Prenatal androgen excess impairs beta-cell function by decreased sirtuin 3 expression

in Journal of Endocrinology
Authors:
Yu Zhou Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Yu Zhou in
Current site
Google Scholar
PubMed
Close
,
Min Gong Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Min Gong in
Current site
Google Scholar
PubMed
Close
,
Yingfei Lu Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Yingfei Lu in
Current site
Google Scholar
PubMed
Close
,
Jianquan Chen Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Jianquan Chen in
Current site
Google Scholar
PubMed
Close
, and
Rong Ju Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Rong Ju in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to J Chen or R Ju: jqchen68@hotmail.com or jurong@njmu.edu.cn
Restricted access
Rent on DeepDyve

Sign up for journal news

Prenatal androgen exposure induces metabolic disorders in female offspring. However, the long-term effect of maternal testosterone excess on glucose metabolism, especially on pancreatic beta-cell function, is rarely investigated. Our current study mainly focused on the effects of prenatal testosterone exposure on glucose metabolism and pancreatic beta- cell function in aged female offspring. By using maternal mice and their female offspring as animal models, we found that prenatal androgen treatment induced obesity and glucose intolerance in aged offspring. These influences were accompanied by decreased fasting serum insulin concentration, elevated serum triglyceride, and testosterone concentrations. Glucose stimulated insulin secretion in pancreatic beta cells of aged female offspring was also affected by prenatal testosterone exposure. We further confirmed that increased serum testosterone contributed to downregulation of sirtuin 3 expression, activated oxidative stress, and impaired pancreatic beta-cell function in aged female offspring. Moreover, over-expression of sirtuin 3 in islets isolated from female offspring treated with prenatal testosterone normalized the oxidative stress level, restored cyclic AMP, and ATP generation, which finally improved glucose-stimulated insulin secretion in beta cells. Taken together, these results demonstrated that prenatal testosterone exposure caused a metabolic disturbance in aged female offspring via suppression of sirtuin 3 expression and activation of oxidative stress in pancreatic beta cells.

 

  • Collapse
  • Expand
  • Brekk OR, Honey JR, Lee S, Hallett PJ & Isacson O 2020 Cell type-specific lipid storage changes in Parkinson’s disease patient brains are recapitulated by experimental glycolipid disturbance. PNAS 117 2764627654. (https://doi.org/10.1073/pnas.2003021117)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y, Zhang D, Scadden DT & Chen D 2013 SIRT3 reverses aging-associated degeneration. Cell Reports 3 319327. (https://doi.org/10.1016/j.celrep.2013.01.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carrasco A, Recabarren MP, Rojas-Garcia PP, Gutierrez M, Morales K, Sir-Petermann T & Recabarren SE 2020 Prenatal testosterone exposure disrupts insulin secretion and promotes insulin resistance. Scientific Reports 10 404. (https://doi.org/10.1038/s41598-019-57197-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Caton PW, Richardson SJ, Kieswich J, Bugliani M, Holland ML, Marchetti P, Morgan NG, Yaqoob MM, Holness MJ & Sugden MC 2013 Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients. Diabetologia 56 10681077. (https://doi.org/10.1007/s00125-013-2851-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chappell NR, Zhou B, Schutt AK, Gibbons WE & Blesson CS 2020 Prenatal androgen induced lean PCOS impairs mitochondria and mRNA profiles in oocytes. Endocrine Connections 9 261270. (https://doi.org/10.1530/EC-19-0553)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Crisosto N, Ladron De Guevara A, Echiburu B, Maliqueo M, Cavada G, Codner E, Paez F & Sir-Petermann T 2019 Higher luteinizing hormone levels associated with antiMullerian hormone in postmenarchal daughters of women with polycystic ovary syndrome. Fertility and Sterility 111 381388. (https://doi.org/10.1016/j.fertnstert.2018.10.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Drews G, Krippeit-Drews P & Dufer M 2010 Oxidative stress and beta-cell dysfunction. Pflugers Archiv 460 703718. (https://doi.org/10.1007/s00424-010-0862-9)

  • Drori A, Gammal A, Azar S, Hinden L, Hadar R, Wesley D, Nemirovski A, Szanda G, Salton M & Tirosh B et al.2020 CB1R regulates soluble leptin receptor levels via CHOP, contributing to hepatic leptin resistance. eLife 9 e60771. (https://doi.org/10.7554/eLife.60771)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS & Legro RS 2015 Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocrine Reviews 36 487525. (https://doi.org/10.1210/er.2015-1018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feldman JL, Dittenhafer-Reed KE & Denu JM 2012 Sirtuin catalysis and regulation. Journal of Biological Chemistry 287 4241942427. (https://doi.org/10.1074/jbc.R112.378877)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferreira SR, Goyeneche AA, Heber MF, Abruzzese GA, Ferrer MJ, Telleria CM & Motta AB 2021 Prenatal testosterone exposure induces insulin resistance, uterine oxidative stress and pro-inflammatory status in rats. Molecular and Cellular Endocrinology 519 111045. (https://doi.org/10.1016/j.mce.2020.111045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Figueiredo H, Figueroa ALC, Garcia A, Fernandez-Ruiz R, Broca C, Wojtusciszyn A, Malpique R, Gasa R & Gomis R 2019 Targeting pancreatic islet PTP1B improves islet graft revascularization and transplant outcomes. Science Translational Medicine 11 eaar6294. (https://doi.org/10.1126/scitranslmed.aar6294)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Forslund M, Landin-Wilhelmsen K, Trimpou P, Schmidt J, Brannstrom M & Dahlgren E 2020 Type 2 diabetes mellitus in women with polycystic ovary syndrome during a 24-year period: importance of obesity and abdominal fat distribution. Human Reproduction Open 2020 hoz042. (https://doi.org/10.1093/hropen/hoz042)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hakim C, Padmanabhan V & Vyas AK 2017 Gestational hyperandrogenism in developmental programming. Endocrinology 158 199212. (https://doi.org/10.1210/en.2016-1801)

  • Hu M, Richard JE, Maliqueo M, Kokosar M, Fornes R, Benrick A, Jansson T, Ohlsson C, Wu X & Skibicka KP et al.2015 Maternal testosterone exposure increases anxiety-like behavior and impacts the limbic system in the offspring. PNAS 112 1434814353. (https://doi.org/10.1073/pnas.1507514112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hua D, Zhou Y, Lu Y, Zhao C, Qiu W, Chen J & Ju R 2020 Lipotoxicity impairs granulosa cell function through activated endoplasmic reticulum stress pathway. Reproductive Sciences 27 119131. (https://doi.org/10.1007/s43032-019-00014-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huffman MC, Santo JB & French JA 2017 Prenatal androgen exposure and parental care interact to influence timing of reproductive maturation in marmosets. American Journal of Primatology 79 112.(https://doi)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim M, Lee JS, Oh JE, Nan J, Lee H, Jung HS, Chung SS & Park KS 2015 SIRT3 overexpression attenuates palmitate-induced pancreatic beta-cell dysfunction. PLoS ONE 10 e0124744. (https://doi.org/10.1371/journal.pone.0124744)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kincaid B & Bossy-Wetzel E 2013 Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Frontiers in Aging Neuroscience 5 48. (https://doi.org/10.3389/fnagi.2013.00048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kleiner S, Gomez D, Megra B, Na E, Bhavsar R, Cavino K, Xin Y, Rojas J, Dominguez-Gutierrez G & Zambrowicz B et al.2018 Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity. PNAS 115 E7642E7649. (https://doi.org/10.1073/pnas.1721418115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kregel KC & Zhang HJ 2007 An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 292 R18R36. (https://doi.org/10.1152/ajpregu.00327.2006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lei J, Paul J, Wang Y, Gupta M, Vang D, Thompson S, Jha R, Nguyen J, Valverde Y & Lamarre Y et al.2021 Heme causes pain in sickle mice via toll-like receptor 4-mediated reactive oxygen species- and endoplasmic reticulum stress-induced glial activation. Antioxidants and Redox Signaling 34 279293. (https://doi.org/10.1089/ars.2019.7913)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lenzen S 2008 Oxidative stress: the vulnerable beta-cell. Biochemical Society Transactions 36 343347. (https://doi.org/10.1042/BST0360343)

  • Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F & Bonaduce D et al.2018 Oxidative stress, aging, and diseases. Clinical Interventions in Aging 13 757772. (https://doi.org/10.2147/CIA.S158513)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D & Murphy A et al.2007 Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Molecular and Cellular Biology 27 88078814. (https://doi.org/10.1128/MCB.01636-07)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mimouni NEH, Paiva I, Barbotin AL, Timzoura FE, Plassard D, Le Gras S, Ternier G, Pigny P, Catteau-Jonard S & Simon V et al.2021 Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process. Cell Metabolism 33 513.e8–530.e8. (https://doi.org/10.1016/j.cmet.2021.01.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mishra JS, More AS & Kumar S 2018 Elevated androgen levels induce hyperinsulinemia through increase in INS1 transcription in pancreatic beta cells in female rats. Biology of Reproduction 98 520531. (https://doi.org/10.1093/biolre/ioy017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • More AS, Mishra JS, Gopalakrishnan K, Blesson CS, Hankins GD & Sathishkumar K 2016 Prenatal testosterone exposure leads to gonadal hormone-dependent hyperinsulinemia and gonadal hormone-independent glucose intolerance in adult male rat offspring. Biology of Reproduction 94 5. (https://doi.org/10.1095/biolreprod.115.133157)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morgan HL, Ampong I, Eid N, Rouillon C, Griffiths HR & Watkins AJ 2020 Low protein diet and methyl-donor supplements modify testicular physiology in mice. Reproduction 159 627641. (https://doi.org/10.1530/REP-19-0435)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morisset AS, Dube MC, Drolet R, Pelletier M, Labrie F, Luu-The V, Tremblay Y, Robitaille J, John Weisnagel S & Tchernof A 2013 Androgens in the maternal and fetal circulation: association with insulin resistance. Journal of Maternal-Fetal and Neonatal Medicine 26 513519. (https://doi.org/10.3109/14767058.2012.735725)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mousavy Gharavy SN, Owen BM, Millership SJ, Chabosseau P, Pizza G, Martinez-Sanchez A, Tasoez E, Georgiadou E, Hu M & Fine NHF et al.2021 Sexually dimorphic roles for the type 2 diabetes-associated C2cd4b gene in murine glucose homeostasis. Diabetologia 64 850864. (https://doi.org/10.1007/s00125-020-05350-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Navarro G, Allard C, Morford JJ, Xu W, Liu S, Molinas AJ, Butcher SM, Fine NH, Blandino-Rosano M & Sure VN et al.2018 Androgen excess in pancreatic beta cells and neurons predisposes female mice to type 2 diabetes. JCI Insight 3 e98607. (https://doi.org/10.1172/jci.insight.98607)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pasquali R 2018 Metabolic syndrome in polycystic ovary syndrome. Frontiers of Hormone Research 49 114130. (https://doi.org/10.1159/000485995)

  • Peterson BS, Campbell JE, Ilkayeva O, Grimsrud PA, Hirschey MD & Newgard CB 2018 Remodeling of the acetylproteome by SIRT3 manipulation fails to affect insulin secretion or beta cell metabolism in the absence of overnutrition. Cell Reports 24 209.e6–223.e6. (https://doi.org/10.1016/j.celrep.2018.05.088)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Puttabyatappa M & Padmanabhan V 2017 Prenatal testosterone programming of insulin resistance in the female sheep. Advances in Experimental Medicine and Biology 1043 575596. (https://doi.org/10.1007/978-3-319-70178-3_25)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramezani Tehrani F, Noroozzadeh M, Zahediasl S, Ghasemi A, Piryaei A & Azizi F 2013 Prenatal testosterone exposure worsen the reproductive performance of male rat at adulthood. PLoS ONE 8 e71705. (https://doi.org/10.1371/journal.pone.0071705)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramezani Tehrani F, Noroozzadeh M, Zahediasl S, Piryaei A, Hashemi S & Azizi F 2014 The time of prenatal androgen exposure affects development of polycystic ovary syndrome-like phenotype in adulthood in female rats. International Journal of Endocrinology and Metabolism 12 e16502. (https://doi.org/10.5812/ijem.16502)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Risal S, Pei Y, Lu H, Manti M, Fornes R, Pui HP, Zhao Z, Massart J, Ohlsson C & Lindgren E et al.2019 Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nature Medicine 25 18941904. (https://doi.org/10.1038/s41591-019-0666-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosenfield RL & Ehrmann DA 2016 The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocrine Reviews 37 467520. (https://doi.org/10.1210/er.2015-1104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y & Roth J 2008 Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care 31 (Supplement 2) S262S268. (https://doi.org/10.2337/dc08-s264)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ & Ahmad N 2018 The role of sirtuins in antioxidant and redox signaling. Antioxidants and Redox Signaling 28 643661. (https://doi.org/10.1089/ars.2017.7290)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun M, Sun B, Qiao S, Feng X, Li Y, Zhang S, Lin Y & Hou L 2020 Elevated maternal androgen is associated with dysfunctional placenta and lipid disorder in newborns of mothers with polycystic ovary syndrome. Fertility and Sterility 113 1275 .e21285.e2. (https://doi.org/10.1016/j.fertnstert.2020.02.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thomas DD, Corkey BE, Istfan NW & Apovian CM 2019 Hyperinsulinemia: an early indicator of metabolic dysfunction. Journal of the Endocrine Society 3 17271747. (https://doi.org/10.1210/js.2019-00065)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wolf WM, Wattick RA, Kinkade ON & Olfert MD 2018 Geographical prevalence of polycystic ovary syndrome as determined by region and race/ethnicity. International Journal of Environmental Research and Public Health 15 2589. (https://doi.org/10.3390/ijerph15112589)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu W, Morford J & Mauvais-Jarvis F 2019 Emerging role of testosterone in pancreatic beta-cell function and insulin secretion. Journal of Endocrinology 240 R97R105. (https://doi.org/10.1530/JOE-18-0573)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zaafar DK, Zaitone SA & Moustafa YM 2014 Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation. PLoS ONE 9 e100562. (https://doi.org/10.1371/journal.pone.0100562)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou Y, Chung ACK, Fan R, Lee HM, Xu G, Tomlinson B, Chan JCN & Kong APS 2017 Sirt3 deficiency increased the vulnerability of pancreatic beta cells to oxidative stress-induced dysfunction. Antioxidants and Redox Signaling 27 962976. (https://doi.org/10.1089/ars.2016.6859)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou Y, Zhang A, Gong M, Lu Y, Zhao C, Shen X, Zhang X, Wang L, Chen J & Ju R 2020 Maternal testosterone excess contributes to reproductive system dysfunction of female offspring mice. Endocrinology 161 bqz011. (https://doi.org/10.1210/endocr/bqz011)

    • PubMed
    • Search Google Scholar
    • Export Citation