    • Export Citation
  • Jones AK, Brown LD, Rozance PJ, Serkova NJ, Hay Jr WW, Friedman JE & Wesolowski SR 2019a Differential effects of intrauterine growth restriction and a hypersinsulinemic-isoglycemic clamp on metabolic pathways and insulin action in the fetal liver. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 316 R427R440. (https://doi.org/10.1152/ajpregu.00359.2018)

    • Search Google Scholar
    • Export Citation
  • Jones AK, Rozance PJ, Brown LD, Goldstrohm DA, Hay Jr WW, Limesand SW & Wesolowski SR 2019b Sustained hypoxemia in late gestation potentiates hepatic gluconeogenic gene expression but does not activate glucose production in the ovine fetus. American Journal of Physiology: Endocrinology and Metabolism 317 E1E10. (https://doi.org/10.1152/ajpendo.00069.2019)

    • Search Google Scholar
    • Export Citation
  • Kelly AC, Bidwell CA, McCarthy FM, Taska DJ, Anderson MJ, Camacho LE & Limesand SW 2017 RNA sequencing exposes adaptive and immune responses to intrauterine growth restriction in fetal sheep islets. Endocrinology 158 743755. (https://doi.org/10.1210/en.2016-1901)

    • Search Google Scholar
    • Export Citation
  • Kelly AC, Bidwell CA, Chen X, Macko AR, Anderson MJ & Limesand SW 2018a Chronic adrenergic signaling causes abnormal RNA expression of proliferative genes in fetal sheep islets. Endocrinology 159 35653578. (https://doi.org/10.1210/en.2018-00540)

    • Search Google Scholar
    • Export Citation
  • Kelly AC, Camacho LE, Pendarvis K, Davenport HM, Steffens NR, Smith KE, Weber CS, Lynch RM, Papas KK & Limesand SW 2018b Adrenergic receptor stimulation suppresses oxidative metabolism in isolated rat islets and min6 cells. Molecular and Cellular Endocrinology 473 136145. (https://doi.org/10.1016/j.mce.2018.01.012)

    • Search Google Scholar
    • Export Citation
  • Leos RA, Anderson MJ, Chen X, Pugmire J, Anderson KA & Limesand SW 2010 Chronic exposure to elevated norepinephrine suppresses insulin secretion in fetal sheep with placental insufficiency and intrauterine growth restriction. American Journal of Physiology: Endocrinology and Metabolism 298 E770E778. (https://doi.org/10.1152/ajpendo.00494.2009)

    • Search Google Scholar
    • Export Citation
  • Limesand SW & Rozance PJ 2017 Fetal adaptations in insulin secretion result from high catecholamines during placental insufficiency. Journal of Physiology 595 51035113. (https://doi.org/10.1113/JP273324)

    • Search Google Scholar
    • Export Citation
  • Limesand SW, Rozance PJ, Smith D & Hay Jr WW 2007 Increased insulin sensitivity and maintenance of glucose utilization rates in fetal sheep with placental insufficiency and intrauterine growth restriction. American Journal of Physiology: Endocrinology and Metabolism 293 E1716E1725. (https://doi.org/10.1152/ajpendo.00459.2007)

    • Search Google Scholar
    • Export Citation
  • Limesand SW, Rozance PJ, Macko AR, Anderson MJ, Kelly AC & Hay Jr WW 2013 Reductions in insulin concentrations and beta-cell mass precede growth restriction in sheep fetuses with placental insufficiency. American Journal of Physiology: Endocrinology and Metabolism 304 E516E523. (https://doi.org/10.1152/ajpendo.00435.2012)

    • Search Google Scholar
    • Export Citation
  • Macko AR, Yates DT, Chen X, Green AS, Kelly AC, Brown LD & Limesand SW 2013 Elevated plasma norepinephrine inhibits insulin secretion, but adrenergic blockade reveals enhanced β -cell responsiveness in an ovine model of placental insufficiency at 0.7 of gestation. Journal of Developmental Origins of Health and Disease 4 402410. (https://doi.org/10.1017/S2040174413000093)

    • Search Google Scholar
    • Export Citation
  • Macko AR, Yates DT, Chen X, Shelton LA, Kelly AC, Davis MA, Camacho LE, Anderson MJ & Limesand SW 2016 Adrenal demedullation and oxygen supplementation independently increase glucose-stimulated insulin concentrations in fetal sheep With intrauterine growth restriction. Endocrinology 157 21042115. (https://doi.org/10.1210/en.2015-1850)

    • Search Google Scholar
    • Export Citation
  • Marconi AM, Cetin I, Davoli E, Baggiani AM, Fanelli R, Fennessey PV, Battaglia FC & Pardi G 1993 An evaluation of fetal glucogenesis in intrauterine growth-retarded pregnancies. Metabolism: Clinical and Experimental 42 860864. (https://doi.org/10.1016/0026-0495(9390060-2)

    • Search Google Scholar
    • Export Citation
  • McGuinness OP, Shau V, Benson EM, Lewis M, Snowden RT, Greene JE, Neal DW & Cherrington AD 1997 Role of epinephrine and norepinephrine in the metabolic response to stress hormone infusion in the conscious dog. American Journal of Physiology 273 E674E681. (https://doi.org/10.1152/ajpendo.1997.273.4.E674)

    • Search Google Scholar
    • Export Citation
  • Meschia G, Cotter JR, Makowski EL & Barron DH 1967 Simultaneous measurement of uterine and umbilical blood flows and oxygen uptakeS. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences 52 118. (https://doi.org/10.1113/expphysiol.1967.sp001877)

    • Search Google Scholar
    • Export Citation
  • Metges CC, Gors S, Lang IS, Hammon HM, Brussow KP, Weitzel JM, Nurnberg G, Rehfeldt C & Otten W 2014 Low and high dietary protein:carbohydrate ratios during pregnancy affect materno-fetal glucose metabolism in pigs. Journal of Nutrition 144 155163. (https://doi.org/10.3945/jn.113.182691)

    • Search Google Scholar
    • Export Citation
  • Milley JR 1997 Ovine fetal metabolism during norepinephrine infusion. American Journal of Physiology 273 E336E347. (https://doi.org/10.1152/ajpendo.1997.273.2.E336)

    • Search Google Scholar
    • Export Citation
  • Muhlhausler BS, Duffield JA, Ozanne SE, Pilgrim C, Turner N, Morrison JL & McMillen IC 2009 The transition from fetal growth restriction to accelerated postnatal growth: a potential role for insulin signalling in skeletal muscle. Journal of Physiology 587 41994211. (https://doi.org/10.1113/jphysiol.2009.173161)

    • Search Google Scholar
    • Export Citation
  • Murotsuki J, Challis JR, Han VK, Fraher LJ & Gagnon R 1997 Chronic fetal placental embolization and hypoxemia cause hypertension and myocardial hypertrophy in fetal sheep. American Journal of Physiology 272 R201R207. (https://doi.org/10.1152/ajpregu.1997.272.1.R201)

    • Search Google Scholar
    • Export Citation
  • Nijland MJ, Mitsuya K, Li C, Ford SP, McDonald TJ, Nathanielsz PW & Cox LA 2010 Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability. Journal of Physiology 588 13491359. (https://doi.org/10.1113/jphysiol.2009.184168)

    • Search Google Scholar
    • Export Citation
  • Owens JA, Falconer J & Robinson JS 1989 Glucose metabolism in pregnant sheep when placental growth is restricted. American Journal of Physiology 257 R350R357. (https://doi.org/10.1152/ajpregu.1989.257.2.R350)

    • Search Google Scholar
    • Export Citation
  • Padbury JF, Ludlow JK, Ervin MG, Jacobs HC & Humme JA 1987 Thresholds for physiological effects of plasma catecholamines in fetal sheep. American Journal of Physiology 252 E530E537. (https://doi.org/10.1152/ajpendo.1987.252.4.E530)

    • Search Google Scholar
    • Export Citation
  • Pardi G, Cetin I, Marconi AM, Lanfranchi A, Bozzetti P, Ferrazzi E, Buscaglia M & Battaglia FC 1993 Diagnostic value of blood sampling in fetuses with growth retardation. New England Journal of Medicine 328 692696. (https://doi.org/10.1056/NEJM199303113281004)

    • Search Google Scholar
    • Export Citation
  • Pendleton AL, Antolic AT, Kelly AC, Davis MA, Camacho LE, Doubleday K, Anderson MJ, Langlais PR, Lynch RM & Limesand SW 2020 Lower oxygen consumption and complex I activity in mitochondria isolated from skeletal muscle of fetal sheep with intrauterine growth restriction. American Journal of Physiology: Endocrinology and Metabolism 319 E67E80. (https://doi.org/10.1152/ajpendo.00057.2020)

    • Search Google Scholar
    • Export Citation
  • Ratge D & Wisser H 1986 Alpha- and beta-adrenergic receptor activity in circulating blood cells of patients with phaeochromocytoma: effects of adrenalectomy. Acta Endocrinologica 111 8088. (https://doi.org/10.1530/acta.0.1110080)

    • Search Google Scholar
    • Export Citation
  • Regnault TR, Galan HL, Parker TA & Anthony RV 2002 Placental development in normal and compromised pregnancies – a review. Placenta 23 (Supplement A) S119S129. (https://doi.org/10.1053/plac.2002.0792)

    • Search Google Scholar
    • Export Citation
  • Regnault TR, De Vrijer B, Galan HL, Wilkening RB, Battaglia FC & Meschia G 2013 Umbilical uptakes and transplacental concentration ratios of amino acids in severe fetal growth restriction. Pediatric Research 73 602611. (https://doi.org/10.1038/pr.2013.30)

    • Search Google Scholar
    • Export Citation
  • Resnik R 2002 Intrauterine growth restriction. Obstetrics and Gynecology 99 490496. (https://doi.org/10.1016/s0029-7844(0101780-x)

  • Robinson JS, Falconer J & Owens JA 1985 Intrauterine growth retardation: clinical and experimental. Acta Paediatrica Scandinavica: Supplement 319 135142. (https://doi.org/10.1111/j.1651-2227.1985.tb10123.x)

    • Search Google Scholar
    • Export Citation
  • Rozance PJ, Limesand SW, Barry JS, Brown LD, Thorn SR, Loturco D, Regnault TR, Friedman JE & Hay Jr WW 2008 Chronic late-gestation hypoglycemia upregulates hepatic PEPCK associated with increased PGC1alpha mRNA and phosphorylated CREB in fetal sheep. American Journal of Physiology: Endocrinology and Metabolism 294 E365E370. (https://doi.org/10.1152/ajpendo.00639.2007)

    • Search Google Scholar
    • Export Citation
  • Rozance PJ, Zastoupil L, Wesolowski SR, Goldstrohm DA, Strahan B, Cree-Green M, Sheffield-Moore M, Meschia G, Hay WW & Wilkening RB et al. 2018 Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growth-restricted fetal sheep. Journal of Physiology 596 6782. (https://doi.org/10.1113/JP275230)

    • Search Google Scholar
    • Export Citation
  • Schaak S, Mialet-Perez J, Flordellis C & Paris H 2007 Genetic variation of human adrenergic receptors: from molecular and functional properties to clinical and pharmacogenetic implications. Current Topics in Medicinal Chemistry 7 217231. (https://doi.org/10.2174/156802607779318163)

    • Search Google Scholar
    • Export Citation
  • Schaff CT, Rohrbeck D, Steinhoff-Wagner J, Kanitz E, Sauerwein H, Bruckmaier RM & Hammon HM 2015 Hepatic glucocorticoid and alpha1- and beta2-adrenergic receptors in calves change during neonatal maturation and are related to energy regulation. Journal of Dairy Science 98 10461056. (https://doi.org/10.3168/jds.2014-8636)

    • Search Google Scholar
    • Export Citation
  • Thorn SR, Regnault TR, Brown LD, Rozance PJ, Keng J, Roper M, Wilkening RB, Hay Jr WW & Friedman JE 2009 Intrauterine growth restriction increases fetal hepatic gluconeogenic capacity and reduces messenger ribonucleic acid translation initiation and nutrient sensing in fetal liver and skeletal muscle. Endocrinology 150 30213030. (https://doi.org/10.1210/en.2008-1789)

    • Search Google Scholar
    • Export Citation
  • Thorn SR, Rozance PJ, Brown LD & Hay Jr WW 2011 The intrauterine growth restriction phenotype: fetal adaptations and potential implications for later life insulin resistance and diabetes. Seminars in Reproductive Medicine 29 225236. (https://doi.org/10.1055/s-0031-1275516)

    • Search Google Scholar
    • Export Citation
  • Thorn SR, Brown LD, Rozance PJ, Hay Jr WW & Friedman JE 2013 Increased hepatic glucose production in fetal sheep with intrauterine growth restriction is not suppressed by insulin. Diabetes 62 6573. (https://doi.org/10.2337/db11-1727)

    • Search Google Scholar
    • Export Citation
  • Wallace JM 2019 Competition for nutrients in pregnant adolescents: consequences for maternal, conceptus and offspring endocrine systems. Journal of Endocrinology 242 T1T19. (https://doi.org/10.1530/JOE-18-0670)

    • Search Google Scholar
    • Export Citation
  • Yates DT, Macko AR, Nearing M, Chen X, Rhoads RP & Limesand SW 2012 Developmental programming in response to intrauterine growth restriction impairs myoblast function and skeletal muscle metabolism. Journal of Pregnancy 2012 631038. (https://doi.org/10.1155/2012/631038)

    • Search Google Scholar
    • Export Citation
  • Yates DT, Camacho LE, Kelly AC, Steyn LV, Davis MA, Antolic AT, Anderson MJ, Goyal R, Allen RE & Papas KK et al. 2019 Postnatal beta2 adrenergic treatment improves insulin sensitivity in lambs with IUGR but not persistent defects in pancreatic islets or skeletal muscle. Journal of Physiology 597 58355858. (https://doi.org/10.1113/JP278726)

    • Search Google Scholar
    • Export Citation