Maternal sucrose consumption alters behaviour and steroids in adult rat offspring

in Journal of Endocrinology
Authors:
Daniel J Tobiansky Department of Psychology, The University of British Columbia, Vancouver, British Columbia, Canada
Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Daniel J Tobiansky in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6381-3453
,
George V Kachkovski Department of Psychology, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by George V Kachkovski in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3593-7912
,
Reilly T Enos Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA

Search for other papers by Reilly T Enos in
Current site
Google Scholar
PubMed
Close
,
Kim L Schmidt Department of Psychology, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Kim L Schmidt in
Current site
Google Scholar
PubMed
Close
,
E Angela Murphy Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA

Search for other papers by E Angela Murphy in
Current site
Google Scholar
PubMed
Close
,
Stan B Floresco Department of Psychology, The University of British Columbia, Vancouver, British Columbia, Canada
Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Stan B Floresco in
Current site
Google Scholar
PubMed
Close
, and
Kiran K Soma Department of Psychology, The University of British Columbia, Vancouver, British Columbia, Canada
Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada
Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Kiran K Soma in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to D J Tobiansky: djtobiansky@smcm.edu

*(D J Tobiansky and G V Kachkovski contributed equally to this work)

(D J Tobiansky is now at Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, Maryland, USA)

(G V Kachkovski is now at Michael G. DeGroote School of Medicine, McMaster University, Michael DeGroote Centre for Learning and Discovery (MDCL), Hamilton, Ontario, USA)

Restricted access
Rent on DeepDyve

Sign up for journal news

Maternal diets can have dramatic effects on the physiology, metabolism, and behaviour of offspring that persist into adulthood. However, the effects of maternal sucrose consumption on offspring remain unclear. Here, female rats were fed either a sucrose diet with a human-relevant level of sucrose (25% of kcal) or a macronutrient-matched, isocaloric control diet before, during, and after pregnancy. After weaning, all offspring were fed a standard low-sucrose rodent chow. We measured indicators of metabolism (weight, adipose, glucose tolerance, and liver lipids) during development and adulthood (16–24 weeks). We also measured food preference and motivation for sugar rewards in adulthood. Finally, in brain regions regulating these behaviours, we measured steroids and transcripts for steroidogenic enzymes, steroid receptors, and dopamine receptors. In male offspring, maternal sucrose intake decreased body mass and visceral adipose tissue, increased preference for high-sucrose and high-fat diets, increased motivation for sugar rewards, and decreased mRNA levels of Cyp17a1 (an androgenic enzyme) in the nucleus accumbens. In female offspring, maternal sucrose intake increased basal corticosterone levels. These data demonstrate the enduring, diverse, and sex-specific effects of maternal sucrose consumption on offspring phenotype.

Supplementary Materials

    • Supplementary Table 1. Primers and probes used for qPCR.
    • Supplementary Table 2. Effects of Maternal Diet on metabolism of ad libitum -fed offspring.
    • Supplementary Table 3. Effects of Maternal Diet on metabolism of calorie-restricted offspring.
    • Supplementary Table 4. Effects of Maternal Diet on hepatic histopathology in ad libitum- fed offspring.
    • Supplementary Table 5. Steroids levels (ng/mL, ng/g, pg/mL or pg/g) in calorie-restricted offspring
    • Supplementary Table 6. Effects of Maternal Diet and Tissue on steroid levels in calorie-restricted offspring.
    • Supplementary Table 7. Effects of Maternal Diet and Tissue on brain mRNA levels in calorie-restricted offspring.
    • Supplementary Figure 1. Steroidogenic enzyme mRNA levels in calorie-restricted offspring. Transcripts are present in all regions and show significant regional differences. There are no significant effects of Maternal Diet or interactions with Maternal Diet. Significant Tissue differences for each transcript for both males and females are: (A,B) Cyp17a1 mRNA, POA/HYP ≈ NAc ≈ VTA > mPFC > HPC; (C,D) Hsd17b1 mRNA, POA/HYP ≈ NAc > VTA > mPFC > HPC; (E,F) Cyp19a1 mRNA, POA/HYP > NAc > mPFC ≈ HPC > VTA. Abbreviations: mPFC, medial prefrontal cortex; NAc, nucleus accumbens; VTA, ventral tegmental area; HPC, hippocampus; POA/HYP, preoptic area/hypothalamus. All values are relative to POA/HYP of female control ad libitum-fed offspring. Data are presented as mean ± 95% CI. Sample sizes = 9-10/group.
    • Supplementary Figure 2. Steroid receptor mRNA levels in calorie-restricted offspring. Transcripts show significant regional differences. There are no significant effects of Maternal Diet or interactions with Maternal Diet. (A,B) Androgen receptor (Ar) mRNA levels. Tissue differences in Ar expression in (A) females are: POA/HYP > NAc > HPC > VTA > mPFC. Tissue differences in Ar expression in (B) males are: POA/HYP > NAc > HPC > VTA ≈ mPFC. (C,D) Estrogen receptor α (Esr1) mRNA levels. Tissue differences in Esr1 expression in both (C) females and (D) males are: POA/HYP > NAc ≈ VTA > HPC > mPFC. Abbreviations: mPFC, medial prefrontal cortex; NAc, nucleus accumbens; VTA, ventral tegmental area; HPC, hippocampus; POA/HYP, preoptic area/hypothalamus. All values are relative to POA/HYP of female control ad libitum-fed offspring. Data are presented as mean ± 95% CI. Sample sizes = 9-10/group.
    • Supplementary Figure 3. Dopamine receptor mRNA levels in calorie-restricted offspring. Transcripts show significant regional differences. There are no significant effects of Maternal Diet or interactions with Maternal Diet. (A,B) D1 dopamine receptor (Drd1) mRNA levels significantly differ among brain regions in (A) females and (B) males: NAc > mPFC ≈ POA/HYP > HPC > VTA. (C,D) D2 dopamine receptor (Drd2) mRNA levels significantly differ among brain regions in (C) females and (D) males: NAc > VTA > POA/HYP > mPFC > HPC. Abbreviations: mPFC, medial prefrontal cortex; NAc, nucleus accumbens; VTA, ventral tegmental area; HPC, hippocampus; POA/HYP, preoptic area/hypothalamus. All values are relative to POA/HYP of female control ad libitum-fed offspring. Data are presented as mean ± 95% CI. Sample sizes = 9-10/group.

 

  • Collapse
  • Expand
  • Bayol SA, Farrington SJ & Stickland NC 2007 A maternal ‘junk food’ diet in pregnancy and lactation promotes an exacerbated taste for ‘junk food’ and a greater propensity for obesity in rat offspring. British Journal of Nutrition 98 843851. (https://doi.org/10.1017/S0007114507812037)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bocarsly ME, Powell ES, Avena NM & Hoebel BG 2010 High-fructose corn syrup causes characteristics of obesity in rats: increased body weight, body fat and triglyceride levels. Pharmacology, Biochemistry, and Behavior 97 101106. (https://doi.org/10.1016/j.pbb.2010.02.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bouret SG 2010 Role of early hormonal and nutritional experiences in shaping feeding behavior and hypothalamic development. Journal of Nutrition 140 653657. (https://doi.org/10.3945/jn.109.112433)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bouret S, Levin BE & Ozanne SE 2015 Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiological Reviews 95 4782. (https://doi.org/10.1152/physrev.00007.2014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown CM, Dulloo AG & Montani JP 2008 Sugary drinks in the pathogenesis of obesity and cardiovascular diseases. International Journal of Obesity 32 (Supplement 6) S28S34. (https://doi.org/10.1038/ijo.2008.204)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bryce CA & Floresco SB 2016 Perturbations in effort-related decision-making driven by acute stress and corticotropin-releasing factor. Neuropsychopharmacology 41 21472159. (https://doi.org/10.1038/npp.2016.15)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF & Costa-Mattioli M 2016 Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165 17621775. (https://doi.org/10.1016/j.cell.2016.06.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bursać BN, Djordjevic AD, Vasiljević AD, Milutinović DDV, Veličković NA, Nestorović NM & Matić GM 2013 Fructose consumption enhances glucocorticoid action in rat visceral adipose tissue. Journal of Nutritional Biochemistry 24 11661172. (https://doi.org/10.1016/j.jnutbio.2012.09.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen H, Sullivan G & Quon MJ 2005 Assessing the predictive accuracy of QUICKI as a surrogate index for insulin sensitivity using a calibration model. Diabetes 54 19141925. (https://doi.org/10.2337/diabetes.54.7.1914)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Choi CS, Kim P, Park JH, Gonzales ELT, Kim KC, Cho KS, Ko MJ, Yang SM, Seung H & Han SH et al.2015 High sucrose consumption during pregnancy induced ADHD-like behavioral phenotypes in mice offspring. Journal of Nutritional Biochemistry 26 15201526. (https://doi.org/10.1016/j.jnutbio.2015.07.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Choo E, Wong L, Chau P, Bushnell J & Dando R 2020 Offspring of obese mice display enhanced intake and sensitivity for palatable stimuli, with altered expression of taste signaling elements. Scientific Reports 10 12776. (https://doi.org/10.1038/s41598-020-68216-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cordero P, Gomez-Uriz AM, Milagro FI, Campion J & Martinez JA 2012 Maternal weight gain induced by an obesogenic diet affects adipose accumulation, liver weight, and insulin homeostasis in the rat offspring depending on the sex. Journal of Endocrinological Investigation 35 981986. (https://doi.org/10.1007/BF03346741)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cuthbert CE, Foster JE & Ramdath DD 2017 A maternal high-fat, high-sucrose diet alters insulin sensitivity and expression of insulin signalling and lipid metabolism genes and proteins in male rat offspring: effect of folic acid supplementation. British Journal of Nutrition 118 580588. (https://doi.org/10.1017/S0007114517002501)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • D’Alessandro ME, Oliva ME, Fortino MA & Chicco A 2014 Maternal sucrose-rich diet and fetal programming: changes in hepatic lipogenic and oxidative enzymes and glucose homeostasis in adult offspring. Food and Function 5 446–453. (https://doi.org/10.1039/c3fo60436e)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dunn GA & Bale TL 2009 Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150 49995009. (https://doi.org/10.1210/en.2009-0500)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Enos RT, Velázquez KT & Murphy EA 2014 Insight into the impact of dietary saturated fat on tissue-specific cellular processes underlying obesity-related diseases. Journal of Nutritional Biochemistry 25 600612. (https://doi.org/10.1016/j.jnutbio.2014.01.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Enos RT, Velázquez KT, McClellan JL, Cranford TL, Walla MD & Murphy EA 2015 Lowering the dietary omega-6: omega-3 does not hinder nonalcoholic fatty-liver disease development in a murine model. Nutrition Research 35 449459. (https://doi.org/10.1016/j.nutres.2015.04.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Enos RT, Velázquez KT, Carson MS, McClellan JL, Nagarkatti P, Nagarkatti M, Davis JM & Murphy EA 2016 A low dose of dietary quercetin fails to protect against the development of an obese phenotype in mice. PLoS ONE 11 e0167979. (https://doi.org/10.1371/journal.pone.0167979)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Erb S, Shaham Y & Stewart J 1998 The role of corticotropin-releasing factor and corticosterone in stress- and cocaine-induced relapse to cocaine seeking in rats. Journal of Neuroscience 18 55295536. (https://doi.org/10.1523/JNEUROSCI.18-14-05529.1998)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Forestell CA & Mennella JA 2007 Early determinants of fruit and vegetable acceptance. Pediatrics 120 12471254. (https://doi.org/10.1542/peds.2007-0858)

  • Fox J, Weisberg S, Price B, Adler D, Bates D, Baud-Bovy G, Bolker B, Ellison S, Firth D & Friendly M et al.2021 Car: Companion to Applied Regression.

  • Friberg E, Wallin A & Wolk A 2011 Sucrose, high-sugar foods, and risk of endometrial cancer – a population-based cohort study. Cancer Epidemiology, Biomarkers and Prevention 20 18311837. (https://doi.org/10.1158/1055-9965.EPI-11-0402)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gawliński D, Gawlińska K, Frankowska M & Filip M 2020 Maternal high‐sugar diet changes offspring vulnerability to reinstatement of cocaine‐seeking behavior: role of melanocortin‐4 receptors. FASEB Journal 34 91929206. (https://doi.org/10.1096/fj.202000163R)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goran MI, Dumke K, Bouret SG, Kayser B, Walker RW & Blumberg B 2013 The obesogenic effect of high fructose exposure during early development. Nature Reviews: Endocrinology 9 494500. (https://doi.org/10.1038/nrendo.2013.108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goran MI, Plows JF & Ventura EE 2019 Effects of consuming sugars and alternative sweeteners during pregnancy on maternal and child health: evidence for a secondhand sugar effect. Proceedings of the Nutrition Society 78 262271. (https://doi.org/10.1017/S002966511800263X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gueye AB, Vendruscolo LF, de Ávila C, Le Moine C, Darnaudéry M & Cador M 2018 Unlimited sucrose consumption during adolescence generates a depressive-like phenotype in adulthood. Neuropsychopharmacology 43 26272635. (https://doi.org/10.1038/s41386-018-0025-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ikemoto S 2007 Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Research Reviews 56 2778. (https://doi.org/10.1016/j.brainresrev.2007.05.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jacques A, Chaaya N, Beecher K, Ali SA, Belmer A & Bartlett S 2019 The impact of sugar consumption on stress driven, emotional and addictive behaviors. Neuroscience and Biobehavioral Reviews 103 178199. (https://doi.org/10.1016/j.neubiorev.2019.05.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jen KL, Rochon C, Zhong SB & Whitcomb L 1991 Fructose and sucrose feeding during pregnancy and lactation in rats changes maternal and pup fuel metabolism. Journal of Nutrition 121 19992005. (https://doi.org/10.1093/jn/121.12.1999)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Johnson RK, Appel LJ, Brands M, Howard BV, Lefevre M, Lustig RH, Sacks F, Steffen LM, Wylie-Rosett J & American Heart Association Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism and the Council on Epidemiology and Prevention 2009 Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation 120 10111020. (https://doi.org/10.1161/CIRCULATIONAHA.109.192627)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G & Quon MJ 2000 Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. Journal of Clinical Endocrinology and Metabolism 85 24022410. (https://doi.org/10.1210/jcem.85.7.6661)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kjaergaard M, Nilsson C, Rosendal A, Nielsen MO & Raun K 2014 Maternal chocolate and sucrose soft drink intake induces hepatic steatosis in rat offspring associated with altered lipid gene expression profile. Acta Physiologica 210 142153. (https://doi.org/10.1111/apha.12138)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS & Unalp-Arida A et al.2005 Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41 13131321. (https://doi.org/10.1002/hep.20701)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koob G & Kreek MJ 2007 Stress, dysregulation of drug reward pathways, and the transition to drug dependence. American Journal of Psychiatry 164 11491159. (https://doi.org/10.1176/appi.ajp.2007.05030503)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuang H, Sun M, Lv J, Li J, Wu C, Chen N, Bo L, Wei X, Gu X & Liu Z et al.2014 Hippocampal apoptosis involved in learning deficits in the offspring exposed to maternal high sucrose diets. Journal of Nutritional Biochemistry 25 985990. (https://doi.org/10.1016/j.jnutbio.2014.04.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • la Fleur SE 2006 The effects of glucocorticoids on feeding behavior in rats. Physiology and Behavior 89 110114. (https://doi.org/10.1016/j.physbeh.2006.01.028)

  • Lenth RV, Buerkner P, Herve M, Love J, Riebl H & Singmann H 2021 Emmeans: Estimated Marginal Means, Aka Least-Squares Means.

  • Liere P, Cornil CA, de Bournonville MP, Pianos A, Keller M, Schumacher M & Balthazart J 2019 Steroid profiles in quail brain and serum: sex and regional differences and effects of castration with steroid replacement. Journal of Neuroendocrinology 31 e12681. (https://doi.org/10.1111/jne.12681)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ludwig DS 2013 Examining the health effects of fructose. JAMA 310 33–34. (https://doi.org/10.1001/jama.2013.6562)

  • Lupien SJ, Maheu F, Tu M, Fiocco A & Schramek TE 2007 The effects of stress and stress hormones on human cognition: implications for the field of brain and cognition. Brain and Cognition 65 209237. (https://doi.org/10.1016/j.bandc.2007.02.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lustig RH 2016 Sickeningly sweet: does sugar cause type 2 diabetes? Yes. Canadian Journal of Diabetes 40 282286. (https://doi.org/10.1016/j.jcjd.2016.01.004)

  • Lustig RH, Schmidt LA & Brindis CD 2012 Public health: the toxic truth about sugar. Nature 482 2729. (https://doi.org/10.1038/482027a)

  • Maniam J, Antoniadis CP, Youngson NA, Sinha JK & Morris MJ 2015 Sugar consumption produces effects similar to early life stress exposure on hippocampal markers of neurogenesis and stress response. Frontiers in Molecular Neuroscience 8 86. (https://doi.org/10.3389/fnmol.2015.00086)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCormick CM, Smythe JW, Sharma S & Meaney MJ 1995 Sex-specific effects of prenatal stress on hypothalamic-pituitary-adrenal responses to stress and brain glucocorticoid receptor density in adult rats. Brain Research: Developmental Brain Research 84 5561. (https://doi.org/10.1016/0165-3806(9400153-Q)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McKee SE, Zhang S, Chen L, Rabinowitz JD & Reyes TM 2018 Perinatal high fat diet and early life methyl donor supplementation alter one carbon metabolism and DNA methylation in the brain. Journal of Neurochemistry 145 362373. (https://doi.org/10.1111/jnc.14319)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mermelstein PG, Becker JB & Surmeier DJ 1996 Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor. Journal of Neuroscience 16 595604. (https://doi.org/10.1523/JNEUROSCI.16-02-00595.1996)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mizuno G, Munetsuna E, Yamada H, Ando Y, Yamazaki M, Murase Y, Kondo K, Ishikawa H, Teradaira R & Suzuki K et al.2017 Fructose intake during gestation and lactation differentially affects the expression of hippocampal neurosteroidogenic enzymes in rat offspring. Endocrine Research 42 7177. (https://doi.org/10.1080/07435800.2016.1182186)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mohr MA, Wong AM, Tomm RJ, Soma KK & Micevych PE 2019 Pubertal development of estradiol-induced hypothalamic progesterone synthesis. Hormones and Behavior 111 110113. (https://doi.org/10.1016/j.yhbeh.2018.12.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moser VC, McDaniel KL, Woolard EA, Phillips PM, Franklin JN & Gordon CJ 2017 Impacts of maternal diet and exercise on offspring behavior and body weights. Neurotoxicology and Teratology 63 4650. (https://doi.org/10.1016/j.ntt.2017.07.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mukai Y, Kumazawa M & Sato S 2013 Fructose intake during pregnancy up-regulates the expression of maternal and fetal hepatic sterol regulatory element-binding protein-1c in rats. Endocrine 44 7986. (https://doi.org/10.1007/s12020-012-9815-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mukhopadhyay T & Roth JA 1993 Silicone lubricant enhances recovery of nucleic acids after phenol-chloroform extraction. Nucleic Acids Research 21 781782. (https://doi.org/10.1093/nar/21.3.781)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naef L, Moquin L, Dal Bo G, Giros B, Gratton A & Walker CD 2011 Maternal high-fat intake alters presynaptic regulation of dopamine in the nucleus accumbens and increases motivation for fat rewards in the offspring. Neuroscience 176 225236. (https://doi.org/10.1016/j.neuroscience.2010.12.037)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naneix F, Darlot F, Coutureau E & Cador M 2016 Long-lasting deficits in hedonic and nucleus accumbens reactivity to sweet rewards by sugar overconsumption during adolescence. European Journal of Neuroscience 43 671680. (https://doi.org/10.1111/ejn.13149)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naneix F, Darlot F, De Smedt-Peyrusse V, Pape JR, Coutureau E & Cador M 2018 Protracted motivational dopamine-related deficits following adolescence sugar overconsumption. Neuropharmacology 129 1625. (https://doi.org/10.1016/j.neuropharm.2017.11.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nelson JF, Gosden RG & Felicio LS 1985 Effect of dietary restriction on estrous cyclicity and follicular reserves in aging C57BL/6J mice. Biology of Reproduction 32 515522. (https://doi.org/10.1095/biolreprod32.3.515)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ohashi K, Ando Y, Munetsuna E, Yamada H, Yamazaki M, Nagura A, Taromaru N, Ishikawa H, Suzuki K & Teradaira R 2015 Maternal fructose consumption alters messenger RNA expression of hippocampal StAR, PBR, P450(11β), 11β-HSD, and 17β-HSD in rat offspring. Nutrition Research 35 259264. (https://doi.org/10.1016/j.nutres.2014.11.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ong ZY & Muhlhausler BS 2011 Maternal ‘junk‐food’ feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB Journal 25 21672179. (https://doi.org/10.1096/fj.10-178392)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peleg-Raibstein D, Sarker G, Litwan K, Krämer SD, Ametamey SM, Schibli R & Wolfrum C 2016 Enhanced sensitivity to drugs of abuse and palatable foods following maternal overnutrition. Translational Psychiatry 6 e911e911. (https://doi.org/10.1038/tp.2016.176)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pinheiro CR, Moura EG, Manhães AC, Fraga MC, Claudio-Neto S, Younes-Rapozo V, Santos-Silva AP, Lotufo BM, Oliveira E & Lisboa PC 2015 Maternal nicotine exposure during lactation alters food preference, anxiety-like behavior and the brain dopaminergic reward system in the adult rat offspring. Physiology and Behavior 149 131141. (https://doi.org/10.1016/j.physbeh.2015.05.040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Van Willigen B, Ranke J & R-Core 2021 Nlme: Linear and Nonlinear Mixed Effects Models.

  • Powell ES, Smith-Taillie LP & Popkin BM 2016 Added sugars intake across the distribution of US children and adult consumers: 1977–2012. Journal of the Academy of Nutrition and Dietetics 116 1543 .e11550.e1. (https://doi.org/10.1016/j.jand.2016.06.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • R Core Team 2017 R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Richard JE, López-Ferreras L, Anderberg RH, Olandersson K & Skibicka KP 2017 Estradiol is a critical regulator of food-reward behavior. Psychoneuroendocrinology 78 193202. (https://doi.org/10.1016/j.psyneuen.2017.01.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richardson NR & Roberts DCS 1996 Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. Journal of Neuroscience Methods 66 111. (https://doi.org/10.1016/0165-0270(9500153-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robinson D, Hayes A, Couch S, Patil I, Chiu D, Gomez M, Demeshev B, Menne D, Nutter B & Johnston L et al.2021 Broom: Convert Statistical Objects into Tidy Tibbles.

  • Rougé-Pont F, Deroche V, Moal ML & Piazza PV 1998 Individual differences in stress-induced dopamine release in the nucleus accumbens are influenced by corticosterone. European Journal of Neuroscience 10 39033907. (https://doi.org/10.1046/j.1460-9568.1998.00438.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ruff JS, Suchy AK, Hugentobler SA, Sosa MM, Schwartz BL, Morrison LC, Gieng SH, Shigenaga MK & Potts WK 2013 Human-relevant levels of added sugar consumption increase female mortality and lower male fitness in mice. Nature Communications 4 2245. (https://doi.org/10.1038/ncomms3245)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Samuelsson AM, Matthews PA, Jansen E, Taylor PD & Poston L 2013 Sucrose feeding in mouse pregnancy leads to hypertension, and sex-linked obesity and insulin resistance in female offspring. Frontiers in Physiology 4 14. (https://doi.org/10.3389/fphys.2013.00014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schmittgen TD & Livak KJ 2008 Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3 11011108. (https://doi.org/10.1038/nprot.2008.73)

  • Shalev U, Marinelli M, Baumann MH, Piazza PV & Shaham Y 2003 The role of corticosterone in food deprivation-induced reinstatement of cocaine seeking in the rat. Psychopharmacology 168 170176. (https://doi.org/10.1007/s00213-002-1200-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shalev U, Finnie PS, Quinn T, Tobin S & Wahi P 2006 A role for corticotropin-releasing factor, but not corticosterone, in acute food-deprivation-induced reinstatement of heroin seeking in rats. Psychopharmacology 187 376384. (https://doi.org/10.1007/s00213-006-0427-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shook LL, Kislal S & Edlow AG 2020 Fetal brain and placental programming in maternal obesity: a review of human and animal model studies. Prenatal Diagnosis 40 11261137. (https://doi.org/10.1002/pd.5724)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sloboda DM, Li M, Patel R, Clayton ZE, Yap C & Vickers MH 2014 Early life exposure to fructose and offspring phenotype: implications for long term metabolic homeostasis. Journal of Obesity 2014 203474. (https://doi.org/10.1155/2014/203474)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Song L, Chen K, Yan J, Zhang Y, Mao X, Lu B & Sun B 2019 Maternal high-fat diet during gestation and lactation increases conditioned aversion threshold for sucrose and alters sweet taste receptors expression in taste buds in rat offspring. Physiology and Behavior 212 112709. (https://doi.org/10.1016/j.physbeh.2019.112709)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sullivan EL, Nousen EK & Chamlou KA 2014 Maternal high fat diet consumption during the perinatal period programs offspring behavior. Physiology and Behavior 123 236242. (https://doi.org/10.1016/j.physbeh.2012.07.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taves MD, Ma C, Heimovics SA, Saldanha CJ & Soma KK 2011 Measurement of steroid concentrations in brain tissue: methodological considerations. Frontiers in Endocrinology 2 39. (https://doi.org/10.3389/fendo.2011.00039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Te Morenga LA, Howatson AJ, Jones RM & Mann J 2014 Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. American Journal of Clinical Nutrition 100 6579. (https://doi.org/10.3945/ajcn.113.081521)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thanos PK, Zhuo J, Robison L, Kim R, Ananth M, Choai I, Grunseich A, Grissom NM, George R & Delis F et al.2018 Suboptimal maternal diets alter mu opioid receptor and dopamine type 1 receptor binding but exert no effect on dopamine transporters in the offspring brain. International Journal of Developmental Neuroscience 64 2128. (https://doi.org/10.1016/j.ijdevneu.2016.09.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tobiansky DJ 2018 Understanding how age-related decline in testosterone affects male sexual behavior: neurosteroids as the missing piece. Current Sexual Health Reports 10 305314. (https://doi.org/10.1007/s11930-018-0175-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tobiansky DJ, Will RG, Lominac KD, Turner JM, Hattori T, Krishnan K, Martz JR, Nutsch VL & Dominguez JM 2016 Estradiol in the preoptic area regulates the dopaminergic response to cocaine in the nucleus accumbens. Neuropsychopharmacology 41 18971906. (https://doi.org/10.1038/npp.2015.360)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tobiansky DJ, Korol AM, Ma C, Hamden JE, Jalabert C, Tomm RJ & Soma KK 2018a Testosterone and corticosterone in the mesocorticolimbic system of male rats: effects of gonadectomy and caloric restriction. Endocrinology 159 450464. (https://doi.org/10.1210/en.2017-00704)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tobiansky DJ, Wallin-Miller KG, Floresco SB, Wood RI & Soma KK 2018b Androgen regulation of the mesocorticolimbic system and executive function. Frontiers in Endocrinology 9 279. (https://doi.org/10.3389/fendo.2018.00279)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tobiansky DJ, Kachkovski GV, Enos RT, Schmidt KL, Murphy EA & Soma KK 2020 Sucrose consumption alters steroid and dopamine signalling in the female rat brain. Journal of Endocrinology 245 231246. (https://doi.org/10.1530/JOE-19-0386)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Togo J, Hu S, Li M, Niu C & Speakman JR 2019 Impact of dietary sucrose on adiposity and glucose homeostasis in C57BL/6J mice depends on mode of ingestion: liquid or solid. Molecular Metabolism 27 2232. (https://doi.org/10.1016/j.molmet.2019.05.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tropp J & Markus EJ 2001 Effects of mild food deprivation on the estrous cycle of rats. Physiology and Behavior 73 553559. (https://doi.org/10.1016/S0031-9384(0100487-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vendruscolo LF, Gueye AB, Darnaudéry M, Ahmed SH & Cador M 2010 Sugar overconsumption during adolescence selectively alters motivation and reward function in adult rats. PLoS ONE 5 e9296. (https://doi.org/10.1371/journal.pone.0009296)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vucetic Z, Kimmel J, Totoki K, Hollenbeck E & Reyes TM 2010a Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 151 47564764. (https://doi.org/10.1210/en.2010-0505)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vucetic Z, Totoki K, Schoch H, Whitaker KW, Hill-Smith T, Lucki I & Reyes TM 2010b Early life protein restriction alters dopamine circuitry. Neuroscience 168 359370. (https://doi.org/10.1016/j.neuroscience.2010.04.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, Henry L & Hester J et al.2019 Welcome to the tidyverse. Journal of Open Source Software 4 1686. (https://doi.org/10.21105/joss.01686)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wiss DA, Avena N & Rada P 2018 Sugar addiction: from evolution to revolution. Frontiers in Psychiatry 9 545. (https://doi.org/10.3389/fpsyt.2018.00545)

  • World Health Organization 2015 Guideline: Sugars Intake for Adults and Children. Geneva: World Health Organization.

  • Zambrano E, Bautista CJ, Deás M, Martínez-Samayoa PM, González-Zamorano M, Ledesma H, Morales J, Larrea F & Nathanielsz PW 2006 A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. Journal of Physiology 571 221230. (https://doi.org/10.1113/jphysiol.2005.100313)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zusman I & Ornoy A 1986 The effects of maternal diabetes and high sucrose diets on the intrauterine development of rat fetuses. Diabetes Research 3 153159.