Necrostatin-1 reduces cardiac and mitochondrial dysfunction in prediabetic rats

in Journal of Endocrinology
Authors:
Nattayaporn Apaijai Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

Search for other papers by Nattayaporn Apaijai in
Current site
Google Scholar
PubMed
Close
,
Kewarin Jinawong Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

Search for other papers by Kewarin Jinawong in
Current site
Google Scholar
PubMed
Close
,
Kodchanan Singhanat Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

Search for other papers by Kodchanan Singhanat in
Current site
Google Scholar
PubMed
Close
,
Thidarat Jaiwongkam Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand

Search for other papers by Thidarat Jaiwongkam in
Current site
Google Scholar
PubMed
Close
,
Sasiwan Kerdphoo Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand

Search for other papers by Sasiwan Kerdphoo in
Current site
Google Scholar
PubMed
Close
,
Siriporn C Chattipakorn Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand

Search for other papers by Siriporn C Chattipakorn in
Current site
Google Scholar
PubMed
Close
, and
Nipon Chattipakorn Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

Search for other papers by Nipon Chattipakorn in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to N Chattipakorn: nchattip@gmail.com
Restricted access
Rent on DeepDyve

Sign up for journal news

High-fat diet (HFD) consumption induces prediabetes and left ventricular dysfunction through many pathways including cell death pathway like necroptosis. Although the benefit of necroptosis inhibitor (necrostatin-1 or Nec-1) in the brain of prediabetic rats was shown, the effects of Nec-1 on cardiac autonomic function, blood pressure, cardiac function, along with its mechanistic insight have not been investigated. Male Wistar rats were fed with either a normal diet (n = 8) or HFD (n = 24) for 12 weeks to induce prediabetes. Prediabetic rats were randomly assigned into three interventional groups (n = 8/group): (1) vehicle, (2) Nec-1 (1.65 mg/kg, sc injection), and (3) metformin (300 mg/kg, oral gavage feeding). Treatments lasted for 8 weeks. Normal saline was given to normal diet-fed rats and vehicle group. Metabolic parameters, cardiac function and biochemical parameters were assessed. Prediabetic rats exhibited peripheral metabolic impairment as indicated by increased body weight, hyperinsulinemia with euglycemia, and dyslipidemia. Prediabetic rats also had cardiac autonomic imbalance, high blood pressure, and cardiac dysfunction, together with cardiac mitochondrial dysfunction, mitochondrial dynamic imbalance, and increased necroptosis and apoptosis. Treatment with Nec-1 did not affect peripheral metabolic parameters, however, it effectively reduced cardiac autonomic imbalance, blood pressure, and cardiac dysfunction via reducing cardiac inflammation, necroptosis, mitochondrial dysfunction, and increased mitochondrial fusion. Treatment with metformin reduced peripheral metabolic impairment and cardiac dysfunction via decreased cardiac mitochondrial dysfunction, mitochondrial dynamic imbalance, and apoptosis. In summary, Nec-1 directly suppressed necroptosis, cardiac mitochondrial dysfunction, and increased mitochondrial fusion independent of peripheral metabolic function, leading to an improved cardiac function in prediabetic rats.

Supplementary Materials

    • Supplementary Figure 1. The individual data showed that Nec-1 reduced cardiac dysfunction in prediabetic rats. (A) HR after 12 W-HFD feeding vs. Vehicle, (B) HR after 12 W-HFD feeding vs. Nec-1, (C) HR after 12 W-HFD feeding vs. Metformin, (D) LF/HF ratio after 12 W-HFD feeding vs. Vehicle, (E) LF/HF ratio after 12 W-HFD feeding vs. Nec-1, (F) LF/HF ratio after 12 W-HFD feeding vs. Metformin, (G) SBP after 12 W-HFD feeding vs. Vehicle, (H) SBP after 12 W-HFD feeding vs. Nec-1, (I) SBP after 12 W-HFD feeding vs. Metformin, (J) DBP after 12 W-HFD feeding vs. Vehicle, (K) DBP after 12 W-HFD feeding vs. Nec-1, (L) DBP after 12 W-HFD feeding vs. Metformin, (M) %LV ejection fraction after 12 W-HFD feeding vs. Vehicle, (N) %LV ejection fraction after 12 W-HFD feeding vs. Nec-1, (O) %LV ejection fraction after 12 W-HFD feeding vs. Metformin, (P) %LV fractional shortening after 12 W-HFD feeding vs. Vehicle, (Q) %LV fractional shortening after 12 W-HFD feeding vs. Nec-1, (R) %LV fractional shortening after 12 W-HFD feeding vs. Metformin. ND: normal diet; HFD: high fat diet; 12 W-HFD feeding: 12 weeks of high-fat diet feeding; NDV: normal diet fed rats-treated with vehicle; HFDV: high fat diet fed rats-treated with vehicle; HFDN: high fat diet fed rats-treated with necrostatin-1; HFDM: high fat diet fed rats-treated with metformin; HR: heart rate; LF/HF: low-frequency/high-frequency; LV: left ventricle.
    • Supplementary Figure 2. Representative m-mode echocardiography pictures. NDV: normal diet fed rats-treated with vehicle; HFDV: high fat diet fed rats-treated with vehicle; HFDN: high fat diet fed rats-treated with necrostatin-1; HFDM: high fat diet fed rats-treated with metformin.

 

  • Collapse
  • Expand
  • Agius L, Ford BE & Chachra SS 2020 The metformin mechanism on gluconeogenesis and AMPK activation: the metabolite perspective. International Journal of Molecular Sciences 21 3240. (https://doi.org/10.3390/ijms21093240)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Apaijai N, Pintana H, Chattipakorn SC & Chattipakorn N 2012 Cardioprotective effects of metformin and vildagliptin in adult rats with insulin resistance induced by a high-fat diet. Endocrinology 153 38783885. (https://doi.org/10.1210/en.2012-1262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Apaijai N, Arinno A, Palee S, Pratchayasakul W, Kerdphoo S, Jaiwongkam T, Chunchai T, Chattipakorn SC & Chattipakorn N 2019 High-saturated fat high-sugar diet accelerates left-ventricular dysfunction faster than high-saturated fat diet alone via increasing oxidative stress and apoptosis in obese-insulin resistant rats. Molecular Nutrition and Food Research 63 e1800729. (https://doi.org/10.1002/mnfr.201800729)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Benjanuwattra J, Apaijai N, Chunchai T, Kerdphoo S, Jaiwongkam T, Arunsak B, Wongsuchai S, Chattipakorn N & Chattipakorn SC 2020 Metformin preferentially provides neuroprotection following cardiac ischemia/reperfusion in non-diabetic rats. Biochimica et Biophysica Acta: Molecular Basis of Disease 1866 165893. (https://doi.org/10.1016/j.bbadis.2020.165893)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bosi E 2009 Metformin – the gold standard in type 2 diabetes: what does the evidence tell us? Diabetes, Obesity and Metabolism 11 (Supplement 2) 38. (https://doi.org/10.1111/j.1463-1326.2008.01031.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen S, Lv X, Hu B, Zhao L, Li S, Li Z, Qing X, Liu H, Xu J & Shao Z 2018 Critical contribution of RIPK1 mediated mitochondrial dysfunction and oxidative stress to compression-induced rat nucleus pulposus cells necroptosis and apoptosis. Apoptosis 23 299313. (https://doi.org/10.1007/s10495-018-1455-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen X, Li H, Wang K, Liang X, Wang W, Hu X, Huang Z & Wang Y 2019 Aerobic exercise ameliorates myocardial inflammation, fibrosis and apoptosis in high-fat-diet rats by inhibiting P2X7 purinergic receptors. Frontiers in Physiology 10 1286. (https://doi.org/10.3389/fphys.2019.01286)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cui H, Zhu Y, Yang Q, Zhao W, Zhang S, Zhou A & Jiang D 2016 Necrostatin-1 treatment inhibits osteocyte necroptosis and trabecular deterioration in ovariectomized rats. Scientific Reports 6 33803. (https://doi.org/10.1038/srep33803)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C & Wagner G et al.2008 Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chemical Biology 4 313321. (https://doi.org/10.1038/nchembio.83)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Del Re DP, Amgalan D, Linkermann A, Liu Q & Kitsis RN 2019 Fundamental mechanisms of regulated cell death and implications for heart disease. Physiological Reviews 99 17651817. (https://doi.org/10.1152/physrev.00022.2018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dhuriya YK & Sharma D 2018 Necroptosis: a regulated inflammatory mode of cell death. Journal of Neuroinflammation 15 199. (https://doi.org/10.1186/s12974-018-1235-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diniz Vilela D, Gomes Peixoto L, Teixeira RR, Belele Baptista N, Carvalho Caixeta D, Vieira de Souza A, Machado HL, Pereira MN, Sabino-Silva R & Espindola FS 2016 The role of metformin in controlling oxidative stress in muscle of diabetic rats. Oxidative Medicine and Cellular Longevity 2016 6978625. (https://doi.org/10.1155/2016/6978625)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Driver C, Bamitale KDS, Kazi A, Olla M, Nyane NA & Owira PMO 2018 Cardioprotective effects of metformin. Journal of Cardiovascular Pharmacology 72 121127. (https://doi.org/10.1097/FJC.0000000000000599)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Du J, Zhu M, Li H, Liang G, Li Y & Feng S 2020 Metformin attenuates cardiac remodeling in mice through the Nrf2/Keap1 signaling pathway. Experimental and Therapeutic Medicine 20 838845. (https://doi.org/10.3892/etm.2020.8764)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garvin AM, Jackson MA & Korzick DH 2018 Inhibition of programmed necrosis limits infarct size through altered mitochondrial and immune responses in the aged female rat heart. American Journal of Physiology: Heart and Circulatory Physiology 315 H1434H1442. (https://doi.org/10.1152/ajpheart.00595.2017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Giannarelli R, Aragona M, Coppelli A & Del Prato S 2003 Reducing insulin resistance with metformin: the evidence today. Diabetes and Metabolism 29 6S286S35. (https://doi.org/10.1016/s1262-3636(0372785-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Giricz Z, Koncsos G, Rajtik T, Varga ZV, Baranyai T, Csonka C, Szobi A, Adameova A, Gottlieb RA & Ferdinandy P 2017 Erratum to: Hypercholesterolemia downregulates autophagy in the rat heart. Lipids in Health and Disease 16 133. (https://doi.org/10.1186/s12944-017-0524-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Giugliano D, De Rosa N, Di Maro G, Marfella R, Acampora R, Buoninconti R & D’Onofrio F 1993 Metformin improves glucose, lipid metabolism, and reduces blood pressure in hypertensive, obese women. Diabetes Care 16 13871390. (https://doi.org/10.2337/diacare.16.10.1387)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gou L, Liu G, Ma R, Regmi A, Zeng T, Zheng J, Zhong X & Chen L 2020 High fat-induced inflammation in vascular endothelium can be improved by Abelmoschus esculentus and metformin via increasing the expressions of miR-146a and miR-155. Nutrition and Metabolism 17 35. (https://doi.org/10.1186/s12986-020-00459-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hardie DG, Hawley SA & Scott JW 2006 AMP-activated protein kinase – development of the energy sensor concept. Journal of Physiology 574 715. (https://doi.org/10.1113/jphysiol.2006.108944)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hsieh YL, Shibu MA, Lii CK, Viswanadha VP, Lin YL, Lai CH, Chen YF, Lin KH, Kuo WW & Huang CY 2016 Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice. Journal of Ethnopharmacology 192 170177. (https://doi.org/10.1016/j.jep.2016.07.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ilkun O & Boudina S 2013 Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Current Pharmaceutical Design 19 48064817. (https://doi.org/10.2174/1381612811319270003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jinawong K, Apaijai N, Wongsuchai S, Pratchayasakul W, Chattipakorn N & Chattipakorn SC 2020 Necrostatin-1 mitigates cognitive dysfunction in prediabetic rats with no alteration in insulin sensitivity. Diabetes 69 14111423. (https://doi.org/10.2337/db19-1128)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karunakaran D, Turner AW, Duchez AC, Soubeyrand S, Rasheed A, Smyth D, Cook DP, Nikpay M, Kandiah JW & Pan C et al.2020 RIPK1 gene variants associate with obesity in humans and can be therapeutically silenced to reduce obesity in mice. Nature Metabolism 2 11131125. (https://doi.org/10.1038/s42255-020-00279-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kearney CJ, Cullen SP, Tynan GA, Henry CM, Clancy D, Lavelle EC & Martin SJ 2015 Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production. Cell Death and Differentiation 22 13131327. (https://doi.org/10.1038/cdd.2014.222)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lai M, Chandrasekera PC & Barnard ND 2014 You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutrition and Diabetes 4 e135. (https://doi.org/10.1038/nutd.2014.30)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li C, Mu N, Gu C, Liu M, Yang Z, Yin Y, Chen M, Wang Y, Han Y & Yu L et al.2020 Metformin mediates cardioprotection against aging-induced ischemic necroptosis. Aging Cell 19 e13096. (https://doi.org/10.1111/acel.13096)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu Q, Li X, Liu J, Sun X, Rousselle T, Ren D, Tong N & Li J 2019 AMPK is associated with the beneficial effects of antidiabetic agents on cardiovascular diseases. Bioscience Reports 39 BSR20181995. (https://doi.org/10.1042/BSR20181995)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maneechote C, Palee S, Apaijai N, Kerdphoo S, Jaiwongkam T, Chattipakorn SC & Chattipakorn N 2019 Mitochondrial dynamic modulation exerts cardiometabolic protection in obese insulin-resistant rats. Clinical Science 133 24312447. (https://doi.org/10.1042/CS20190960)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Masola B, Oguntibeju OO & Oyenihi AB 2018 Centella asiatica ameliorates diabetes-induced stress in rat tissues via influences on antioxidants and inflammatory cytokines. Biomedicine and Pharmacotherapy 101 447457. (https://doi.org/10.1016/j.biopha.2018.02.115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Misbin RI 2004 The phantom of lactic acidosis due to metformin in patients with diabetes. Diabetes Care 27 17911793. (https://doi.org/10.2337/diacare.27.7.1791)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moreira GC, Cipullo JP, Ciorlia LA, Cesarino CB & Vilela-Martin JF 2014 Prevalence of metabolic syndrome: association with risk factors and cardiovascular complications in an urban population. PLoS ONE 9 e105056. (https://doi.org/10.1371/journal.pone.0105056)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pashkow FJ 2011 Oxidative stress and inflammation in heart disease: do antioxidants have a role in treatment and/or prevention? International Journal of Inflammation 2011 514 623.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Piamsiri C, Maneechote C, Siri-Angkul N, Chattipakorn SC & Chattipakorn N 2021 Targeting necroptosis as therapeutic potential in chronic myocardial infarction. Journal of Biomedical Science 28 25. (https://doi.org/10.1186/s12929-021-00722-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saiyasit N, Chunchai T, Prus D, Suparan K, Pittayapong P, Apaijai N, Pratchayasakul W, Sripetchwandee J, Chattipakorn M D Ph D N & Chattipakorn SC 2020 Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet-induced obese condition. Nutrition 69 110576. (https://doi.org/10.1016/j.nut.2019.110576)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sivasinprasasn S, Sa-Nguanmoo P, Pongkan W, Pratchayasakul W, Chattipakorn SC & Chattipakorn N 2016 Estrogen and DPP4 inhibitor, but not metformin, exert cardioprotection via attenuating cardiac mitochondrial dysfunction in obese insulin-resistant and estrogen-deprived female rats. Menopause 23 894902. (https://doi.org/10.1097/GME.0000000000000640)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS & Yellon DM 2007 Necrostatin: a potentially novel cardioprotective agent? Cardiovascular Drugs and Therapy 21 227233. (https://doi.org/10.1007/s10557-007-6035-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takahashi N, Duprez L, Grootjans S, Cauwels A, Nerinckx W, DuHadaway JB, Goossens V, Roelandt R, Van Hauwermeiren F & Libert C et al.2012 Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death and Disease 3 e437. (https://doi.org/10.1038/cddis.2012.176)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tanajak P, Sa-Nguanmoo P, Wang X, Liang G, Li X, Jiang C, Chattipakorn SC & Chattipakorn N 2016 Fibroblast growth factor 21 (FGF21) therapy attenuates left ventricular dysfunction and metabolic disturbance by improving FGF21 sensitivity, cardiac mitochondrial redox homoeostasis and structural changes in pre-diabetic rats. Acta Physiologica 217 287299. (https://doi.org/10.1111/apha.12698)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tanajak P, Sa-Nguanmoo P, Apaijai N, Wang X, Liang G, Li X, Jiang C, Chattipakorn SC & Chattipakorn N 2017 Comparisons of cardioprotective efficacy between fibroblast growth factor 21 and dipeptidyl peptidase-4 inhibitor in prediabetic rats. Cardiovascular Therapeutics 35. (https://doi.org/10.1111/1755-5922.12263)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thummasorn S, Kumfu S, Chattipakorn S & Chattipakorn N 2011 Granulocyte-colony stimulating factor attenuates mitochondrial dysfunction induced by oxidative stress in cardiac mitochondria. Mitochondrion 11 457466. (https://doi.org/10.1016/j.mito.2011.01.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tunapong W, Apaijai N, Yasom S, Tanajak P, Wanchai K, Chunchai T, Kerdphoo S, Eaimworawuthikul S, Thiennimitr P & Pongchaidecha A et al.2018 Chronic treatment with prebiotics, probiotics and synbiotics attenuated cardiac dysfunction by improving cardiac mitochondrial dysfunction in male obese insulin-resistant rats. European Journal of Nutrition 57 20912104. (https://doi.org/10.1007/s00394-017-1482-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vinothkumar KR, Zhu J & Hirst J 2014 Architecture of mammalian respiratory complex I. Nature 515 8084. (https://doi.org/10.1038/nature13686)

  • Wang X, Yang L, Kang L, Li J, Yang L, Zhang J, Liu J, Zhu M, Zhang Q & Shen Y et al.2017 Metformin attenuates myocardial ischemia-reperfusion injury via up-regulation of antioxidant enzymes. PLoS ONE 12 e0182777. (https://doi.org/10.1371/journal.pone.0182777)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Westphal D, Dewson G, Czabotar PE & Kluck RM 2011 Molecular biology of bax and bak activation and action. Biochimica et Biophysica Acta 1813 521531. (https://doi.org/10.1016/j.bbamcr.2010.12.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ying L, Benjanuwattra J, Chattipakorn SC & Chattipakorn N 2021 The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury. Acta Physiologica 231 e13541. (https://doi.org/10.1111/apha.13541)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zalewska A, Ziembicka D, Zendzian-Piotrowska M & Maciejczyk M 2019 The impact of high-fat diet on mitochondrial function, free radical production, and nitrosative stress in the salivary glands of wistar rats. Oxidative Medicine and Cellular Longevity 2019 2606120. (https://doi.org/10.1155/2019/2606120)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou H, Li D, Zhu P, Ma Q, Toan S, Wang J, Hu S, Chen Y & Zhang Y 2018 Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. Journal of Pineal Research 65 e12503. (https://doi.org/10.1111/jpi.12503)

    • PubMed
    • Search Google Scholar
    • Export Citation