Region-specific effects of blocking estrogen receptors on longitudinal bone growth

in Journal of Endocrinology
View More View Less
  • 1 Department of spinal surgery, Peking University People’s Hospital, Peking University, Beijing, China
  • 2 Department of spinal surgery, enji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China

Correspondence should be addressed to H-Y Liu or X-F Li: drlhypkuph@163.com or lxfrenji@126.com
Restricted access

Estrogen receptors (ERs) regulate the development of the growth plate (GP) by binding to estrogen, a phenomenon that determines the growth of skeletal bone. However, the exact mechanisms underlying the regulatory effects of ERs on axial and appendicular growth plates during puberty remain unclear. In the present study, the strategy of ERβ blocking resulted in increased longitudinal elongation of the appendicular bone (P < 0.01), whereas ERα blocking suppressed appendicular elongation (P < 0.05). Blocking both ERs did not have opposite effects on axial longitudinal growth. The expression of chondrocyte proliferation genes including collagen II, aggrecan, and Sox9 and hypertrophic marker genes including collagen X, MMP13, and Runx2 was significantly increased in the growth plate of female mice treated with ERβ antagonist compared with that in the GP of control mice (P < 0.05). There were no significant differences in local insulin-like growth factor 1 (IGF-1) expression among these groups (P > 0.05), and Indian hedgehog protein (Ihh) and parathyroid-related protein (PTHrP) expressions differed among these groups (P < 0.05). ERs appeared not to affect axial bone growth during puberty in female mice (P > 0.05). Our data show that the blocking of different ER subtypes might have a region-specific influence on longitudinal appendicular and axial growth.

Supplementary Materials

    • Figure supplementation 1. Effects of ERα and ERβ antagonists on vertebral growth plate length, proliferative and hypertrophic zone. HE staining of mouse femur growth plate. (A). Quantitative morphological studies showing the total growth plate height (B). The height of the proliferative zone (C). The height of hypertrophic zone (D). Ratios of proliferative/hypertrophic zones (E). n=12, Values are means±SD, *P<0.05, ***P<0.01 and **** P<0.001. Scale bar: 100μm.

 

Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 40 40 40
Full Text Views 5 5 5
PDF Downloads 8 8 8
  • Abad V, Meyers JL, Weise M, Gafni RI, Barnes KM, Nilsson O, Bacher JD & Baron J 2002 The role of the resting zone in growth plate chondrogenesis. Endocrinology 143 18511857. (https://doi.org/10.1210/endo.143.5.8776)

    • Search Google Scholar
    • Export Citation
  • Ağırdil Y 2020 The growth plate: a physiologic overview. EFORT Open Reviews 5 498507. (https://doi.org/10.1302/2058-5241.5.190088)

  • Albrethsen J, Ljubicic ML & Juul A 2020 Longitudinal increases in serum insulin-like Factor 3 and testosterone determined by LC-MS/MS in pubertal Danish boys. Journal of Clinical Endocrinology and Metabolism 105 31733178. (https://doi.org/10.1210/clinem/dgaa496)

    • Search Google Scholar
    • Export Citation
  • Amano K, Densmore MJ & Lanske B 2015 Conditional deletion of Indian hedgehog in limb mesenchyme results in complete loss of growth plate formation but allows mature osteoblast differentiation. Journal of Bone and Mineral Research 30 22622272. (https://doi.org/10.1002/jbmr.2582)

    • Search Google Scholar
    • Export Citation
  • Bahney CS, Hu DP, Taylor AJ, Ferro F, Britz HM, Hallgrimsson B, Johnstone B, Miclau T & Marcucio RS 2014 Stem cell-derived endochondral cartilage stimulates bone healing by tissue transformation. Journal of Bone and Mineral Research 29 12691282. (https://doi.org/10.1002/jbmr.2148)

    • Search Google Scholar
    • Export Citation
  • Börjesson AE, Windahl SH, Karimian E, Eriksson EE, Lagerquist MK, Engdahl C, Antal MC, Krust A, Chambon P, Sävendahl L, et al. 2012 The role of estrogen receptor-α and its activation function-1 for growth plate closure in female mice. American Journal of Physiology. Endocrinology and Metabolism 302 E1381E 1389. (https://doi.org/10.1152/ajpendo.00646.2011)

    • Search Google Scholar
    • Export Citation
  • Börjesson AE, Lagerquist MK, Windahl SH & Ohlsson C 2013 The role of estrogen receptor α in the regulation of bone and growth plate cartilage. Cellular and Molecular Life Sciences 70 40234037. (https://doi.org/10.1007/s00018-013-1317-1)

    • Search Google Scholar
    • Export Citation
  • Bu S, Zhang Q, Wang Q & Lai D 2017 Human amniotic epithelial cells inhibit growth of epithelial ovarian cancer cells via TGFβ1-mediated cell cycle arrest. International Journal of Oncology 51 14051414. (https://doi.org/10.3892/ijo.2017.4123)

    • Search Google Scholar
    • Export Citation
  • Budwit-Novotny DA, McCarty KS, Cox EB, Soper JT, Mutch DG, Creasman WT, Flowers JL & McCarty KS Jr 1986 Immunohistochemical analyses of estrogen receptor in endometrial adenocarcinoma using a monoclonal antibody. Cancer Research 46 54195425.

    • Search Google Scholar
    • Export Citation
  • Carani C, Qin K, Simoni M, Faustini-Fustini M, Serpente S, Boyd J, Korach KS & Simpson ER 1997 Effect of testosterone and estradiol in a man with aromatase deficiency. New England Journal of Medicine 337 9195. (https://doi.org/10.1056/NEJM199707103370204)

    • Search Google Scholar
    • Export Citation
  • Chagin AS & Sävendahl L 2009 Genes of importance in the hormonal regulation of growth plate cartilage. Hormone Research 71(Supplement 2) 4147. (https://doi.org/10.1159/000192435)

    • Search Google Scholar
    • Export Citation
  • Chagin AS, Lindberg MK, Andersson N, Moverare S, Gustafsson JA, Sävendahl L & Ohlsson C 2004 Estrogen receptor-beta inhibits skeletal growth and has the capacity to mediate growth plate fusion in female mice. Journal of Bone and Mineral Research 19 7277. (https://doi.org/10.1359/JBMR.0301203)

    • Search Google Scholar
    • Export Citation
  • Giustina A, Mazziotti G & Canalis E 2008 Growth hormone, insulin-like growth factors, and the skeleton. Endocrine Reviews 29 535559. (https://doi.org/10.1210/er.2007-0036)

    • Search Google Scholar
    • Export Citation
  • Hu DP, Ferro F, Yang F, Taylor AJ, Chang W, Miclau T, Marcucio RS & Bahney CS 2017 Cartilage to bone transformation during fracture healing is coordinated by the invading vasculature and induction of the core pluripotency genes. Development 144 221234. (https://doi.org/10.1242/dev.130807)

    • Search Google Scholar
    • Export Citation
  • Hunziker EB 1994 Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microscopy Research and Technique 28 505519. (https://doi.org/10.1002/jemt.1070280606)

    • Search Google Scholar
    • Export Citation
  • Iravani M, Lagerquist M, Ohlsson C & Sävendahl L 2017 Regulation of bone growth via ligand-specific activation of estrogen receptor alpha. Journal of Endocrinology 232 403410. (https://doi.org/10.1530/JOE-16-0263)

    • Search Google Scholar
    • Export Citation
  • Jin LY, Lv ZD, Wang K, Qian L, Song XX, Li XF & Shen HX 2018 Estradiol alleviates intervertebral disc degeneration through modulating the antioxidant enzymes and inhibiting autophagy in the model of menopause rats. Oxidative Medicine and Cellular Longevity 2018 7890291. (https://doi.org/10.1155/2018/7890291)

    • Search Google Scholar
    • Export Citation
  • Juul A 2001 The effects of oestrogens on linear bone growth. Human Reproduction Update 7 303313. (https://doi.org/10.1093/humupd/7.3.303)

    • Search Google Scholar
    • Export Citation
  • Khalaj L, Nejad SC, Mohammadi M, Zadeh SS, Pour MH, Ahmadiani A, Khodagholi F, Ashabi G, Alamdary SZ & Samami E 2013 Gemfibrozil pretreatment proved protection against acute restraint stress-induced changes in the male rats' hippocampus. Brain Research 1527 117130. (https://doi.org/10.1016/j.brainres.2013.06.041)

    • Search Google Scholar
    • Export Citation
  • Komori T 2011 Signaling networks in RUNX2-dependent bone development. Journal of Cellular Biochemistry 112 750755. (https://doi.org/10.1002/jcb.22994)

    • Search Google Scholar
    • Export Citation
  • Kronenberg HM 2003 Developmental regulation of the growth plate. Nature 423 332336. (https://doi.org/10.1038/nature01657)

  • Kusec V, Virdi AS, Prince R & Triffitt JT 1998 Localization of estrogen receptor-alpha in human and rabbit skeletal tissues. Journal of Clinical Endocrinology and Metabolism 83 24212428. (https://doi.org/10.1210/jcem.83.7.4981)

    • Search Google Scholar
    • Export Citation
  • Lebovitz HE & Eisenbarth GS 1975 Hormonal regulation of cartilage growth and metabolism. Vitamins and Hormones 33 575648. (https://doi.org/10.1016/s0083-6729(0860973-5)

    • Search Google Scholar
    • Export Citation
  • Li XF, Wang SJ, Jiang LS & Dai LY 2012 Gender- and region-specific variations of estrogen receptor α and β expression in the growth plate of spine and limb during development and adulthood. Histochemistry and Cell Biology 137 7995. (https://doi.org/10.1007/s00418-011-0877-0)

    • Search Google Scholar
    • Export Citation
  • Li XF, Wang SJ, Jiang LS & Dai LY 2013 Stage specific effect of leptin on the expressions of estrogen receptor and extracellular matrix in a model of chondrocyte differentiation. Cytokine 61 876884. (https://doi.org/10.1016/j.cyto.2012.12.017)

    • Search Google Scholar
    • Export Citation
  • Lindberg MK, Alatalo SL, Halleen JM, Mohan S, Gustafsson JA & Ohlsson C 2001 Estrogen receptor specificity in the regulation of the skeleton in female mice. Journal of Endocrinology 171 229236. (https://doi.org/10.1677/joe.0.1710229)

    • Search Google Scholar
    • Export Citation
  • Lindberg MK, Movérare S, Skrtic S, Gao H, Dahlman-Wright K, Gustafsson JA & Ohlsson C 2003 Estrogen receptor (ER)-beta reduces ERalpha-regulated gene transcription, supporting a "ying yang" relationship between ERalpha and ERbeta in mice. Molecular Endocrinology 17 203208. (https://doi.org/10.1210/me.2002-0206)

    • Search Google Scholar
    • Export Citation
  • Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS & Mirams M 2008 Endochondral ossification: how cartilage is converted into bone in the developing skeleton. International Journal of Biochemistry and Cell Biology 40 4662. (https://doi.org/10.1016/j.biocel.2007.06.009)

    • Search Google Scholar
    • Export Citation
  • Maffei L, Murata Y, Rochira V, Tubert G, Aranda C, Vazquez M, Clyne CD, Davis S, Simpson ER & Carani C 2004 Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. Journal of Clinical Endocrinology and Metabolism 89 6170. (https://doi.org/10.1210/jc.2003-030313)

    • Search Google Scholar
    • Export Citation
  • Martin TJ 2016 Parathyroid hormone-related protein, its regulation of cartilage and bone development, and role in treating bone diseases. Physiological Reviews 96 831871. (https://doi.org/10.1152/physrev.00031.2015)

    • Search Google Scholar
    • Export Citation
  • Movérare S, Venken K, Eriksson AL, Andersson N, Skrtic S, Wergedal J, Mohan S, Salmon P, Bouillon R, Gustafsson JA, et al. 2003 Differential effects on bone of estrogen receptor alpha and androgen receptor activation in orchidectomized adult male mice. PNAS 100 1357313578. (https://doi.org/10.1073/pnas.2233084100)

    • Search Google Scholar
    • Export Citation
  • Nilsson LO, Boman A, Sävendahl L, Grigelioniene G, Ohlsson C, Ritzén EM & Wroblewski J 1999 Demonstration of estrogen receptor-beta immunoreactivity in human growth plate cartilage. Journal of Clinical Endocrinology and Metabolism 84 370373. (https://doi.org/10.1210/jcem.84.1.5531)

    • Search Google Scholar
    • Export Citation
  • Nilsson O, Abad V, Chrysis D, Ritzen EM, Savendahl L & Baron J 2002 Estrogen receptor-alpha and -beta are expressed throughout postnatal development in the rat and rabbit growth plate. Journal of Endocrinology 173 407414 (https://doi.org/10.1677/joe.0.1730407)

    • Search Google Scholar
    • Export Citation
  • Parikka V, Peng Z, Hentunen T, Risteli J, Elo T, Väänänen HK & Härkönen P 2005 Estrogen responsiveness of bone formation in vitro and altered bone phenotype in aged estrogen receptor-alpha-deficient male and female mice. European Journal of Endocrinology 152 301314. (https://doi.org/10.1530/eje.1.01832)

    • Search Google Scholar
    • Export Citation
  • Perry RJ, Farquharson C & Ahmed SF 2008 The role of sex steroids in controlling pubertal growth. Clinical Endocrinology 68 415. (https://doi.org/10.1111/j.1365-2265.2007.02960.x)

    • Search Google Scholar
    • Export Citation
  • Quaynor SD, Stradtman EW Jr, Kim HG, Shen Y, Chorich LP, Schreihofer DA & Layman LC 2013 Delayed puberty and estrogen resistance in a woman with estrogen receptor α variant. New England Journal of Medicine 369 164171. (https://doi.org/10.1056/NEJMoa1303611)

    • Search Google Scholar
    • Export Citation
  • Raimann A, Javanmardi A, Egerbacher M & Haeusler G 2017 A journey through growth plates: tracking differences in morphology and regulation between the spine and the long bones in a pig model. Spine Journal 17 16741684. (https://doi.org/10.1016/j.spinee.2017.06.001)

    • Search Google Scholar
    • Export Citation
  • Samsa WE, Zhou X & Zhou G 2017 Signaling pathways regulating cartilage growth plate formation and activity. Seminars in Cell and Developmental Biology 62 315. (https://doi.org/10.1016/j.semcdb.2016.07.008)

    • Search Google Scholar
    • Export Citation
  • Schrier L, Ferns SP, Barnes KM, Emons JA, Newman EI, Nilsson O & Baron J 2006 Depletion of resting zone chondrocytes during growth plate senescence. Journal of Endocrinology 189 2736. (https://doi.org/10.1677/joe.1.06489)

    • Search Google Scholar
    • Export Citation
  • Shapiro IM, Adams CS, Freeman T & Srinivas V 2005 Fate of the hypertrophic chondrocyte: microenvironmental perspectives on apoptosis and survival in the epiphyseal growth plate. Birth Defects Research: Part C, Embryo Today: Reviews 75 330339. (https://doi.org/10.1002/bdrc.20057)

    • Search Google Scholar
    • Export Citation
  • Shi S, Zheng S, Li XF & Liu ZD 2017 The effect of estradiol on the growth plate chondrocytes of limb and spine from postnatal mice in vitro: the role of estrogen-receptor and estradiol concentration. International Journal of Biological Sciences 13 100109. (https://doi.org/10.7150/ijbs.17696)

    • Search Google Scholar
    • Export Citation
  • So EY, Sun C, Wu KQ, Driesman A, Leggett S, Isaac M, Spangler T, Dubielecka-Szczerba PM, Reginato AM & Liang OD 2020 Lipid phosphatase SHIP-1 regulates chondrocyte hypertrophy and skeletal development. Journal of Cellular Physiology 235 14251437. (https://doi.org/10.1002/jcp.29063)

    • Search Google Scholar
    • Export Citation
  • Song XX, Jin LY, Li XF, Luo Y & Yu BW 2021 Substance P mediates estrogen modulation proinflammatory cytokines release in intervertebral disc. Inflammation 44 506517. (https://doi.org/10.1007/s10753-020-01347-1)

    • Search Google Scholar
    • Export Citation
  • Tang CY, Chen W, Luo Y, Wu J, Zhang Y, McVicar A, McConnell M, Liu Y, Zhou HD & Li YP 2020 Runx1 up-regulates chondrocyte to osteoblast lineage commitment and promotes bone formation by enhancing both chondrogenesis and osteogenesis. Biochemical Journal 477 24212438. (https://doi.org/10.1042/BCJ20200036)

    • Search Google Scholar
    • Export Citation
  • van der Eerden BC, Gevers EF, Löwik CW, Karperien M & Wit JM 2002 Expression of estrogen receptor alpha and beta in the epiphyseal plate of the rat. Bone 30 478485. (https://doi.org/10.1016/s8756-3282(0100703-7).

    • Search Google Scholar
    • Export Citation
  • Vidal O, Lindberg M, Sävendahl L, Lubahn DB, Ritzen EM, Gustafsson JA & Ohlsson C 1999 Disproportional body growth in female estrogen receptor-alpha-inactivated mice. Biochemical and Biophysical Research Communications 265 569571. (https://doi.org/10.1006/bbrc.1999.1711)

    • Search Google Scholar
    • Export Citation
  • Windahl SH, Vidal O, Andersson G, Gustafsson JA & Ohlsson C 1999 Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERbeta(-/-) mice. Journal of Clinical Investigation 104 895901. (https://doi.org/10.1172/JCI6730)

    • Search Google Scholar
    • Export Citation
  • Wuelling M & Vortkamp A 2011 Chondrocyte proliferation and differentiation. Endocrine Development 21 111. (https://doi.org/10.1159/000328081)

    • Search Google Scholar
    • Export Citation
  • Zhou X, von der Mark K, Henry S, Norton W, Adams H & de Crombrugghe B 2014 Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genetics 10 e1004820. (https://doi.org/10.1371/journal.pgen.1004820)

    • Search Google Scholar
    • Export Citation