Estrogen normalizes maternal HFD-induced cardiac hypertrophy in offspring by regulating AT2R

in Journal of Endocrinology
Authors:
Fangyuan Chen Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of, Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China

Search for other papers by Fangyuan Chen in
Current site
Google Scholar
PubMed
Close
,
Haili Yu Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of, Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China

Search for other papers by Haili Yu in
Current site
Google Scholar
PubMed
Close
,
Haichuan Zhang Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of, Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China

Search for other papers by Haichuan Zhang in
Current site
Google Scholar
PubMed
Close
,
Runzhu Zhao Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of, Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China

Search for other papers by Runzhu Zhao in
Current site
Google Scholar
PubMed
Close
,
Kaifang Cao Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of, Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China

Search for other papers by Kaifang Cao in
Current site
Google Scholar
PubMed
Close
,
Yinghua Liu Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of, Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China

Search for other papers by Yinghua Liu in
Current site
Google Scholar
PubMed
Close
,
Jiandong Luo Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of, Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China

Search for other papers by Jiandong Luo in
Current site
Google Scholar
PubMed
Close
, and
Qin Xue Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of, Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China

Search for other papers by Qin Xue in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to Q Xue or J Luo: xueqin1980@hotmail.com or jiandongluo@hotmail.com

*(F Chen and H Yu contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

Our previous study has demonstrated maternal high-fat diet (HFD) caused sex-dependent cardiac hypertrophy in adult male, but not female offspring. The present study tested the hypothesis that estrogen normalizes maternal HFD-induced cardiac hypertrophy by regulating angiotensin II receptor (ATR) expression in adult female offspring. Pregnant rats were divided into the normal diet (ND) and HFD (60% kcal fat) groups. Ovariectomy (OVX) and 17β-estradiol (E2) replacement were performed on 8-week-old female offspring. Maternal HFD had no effect on left ventricular (LV) wall thickness, cardiac function and molecular markers of cardiac hypertrophy function in sham groups. However, maternal HFD caused cardiac hypertrophy of offspring in OVX groups, which was abrogated by E2 replacement. In addition, maternal HFD had no effect on ERα and ERβ in sham groups. In contrast, HFD significantly decreased ERα, but not ERβ in OVX groups. In sham groups, there was no difference in the cardiac ATR type 1 (AT1R) and ATR type 2 (AT2R) between ND and HFD offspring. HFD significantly increased AT2R, but not AT1R in OVX groups. Furthermore, maternal HFD resulted in decreased glucocorticoid receptors (GRs) binding to the glucocorticoid response elements at the AT2R promoter, which was due to decreased GRs in hearts from OVX offspring. These HFD-induced changes in OVX groups were abrogated by E2 replacement. These results support a key role of estrogen in the sex difference of maternal HFD-induced cardiac hypertrophy in offspring, and suggest that estrogen protects female offspring from cardiac hypertrophy in adulthood by regulating AT2R.

 

  • Collapse
  • Expand
  • Apaijai N, Charoenphandhu N, Ittichaichareon J, Suntornsaratoon P, Krishnamra N, Aeimlapa R, Chattipakorn SC & Chattipakorn N 2017 Estrogen deprivation aggravates cardiac hypertrophy in nonobese type 2 diabetic Goto-Kakizaki (GK) rats. Bioscience Reports 37. (https://doi.org/10.1042/BSR20170886)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Armando I, Jezova M, Juorio AV, Terron JA, Falcon-Neri A, Semino-Mora C, Imboden H & Saavedra JM 2002 Estrogen upregulates renal angiotensin II AT(2) receptors. American Journal of Physiology: Renal Physiology 283 F934F 943. (https://doi.org/10.1152/ajprenal.00145.2002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aune D, Saugstad OD, Henriksen T & Tonstad S 2014 Maternal body mass index and the risk of fetal death, stillbirth, and infant death: a systematic review and meta-analysis. Journal of the American Medical Association 311 15361546. (https://doi.org/10.1001/jama.2014.2269)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baiardi G, Macova M, Armando I, Ando H, Tyurmin D & Saavedra JM 2005 Estrogen upregulates renal angiotensin II AT1 and AT2 receptors in the rat. Regulatory Peptides 124 717. (https://doi.org/10.1016/j.regpep.2004.06.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brain KL, Allison BJ, Niu Y, Cross CM, Itani N, Kane AD, Herrera EA, Skeffington KL, Botting KJ & Giussani DA 2019 Intervention against hypertension in the next generation programmed by developmental hypoxia. PLoS Biology 17 e2006552. (https://doi.org/10.1371/journal.pbio.2006552)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brosnihan KB, Hodgin JB, Smithies O, Maeda N & Gallagher P 2008 Tissue-specific regulation of ACE/ACE2 and AT1/AT2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-alpha knock-out mice. Experimental Physiology 93 658664. (https://doi.org/10.1113/expphysiol.2007.041806)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Broughton DE & Moley KH 2017 Obesity and female infertility: potential mediators of obesity's impact. Fertility and Sterility 107 840847. (https://doi.org/10.1016/j.fertnstert.2017.01.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Catalano P & deMouzon SH 2015 Maternal obesity and metabolic risk to the offspring: why lifestyle interventions may have not achieved the desired outcomes. International Journal of Obesity 39 642649. (https://doi.org/10.1038/ijo.2015.15)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME & Shaul PW 1999 Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. Journal of Clinical Investigation 103 401406. (https://doi.org/10.1172/JCI5347)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cirulli F, Musillo C & Berry A 2020 Maternal obesity as a risk factor for brain development and mental health in the offspring. Neuroscience 447 122135. (https://doi.org/10.1016/j.neuroscience.2020.01.023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fajersztajn L & Veras MM 2017 Hypoxia: from placental development to fetal programming. Birth Defects Research 109 13771385. (https://doi.org/10.1002/bdr2.1142)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Faria-Costa G, Leite-Moreira A & Henriques-Coelho T 2014 Cardiovascular effects of the angiotensin type 2 receptor. Revista Portuguesa de Cardiologia 33 439449. (https://doi.org/10.1016/j.repc.2014.02.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fortini F, Vieceli Dalla Sega F, Caliceti C, Lambertini E, Pannuti A, Peiffer DS, Balla C & Rizzo P 2019 Estrogen-mediated protection against coronary heart disease: the role of the Notch pathway. Journal of Steroid Biochemistry and Molecular Biology 189 87100. (https://doi.org/10.1016/j.jsbmb.2019.02.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gaillard R 2015 Maternal obesity during pregnancy and cardiovascular development and disease in the offspring. European Journal of Epidemiology 30 11411152. (https://doi.org/10.1007/s10654-015-0085-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gollapudi SK, Tardiff JC & Chandra M 2015 The functional effect of dilated cardiomyopathy mutation (R144W) in mouse cardiac troponin T is differently affected by alpha- and beta-myosin heavy chain isoforms. American Journal of Physiology: Heart and Circulatory Physiology 308 H884H 893. (https://doi.org/10.1152/ajpheart.00528.2014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goncalves GK, Caldeira de Oliveira TH & de Oliveira Belo N 2017 Cardiac hypertrophy and brain natriuretic peptide levels in an ovariectomized rat model fed a high-fat diet. Medical Science Monitor Basic Research 23 380391. (https://doi.org/10.12659/msmbr.907162)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hou N, Cai B, Ou CW, Zhang ZH, Liu XW, Yuan M, Zhao GJ, Liu SM, Xiong LG, Luo JD, et al.2017 Puerarin-7-O-glucuronide, a water-soluble puerarin metabolite, prevents angiotensin II-induced cardiomyocyte hypertrophy by reducing oxidative stress. Naunyn-Schmiedeberg’s Archives of Pharmacology 390 535545. (https://doi.org/10.1007/s00210-017-1353-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jawerbaum A & White V 2017 Review on intrauterine programming: consequences in rodent models of mild diabetes and mild fat overfeeding are not mild. Placenta 52 2132. (https://doi.org/10.1016/j.placenta.2017.02.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaschina E, Namsolleck P & Unger T 2017 AT2 receptors in cardiovascular and renal diseases. Pharmacological Research 125 3947. (https://doi.org/10.1016/j.phrs.2017.07.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lamy S, Laqueille X & Thibaut F 2015 Consequences of tobacco, cocaine and cannabis consumption during pregnancy on the pregnancy itself, on the newborn and on child development: a review. L’Encephale 41(Supplement 1) S13S 20. (https://doi.org/10.1016/j.encep.2014.08.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leeners B, Geary N, Tobler PN & Asarian L 2017 Ovarian hormones and obesity. Human Reproduction Update 23 300321. (https://doi.org/10.1093/humupd/dmw045)

  • Lemarie CA & Schiffrin EL 2010 The angiotensin II type 2 receptor in cardiovascular disease. Journal of the Renin-Angiotensin-Aldosterone System 11 1931. (https://doi.org/10.1177/1470320309347785)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Levy BI 2005 How to explain the differences between renin angiotensin system modulators. American Journal of Hypertension 18 134S141S. (https://doi.org/10.1016/j.amjhyper.2005.05.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li J, Jubair S & Janicki JS 2015 Estrogen inhibits mast cell chymase release to prevent pressure overload-induced adverse cardiac remodeling. Hypertension 65 328334. (https://doi.org/10.1161/HYPERTENSIONAHA.114.04238)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li F, Zhang N, Wu Q, Yuan Y, Yang Z, Zhou M, Zhu J & Tang Q 2017 Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy. International Journal of Molecular Medicine 39 199207. (https://doi.org/10.3892/ijmm.2016.2824)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Y, Shen HJ, Wang XQ, Liu HQ, Zheng LY & Luo JD 2018 EndophilinA2 protects against angiotensin II-induced cardiac hypertrophy by inhibiting angiotensin II type 1 receptor trafficking in neonatal rat cardiomyocytes. Journal of Cellular Biochemistry 119 82908303. (https://doi.org/10.1002/jcb.26862)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luo T & Kim JK 2016 The role of estrogen and estrogen receptors on cardiomyocytes: an overview. Canadian Journal of Cardiology 32 10171025. (https://doi.org/10.1016/j.cjca.2015.10.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marciniak A, Patro-Malysza J, Kimber-Trojnar Ż, Marciniak B, Oleszczuk J & Leszczynska-Gorzelak B 2017 Fetal programming of the metabolic syndrome. Taiwanese Journal of Obstetrics and Gynecology 56 133138. (https://doi.org/10.1016/j.tjog.2017.01.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matsumoto T, Ozono R, Oshima T, Matsuura H, Sueda T, Kajiyama G & Kambe M 2000 Type 2 angiotensin II receptor is downregulated in cardiomyocytes of patients with heart failure. Cardiovascular Research 46 7381. (https://doi.org/10.1016/s0008-6363(0000008-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McGrath MF, de Bold ML & de Bold AJ 2005 The endocrine function of the heart. Trends in Endocrinology and Metabolism 16 469477. (https://doi.org/10.1016/j.tem.2005.10.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Metcalfe BL, Huentelman MJ, Parilak LD, Taylor DG, Katovich MJ, Knot HJ, Sumners C & Raizada MK 2004 Prevention of cardiac hypertrophy by angiotensin II type-2 receptor gene transfer. Hypertension 43 12331238. (https://doi.org/10.1161/01.HYP.0000127563.14064.FD)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miranda A & Sousa N 2018 Maternal hormonal milieu influence on fetal brain development. Brain and Behavior 8 e00920. (https://doi.org/10.1002/brb3.920)

  • Moisiadis VG & Matthews SG 2014 Glucocorticoids and fetal programming part 1: outcomes. Nature Reviews: Endocrinology 10 391402. (https://doi.org/10.1038/nrendo.2014.73)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nickenig G, Baumer AT, Grohe C, Kahlert S, Strehlow K, Rosenkranz S, Stablein A, Beckers F, Smits JF, Daemen MJ, et al.1998 Estrogen modulates AT1 receptor gene expression in vitro and in vivo. Circulation 97 21972201. (https://doi.org/10.1161/01.cir.97.22.2197)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patterson AJ, Chen M, Xue Q, Xiao D & Zhang L 2010 Chronic prenatal hypoxia induces epigenetic programming of PKC{epsilon} gene repression in rat hearts. Circulation Research 107 365373. (https://doi.org/10.1161/CIRCRESAHA.110.221259)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Poston L 2012 Gestational weight gain: influences on the long-term health of the child. Current Opinion in Clinical Nutrition and Metabolic Care 15 252257. (https://doi.org/10.1097/MCO.0b013e3283527cf2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qian X, Wang ZR, Zheng JJ, Ding JQ, Zhong JG, Zhang TY, Li W & Zhang M 2019 Baicalein improves cognitive deficits and hippocampus impairments in temporal lobe epilepsy rats. Brain Research 1714 111118. (https://doi.org/10.1016/j.brainres.2019.02.028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saad MI, Abdelkhalek TM, Haiba MM, Saleh MM, Hanafi MY, Tawfik SH & Kamel MA 2016 Maternal obesity and malnourishment exacerbate perinatal oxidative stress resulting in diabetogenic programming in F1 offspring. Journal of Endocrinological Investigation 39 643655. (https://doi.org/10.1007/s40618-015-0413-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shimizu I & Minamino T 2016 Physiological and pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology 97 245262. (https://doi.org/10.1016/j.yjmcc.2016.06.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takezako T, Unal H, Karnik SS & Node K 2017 Current topics in angiotensin II type 1 receptor research: focus on inverse agonism, receptor dimerization and biased agonism. Pharmacological Research 123 4050. (https://doi.org/10.1016/j.phrs.2017.06.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor LE & Sullivan JC 2016 Sex differences in obesity-induced hypertension and vascular dysfunction: a protective role for estrogen in adipose tissue inflammation? American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 311 R714R720. (https://doi.org/10.1152/ajpregu.00202.2016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor PD, Samuelsson AM & Poston L 2014 Maternal obesity and the developmental programming of hypertension: a role for leptin. Acta Physiologica 210 508523. (https://doi.org/10.1111/apha.12223)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thangaratinam S, Rogozinska E, Jolly K, Glinkowski S, Duda W, Borowiack E, Roseboom T, Tomlinson J, Walczak J, Kunz R, et al.2012 Interventions to reduce or prevent obesity in pregnant women: a systematic review. Health Technology Assessment 16 iiiiv, 1191. (https://doi.org/10.3310/hta16310)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uht RM, Anderson CM, Webb P & Kushner PJ 1997 Transcriptional activities of estrogen and glucocorticoid receptors are functionally integrated at the AP-1 response element. Endocrinology 138 29002908. (https://doi.org/10.1210/endo.138.7.5244)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vijayaraghavan K & Deedwania P 2011 Renin-angiotensin-aldosterone blockade for cardiovascular disease prevention. Cardiology Clinics 29 137156. (https://doi.org/10.1016/j.ccl.2010.11.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu X, Zheng D, Qin Y, Liu Z, Zhang G, Zhu X, Zeng L & Liang Z 2017 Nobiletin attenuates adverse cardiac remodeling after acute myocardial infarction in rats via restoring autophagy flux. Biochemical and Biophysical Research Communications 492 262268. (https://doi.org/10.1016/j.bbrc.2017.08.064)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xiao D, Huang X, Yang S & Zhang L 2013 Estrogen normalizes perinatal nicotine-induced hypertensive responses in adult female rat offspring. Hypertension 61 12461254. (https://doi.org/10.1161/HYPERTENSIONAHA.113.01152)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xue Q, Dasgupta C, Chen M & Zhang L 2011 Foetal hypoxia increases cardiac AT(2)R expression and subsequent vulnerability to adult ischaemic injury. Cardiovascular Research 89 300308. (https://doi.org/10.1093/cvr/cvq303)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xue Q, Patterson AJ, Xiao D & Zhang L 2014 Glucocorticoid modulates angiotensin II receptor expression patterns and protects the heart from ischemia and reperfusion injury. PLoS ONE 9 e106827. (https://doi.org/10.1371/journal.pone.0106827)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xue Q, Xiao D & Zhang L 2015a Estrogen regulates angiotensin II receptor expression patterns and protects the heart from ischemic injury in female rats. Biology of Reproduction 93 6. (https://doi.org/10.1095/biolreprod.115.129619)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xue Q, Chen P, Li X, Zhang G, Patterson AJ & Luo J 2015b Maternal high-fat diet causes a sex-dependent increase in AGTR2 expression and cardiac dysfunction in adult male rat offspring. Biology of Reproduction 93 49. (https://doi.org/10.1095/biolreprod.115.129916)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xue Q, Chen F, Zhang H, Liu Y, Chen P, Patterson AJ & Luo J 2019 Maternal high-fat diet alters angiotensin II receptors and causes changes in fetal and neonatal rats†. Biology of Reproduction 100 11931203. (https://doi.org/10.1093/biolre/ioy262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang L & Jeong KW 2019 Flightless-I mediates the repression of estrogen receptor alpha target gene expression by the glucocorticoid receptor in MCF-7 cells. Endocrine Journal 66 6574. (https://doi.org/10.1507/endocrj.EJ18-0343)

    • PubMed
    • Search Google Scholar
    • Export Citation