Biological sex modifies aldosterone’s secretion at a cellular level

in Journal of Endocrinology
Authors:
Shadi K Gholami Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Shadi K Gholami in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1429-118X
,
Chee Sin Tay Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia

Search for other papers by Chee Sin Tay in
Current site
Google Scholar
PubMed
Close
,
Jessica M Lee Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia

Search for other papers by Jessica M Lee in
Current site
Google Scholar
PubMed
Close
,
Eleanor Zagoren Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Eleanor Zagoren in
Current site
Google Scholar
PubMed
Close
,
Stephen A Maris Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
Department of Exercise Science and Athletic Training, Springfield College, Springfield, Massachusetts, USA

Search for other papers by Stephen A Maris in
Current site
Google Scholar
PubMed
Close
,
Jian Yao Wong Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia

Search for other papers by Jian Yao Wong in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9031-9469
,
Amanda E Garza Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Amanda E Garza in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8557-8765
,
Ezgi Caliskan Guzelce Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Ezgi Caliskan Guzelce in
Current site
Google Scholar
PubMed
Close
,
Luminita H Pojoga Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Luminita H Pojoga in
Current site
Google Scholar
PubMed
Close
,
Gail K Adler Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Gail K Adler in
Current site
Google Scholar
PubMed
Close
,
Jose R Romero Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Jose R Romero in
Current site
Google Scholar
PubMed
Close
, and
Gordon H Williams Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Gordon H Williams in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to G H Williams: gwilliams@bwh.harvard.edu

*(S K Gholami, C S Tay and J M Lee contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

Inconsistencies have been reported on the effect of sex on aldosterone (ALDO) levels leading to clinical confusion. The reasons for these inconsistencies are uncertain but include estrogen and/or its receptor modulating target gene responses to mineralocorticoid receptor activation and ALDO secretagogues’ levels. This study’s goal was to determine whether ALDO’s biosynthesis also differed by sex. Two approaches were used. First, plasma renin activity and aldosterone were measured in rats. Both were significantly higher in males. Secondly, using rat zona glomerulosa (ZG) cells, we assessed three ex vivo areas: (1) activity/levels of early steps in ALDO’s biosynthesis (StAR and CYP11A1); (2) activity/levels of a late step (CYP11B2); and (3) the status of the mineralocorticoid receptor (MR)-mediated, ultrashort feedback loop. Females had higher expression of CYP11A1 and StAR and increased CYP11A1 activity (increased pregnenolone/corticosterone levels) but did not differ in CYP11B2 expression or activity (ALDO levels). Activating the ZG’s MR (thereby activating the ultrashort feedback loop) reduced CYP11B2’s activity similarly in both sexes. Exvivo, these molecular effects were accompanied, in females, by lower ALDO basally but higher ALDO with angiotensin II stimulation. In conclusion, we documented that not only was there a sex-mediated difference in the activity of ALDO’s biosynthesis but also these differences at the molecular level help explain the variable reports on ALDO’s circulating levels. Basally, both in vivo and ex vivo, males had higher ALDO levels, likely secondary to higher ALDO secretagogue levels. However, in response to acute stimulation, ALDO levels are higher in females because of the greater levels and/or activity of their StAR/CYP11A1.

 

  • Collapse
  • Expand
  • Adler GK, Chen R, Menachery AI, Braley LM & Williams GH 1993 Sodium restriction increases aldosterone biosynthesis by increasing late pathway, but not early pathway, messenger ribonucleic acid levels and enzyme activity in normotensive rats. Endocrinology 133 22352240. (https://doi.org/10.1210/endo.133.5.8404675)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Agarwal MK, Coupry F & Philippe M 1977 Physiological activity and receptor binding of 9 alpha fluorohydrocortisone. Biochemical and Biophysical Research Communications 78 747753. (https://doi.org/10.1016/0006-291x(7790242-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barrett Mueller K, Lu Q, Mohammad NN, Luu V, McCurley A, Williams GH, Adler GK, Karas RH & Jaffe IZ 2014 Estrogen receptor inhibits mineralocorticoid receptor transcriptional regulatory function. Endocrinology 155 44614472. (https://doi.org/10.1210/en.2014-1270)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baudrand R, Pojoga LH, Vaidya A, Garza AE, Vöhringer PA, Jeunemaitre X, Hopkins PN, Yao TM, Williams J & Adler GK et al.2015 Statin use and adrenal aldosterone production in hypertensive and diabetic subjects. Circulation 132 18251833. (https://doi.org/10.1161/CIRCULATIONAHA.115.016759)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bentley-Lewis R, Graves SW & Seely EW 2005 The renin-aldosterone response to stimulation and suppression during normal pregnancy. Hypertension in Pregnancy 24 116. (https://doi.org/10.1081/PRG-45765)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bentley-Lewis R, Adler GK, Perlstein T, Seely EW, Hopkins PN, Williams GH & Garg R 2007 Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. Journal of Clinical Endocrinology and Metabolism 92 44724475. (https://doi.org/10.1210/jc.2007-1088)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bielohuby M, Herbach N, Wanke R, Maser-Gluth C, Beuschlein F, Wolf E & Hoeflich A 2007 Growth analysis of the mouse adrenal gland from weaning to adulthood: time- and gender-dependent alterations of cell size and number in the cortical compartment. American Journal of Physiology: Endocrinology and Metabolism 293 E139E146. (https://doi.org/10.1152/ajpendo.00705.2006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Braley LM & Williams GH 1977 Rat adrenal cell sensitivity to angiotensin II, alpha-1–24-ACTH, and potassium: a comparative study. American Journal of Physiology 233 E402E406. (https://doi.org/10.1152/ajpendo.1977.233.5.E402)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Braley LM & Williams GH 1980 The effect of unit gravity sedimentation on adrenal steroidogenesis by isolated rat glomerulosa and fasciculata cells. Endocrinology 106 5055. (https://doi.org/10.1210/endo-106-1-50)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brooks DL, Garza AE, Caliskan Guzelce E, Gholami SK, Treesaranuwattana T, Maris S, Ranjit S, Tay CS, Lee JM & Romero JR et al.2020 mTORC1 deficiency modifies volume homeostatic responses to dietary sodium in a sex-specific manner. Endocrinology 161 bqaa041. (https://doi.org/10.1210/endocr/bqaa041)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Caroccia B, Seccia TM, Campos AG, Gioco F, Kuppusamy M, Ceolotto G, Guerzoni E, Simonato F, Mareso S & Lenzini L et al.2014 GPER-1 and estrogen receptor-β ligands modulate aldosterone synthesis. Endocrinology 155 42964304. (https://doi.org/10.1210/en.2014-1416)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chong C, Hamid A, Yao T, Garza AE, Pojoga LH, Adler GK, Romero JR & Williams GH 2017 Regulation of aldosterone secretion by mineralocorticoid receptor-mediated signaling. Journal of Endocrinology 232 525534. (https://doi.org/10.1530/JOE-16-0452)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark BA, Elahi D & Epstein FH 1990 The influence of gender, age, and the menstrual cycle on plasma atrial natriuretic peptide. Journal of Clinical Endocrinology and Metabolism 70 349352. (https://doi.org/10.1210/jcem-70-2-349)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Faulkner JL, Harwood D, Bender L, Shrestha L, Brands MW, Morwitzer MJ, Kennard S, Antonova G & Belin de Chantemèle EJ 2018 Lack of suppression of aldosterone production leads to salt-sensitive hypertension in female but not male Balb/C mice. Hypertension 72 13971406. (https://doi.org/10.1161/HYPERTENSIONAHA.118.11303)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fisher ND, Ferri C, Bellini C, Santucci A, Gleason R, Williams GH, Hollenberg NK & Seely EW 1997 Age, gender, and non-modulation. A sexual dimorphism in essential hypertension. Hypertension 29 980985. (https://doi.org/10.1161/01.hyp.29.4.980)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foti K, Wang D, Appel LJ & Selvin E 2019 Hypertension awareness, treatment, and control in US adults: trends in the hypertension control cascade by population subgroup (National Health and Nutrition Examination Survey, 1999–2016). American Journal of Epidemiology 188 21652174. (https://doi.org/10.1093/aje/kwz177)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ganguly A, Luetscher JA & Weinberger MH 1982 Primary aldosteronism: effects of inhibition of ACTH and potassium administration on plasma aldosterone concentration. Clinical and Experimental Hypertension: Part A, Theory and Practice 4 16951714. (https://doi.org/10.3109/10641968209061635)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garza AE, Rariy CM, Sun B, Williams J, Lasky-Su J, Baudrand R, Yao T, Moize B, Hafiz WM & Romero JR et al.2015 Variants in striatin gene are associated with salt-sensitive blood pressure in mice and humans. Hypertension 65 211217. (https://doi.org/10.1161/HYPERTENSIONAHA.114.04233)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Giacché M, Vuagnat A, Hunt SC, Hopkins PN, Fisher ND, Azizi M, Corvol P, Williams GH & Jeunemaitre X 2000 Aldosterone stimulation by angiotensin II: influence of gender, plasma renin, and familial resemblance. Hypertension 35 710716. (https://doi.org/10.1161/01.hyp.35.3.710)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gray MJ, Strausfeld KS, Watanabe M, Sims EA & Solomon S 1968 Aldosterone secretory rates in the normal menstrual cycle. Journal of Clinical Endocrinology and Metabolism 28 12691275. (https://doi.org/10.1210/jcem-28-9-1269)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hattangady NG, Olala LO, Bollag WB & Rainey WE 2012 Acute and chronic regulation of aldosterone production. Molecular and Cellular Endocrinology 350 151162. (https://doi.org/10.1016/j.mce.2011.07.034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hegstad R, Brown RD, Jiang NS, Kao P, Weinshilboum RM, Strong C & Wisgerhof M 1983 Aging and aldosterone. American Journal of Medicine 74 442448. (https://doi.org/10.1016/0002-9343(8390971-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ho MM & Vinson GP 1993 11beta-Hydroxylase gene expression in the rat adrenal cortex. Journal of Endocrinology 139 301306. (https://doi.org/10.1677/joe.0.1390301)

  • Hollenberg NK, Williams GH, Burger B, Chenitz W, Hoosmand I & Adams DF 1976 Renal blood flow and its response to angiotensin II. An interaction between oral contraceptive agents, sodium intake, and the renin-angiotensin system in healthy young women. Circulation Research 38 3540. (https://doi.org/10.1161/01.res.38.1.35)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Homma T, Homma M, Huang Y, Mayurasakorn K, Rodi NM, Hamid AAA, Hurwitz S, Yao T, Adler GK & Pojoga LH et al.2017 Combined salt and caloric restrictions: potential adverse outcomes. Journal of the American Heart Association 6 e005374. (https://doi.org/10.1161/JAHA.116.005374)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang Y, Ting PY, Yao TM, Homma T, Brooks D, Katayama Rangel I, Adler GK, Romero JR, Williams JS & Pojoga LH et al.2019 Histone demethylase LSD1 deficiency and biological sex: impact on blood pressure and aldosterone production. Journal of Endocrinology 240 111122. (https://doi.org/10.1530/JOE-18-0247)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kathiresan S, Larson MG, Benjamin EJ, Corey D, Murabito JM, Fox CS, Wilson PW, Rifai N, Meigs JB & Ricken G et al.2005 Clinical and genetic correlates of serum aldosterone in the community: the Framingham Heart Study. American Journal of Hypertension 18 657665. (https://doi.org/10.1016/j.amjhyper.2004.12.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Katz FH, Romfh P, Zimmering PE & Kelly WG 1972 Radioimmunoassay of plasma aldosterone: effect of sexual differences and increasing duration of upright posture. Steroids and Lipids Research 3 90100.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kifor I, Williams GH, Vickers MA, Sullivan MP, Jodbert P & Dluhy RG 1997 Tissue angiotensin II as a modulator of erectile function. I. Angiotensin peptide content, secretion and effects in the corpus cavernosum. Journal of Urology 157 19201925. (https://doi.org/10.1016/S0022-5347(0164901-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuate Defo B, Mbanya JC, Kingue S, Tardif JC, Choukem SP, Perreault S, Fournier P, Ekundayo O, Potvin L & D’Antono B et al.2019 Blood pressure and burden of hypertension in Cameroon, a microcosm of Africa: a systematic review and meta-analysis of population-based studies. Journal of Hypertension 37 21902199. (https://doi.org/10.1097/HJH.0000000000002165)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LeHoux JG & Tremblay A 1992 In vivo regulation of gene expression of enzymes controlling aldosterone synthesis in rat adrenal. Journal of Steroid Biochemistry and Molecular Biology 43 837846. (https://doi.org/10.1016/0960-0760(9290310-F)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Malendowicz LK 1980 Sex differences in adrenocortical structure and function. VI. Long-term effect of gonadectomy and testosterone or estradiol replacement on rat adrenal cortex. Endokrinologie 75 311323.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Manna PR, Stetson CL, Slominski AT & Pruitt K 2016 Role of the steroidogenic acute regulatory protein in health and disease. Endocrine 51 721. (https://doi.org/10.1007/s12020-015-0715-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Manosroi W, Tan JW, Rariy CM, Sun B, Goodarzi MO, Saxena AR, Williams JS, Pojoga LH, Lasky-Su J & Cui J et al.2017 The association of estrogen receptor-β gene variation with salt-sensitive blood pressure. Journal of Clinical Endocrinology and Metabolism 102 41244135. (https://doi.org/10.1210/jc.2017-00957)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Müller J & Lauber M 1991 Regulation of aldosterone biosynthesis: a continual challenge. American Journal of Hypertension 4 280282. (https://doi.org/10.1093/ajh/4.3.280)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nishimoto K, Harris RBS, Rainey WE & Seki T 2014 Sodium deficiency regulates rat adrenal zona glomerulosa gene expression. Endocrinology 155 13631372. (https://doi.org/10.1210/en.2013-1999)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peters J 2012 Local renin–angiotensin systems in the adrenal gland. Peptides 34 427432. (https://doi.org/10.1016/j.peptides.2012.01.023)

  • Pojoga L, Kolatkar NS, Williams JS, Perlstein TS, Jeunemaitre X, Brown NJ, Hopkins PN, Raby BA & Williams GH 2006 Beta-2 adrenergic receptor diplotype defines a subset of salt-sensitive hypertension. Hypertension 48 892900. (https://doi.org/10.1161/01.HYP.0000244688.45472.95)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pugliese DN, Booth JN III, Deng L, Anstey DE, Bello NA, Jaeger BC, Shikany JM, Lloyd-Jones D, Lewis CE & Schwartz JE et al.2019 Sex differences in masked hypertension: the coronary artery risk development in young adults study. Journal of Hypertension 37 23802388. (https://doi.org/10.1097/HJH.0000000000002175)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ranjit S, Wong JY, Tan JW, Sin Tay C, Lee JM, Yin Han Wong K, Pojoga LH, Brooks DL, Garza AE, Maris SA, et al.2019 Sex-specific differences in endoplasmic reticulum aminopeptidase 1 modulation influence blood pressure and renin-angiotensin system responses. JCI Insight 4 e129615.(https://doi.org/10.1172/jci.insight.129615)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reddish MJ & Guengerich FP 2019 Human cytochrome P450 11B2 produces aldosterone by a processive mechanism due to the lactol form of the intermediate 18-hydroxycorticosterone. Journal of Biological Chemistry 294 1297512991. (https://doi.org/10.1074/jbc.RA119.009830)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ricchiuti V, Lian CG, Oestreicher EM, Tran L, Stone JR, Yao T, Seely EW, Williams GH & Adler GK 2009 Estradiol increases angiotensin II type 1 receptor in hearts of ovariectomized rats. Journal of Endocrinology 200 7584. (https://doi.org/10.1677/JOE-08-0199)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rossi GP, Caroccia B & Seccia TM 2019 Role of estrogen receptors in modulating aldosterone biosynthesis and blood pressure. Steroids 152 108486. (https://doi.org/10.1016/j.steroids.2019.108486)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sabbatini AR & Kararigas G 2020 Estrogen-related mechanisms in sex differences of hypertension and target organ damage. Biology of Sex Differences 11 3131. (https://doi.org/10.1186/s13293-020-00306-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sarna MA, Hollenberg NK, Seely EW & Ahmed SB 2009 Oral contraceptive progestins and angiotensin-dependent control of the renal circulation in humans. Journal of Human Hypertension 23 407414. (https://doi.org/10.1038/jhh.2008.148)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shukri MZ, Tan JW, Manosroi W, Pojoga LH, Rivera A, Williams JS, Seely EW, Adler GK, Jaffe IZ & Karas RH et al.2018 Biological sex modulates the adrenal and blood pressure responses to angiotensin II. Hypertension 71 10831090. (https://doi.org/10.1161/HYPERTENSIONAHA.117.11087)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spyroglou A, Manolopoulou J, Wagner S, Bidlingmaier M, Reincke M & Beuschlein F 2009 Short term regulation of aldosterone secretion after stimulation and suppression experiments in mice. Journal of Molecular Endocrinology 42 407413. (https://doi.org/10.1677/JME-08-0167)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Strushkevich N, Gilep AA, Shen L, Arrowsmith CH, Edwards AM, Usanov SA & Park HW 2013 Structural insights into aldosterone synthase substrate specificity and targeted inhibition. Molecular Endocrinology 27 315324. (https://doi.org/10.1210/me.2012-1287)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tait JF, Tait SA, Bell JB, Hyatt PJ & Williams BC 1980 Further studies on the stimulation of rat adrenal capsular cells: four types of response. Journal of Endocrinology 87 1127. (https://doi.org/10.1677/joe.0.0870011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thomas JL, Mack VL, Glow JA, Moshkelani D, Terrell JR & Bucholtz KM 2008 Structure/function of the inhibition of human 3beta-hydroxysteroid dehydrogenase type 1 and type 2 by trilostane. Journal of Steroid Biochemistry and Molecular Biology 111 6673. (https://doi.org/10.1016/j.jsbmb.2008.04.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trejter M, Hochol A, Tyczewska M, Ziolkowska A, Jopek K, Szyszka M, Malendowicz LK & Rucinski M 2015 Sex-related gene expression profiles in the adrenal cortex in the mature rat: microarray analysis with emphasis on genes involved in steroidogenesis. International Journal of Molecular Medicine 35 702714. (https://doi.org/10.3892/ijmm.2015.2064)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weir MR & Dzau VJ 1999 The renin-angiotensin-aldosterone system: a specific target for hypertension management. American Journal of Hypertension 12 205S213S. (https://doi.org/10.1016/s0895-7061(9900103-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Williams GH 2005 Aldosterone biosynthesis, regulation, and classical mechanism of action. Heart Failure Reviews 10 713. (https://doi.org/10.1007/s10741-005-2343-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yanagibashi K, Shackleton CH & Hall PF 1988 Conversion of 11-deoxycorticosterone and corticosterone to aldosterone by cytochrome P-450 11 beta-/18-hydroxylase from porcine adrenal. Journal of Steroid Biochemistry 29 665675. (https://doi.org/10.1016/0022-4731(8890167-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou M, Xue D, Foecking MF & Gomez-Sanchez CE 1995 Stable expression of rat cytochrome P450 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) in MA-10 cells. Journal of Steroid Biochemistry and Molecular Biology 52 523528. (https://doi.org/10.1016/0960-0760(9500016-s)

    • PubMed
    • Search Google Scholar
    • Export Citation