Algorithms predicting gestational stage from the maternal steroid metabolome of mares

in Journal of Endocrinology
View More View Less
  • 1 AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand
  • | 2 Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
  • | 3 Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
  • | 4 Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France

Correspondence should be addressed to A J Conley: ajconley@ucdavis.edu

(E L Legacki is now at Hollings Marine Laboratory, National Institute of Standards & Technology, Charleston, South Carolina, USA)

Restricted access

Hormone secretion by the maternal ovaries, trophoblast/placenta and fetus occurs sequentially, creating distinct steroid metabolomic ‘signatures’ in systemic blood of pregnant mares that vary with gestational stage. Algorithms were developed to predict the gestational day (GD) from the maternal steroid metabolome (nine steroids; pregnenolone (P5), progesterone (P4), 5α-dihydroprogesterone (DHP), 17α-hydroxyprogesterone, allopregnanolone, 20α-hydroxy-DHP, 3β,20α-dihydroxy-DHP, DHEA and androstenedione) determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) of eight thoroughbred mares sampled longitudinally throughout pregnancy. A physiologically based model was developed to infer rates of steroid secretion during chorionic gonadotropin secretion, the luteo-placental shift and by the equine feto-placenta unit, demonstrating more variability in P5 and DHP than P4. The average of four empirical models, using nine steroids to predict GD, was calibrated (five mares, R2 = 0.94, RMSE = 20 days) and validated (three mares, R2 = 0.84, RMSE = 32 days). Validation performance was improved using paired samples taken 14 or 30 days apart (RMSE = 29 and 19 days, respectively). A second validation used an independent dataset (single serum samples from 56 mixed breed mares, RMSE = 79 days) and an additional longitudinal subset from the same population sampled monthly throughout gestation (seven mares, RMSE = 42 days). Again, using paired samples improved model performance (RMSE = 32.5 days). Despite less predictive performance of the mixed breed than the thoroughbred datasets, these models demonstrate the feasibility and potential for using maternal steroid metabolomic algorithms to estimate the stage of gestation in pregnant mares and perhaps monitor fetal development.

 

Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 105 105 105
Full Text Views 8 8 8
PDF Downloads 7 7 7
  • Allen WR 1969 The immunological measurement of pregnant mare serum gonadotrophin. Journal of Endocrinology 43 593598. (https://doi.org/10.1677/joe.0.0430593)

    • Search Google Scholar
    • Export Citation
  • Allen WR, Wilsher S, Stewart F, Stewart F, Ousey J, Ousey J & Fowden A 2002 The influence of maternal size on placental, fetal and postnatal growth in the horse. II. Endocrinology of pregnancy. Journal of Endocrinology 172 237246. (https://doi.org/10.1677/joe.0.1720237)

    • Search Google Scholar
    • Export Citation
  • Antczak DF, De Mestre AM, Wilsher S & Allen WR 2013 The equine endometrial cup reaction: a fetomaternal signal of significance. Annual Review of Animal Biosciences 1 419442. (https://doi.org/10.1146/annurev-animal-031412-103703)

    • Search Google Scholar
    • Export Citation
  • Barnes RJ, Dhanoa MS & Lister SJ 1989 Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy 43 772777. (https://doi.org/10.1366/0003702894202201)

    • Search Google Scholar
    • Export Citation
  • Bates DM & Watts DG 2007 Nonlinear Regression Analysis and Its Applications. New York: John Wiley & Sons.

  • Bertram R 2015 Mathematical modeling in neuroendocrinology. Comprehensive Physiology 5 911927. (https://doi.org/10.1002/cphy.c140034)

  • Booth RT, Stern MI, Wood C, Sharples MJ & Pinkerton JH 1964 Urinary oestriol as an index of placental function and foetal viability. Results in normal pregnancy. Journal of Obstetrics and Gynaecology of the British Commonwealth 71 266271. (https://doi.org/10.1111/j.1471-0528.1964.tb04277.x)

    • Search Google Scholar
    • Export Citation
  • Booth RT, Stern MI, Wood C, Sharples MJ & Pinkerton JH 1965 Urinary hormone excretion in abnormal pregnancy. Journal of Obstetrics and Gynaecology of the British Commonwealth 72 229235. (https://doi.org/10.1111/j.1471-0528.1965.tb01422.x)

    • Search Google Scholar
    • Export Citation
  • Borin A, Ferrão MF, Mello C, Maretto DA & Poppi RJ 2006 Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Analytica Chimica Acta 579 2532. (https://doi.org/10.1016/j.aca.2006.07.008)

    • Search Google Scholar
    • Export Citation
  • Breiman L 2001 Random forests. Machine Learning 45 532. (https://doi.org/10.1023/A:1010933404324)

  • Canisso IF, Ball BA, Esteller-Vico A, Williams NM, Squires EL & Troedsson MH 2017 Changes in maternal androgens and oestrogens in mares with experimentally-induced ascending placentitis. Equine Veterinary Journal 49 244249. (https://doi.org/10.1111/evj.12556)

    • Search Google Scholar
    • Export Citation
  • Chen Q, Zhao J, Fang CH & Wang D 2007a Feasibility study on identification of green, black and oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM). Spectrochimica Acta: Part A, Molecular and Biomolecular Spectroscopy 66 568574. (https://doi.org/10.1016/j.saa.2006.03.038)

    • Search Google Scholar
    • Export Citation
  • Chen T, Morris J & Martin E 2007b Gaussian process regression for multivariate spectroscopic calibration. Chemometrics and Intelligent Laboratory Systems 87 5971. (https://doi.org/10.1016/j.chemolab.2006.09.004)

    • Search Google Scholar
    • Export Citation
  • Cole HH, Hart GH, Lyons WR & Catchpole HR 1933 The development and hormonal content of fetal horse gonads. Anatomical Record 56 275293. (https://doi.org/10.1002/ar.1090560308)

    • Search Google Scholar
    • Export Citation
  • Conley AJ 2016 Review of the reproductive endocrinology of the pregnant and parturient mare. Theriogenology 86 355365. (https://doi.org/10.1016/j.theriogenology.2016.04.049)

    • Search Google Scholar
    • Export Citation
  • Conley AJ & Ball BA 2019 Steroids in the establishment and maintenance of pregnancy and at parturition in the mare. Reproduction 158 R197R208. (https://doi.org/10.1530/REP-19-0179)

    • Search Google Scholar
    • Export Citation
  • Conley AJ, Scholtz EL, Legacki EL, Corbin CJ, Knych HK, Dujovne GD, Ball BA, Moeller BC & Stanley SD 2018 5alpha-dihydroprogesterone concentrations and synthesis in non-pregnant mares. Journal of Endocrinology 238 2532. (https://doi.org/10.1530/JOE-18-0215)

    • Search Google Scholar
    • Export Citation
  • Daels PF, Shideler S, Lasley BL, Hughes JP & Stabenfeldt GH 1990 Source of oestrogen in early pregnancy in the mare. Journal of Reproduction and Fertility 90 5561. (https://doi.org/10.1530/jrf.0.0900055)

    • Search Google Scholar
    • Export Citation
  • Daels PF, Albrecht BA & Mohammed HO 1998 Equine chorionic gonadotropin regulates luteal steroidogenesis in pregnant mares. Biology of Reproduction 59 10621068. (https://doi.org/10.1095/biolreprod59.5.1062)

    • Search Google Scholar
    • Export Citation
  • Day FT & Rowlands IW 1947 Serum gonadotrophin in Welsh and Shetland ponies. Journal of Endocrinology 5 18. (https://doi.org/10.1677/joe.0.0050001)

    • Search Google Scholar
    • Export Citation
  • Diczfalusy E 1969 Steroid metabolism in the human foeto-placental unit. Acta Endocrinologica 61 649664. (https://doi.org/10.1530/acta.0.0610649)

    • Search Google Scholar
    • Export Citation
  • El-Sheikh Ali H, Legacki EL, Loux SC, Esteller-Vico A, Scoggin KE, Conley AJ, Stanley SD & Ball BA 2019 Equine placentitis is associated with a downregulation in the myometrial progestins signaling.Biology of Reproduction 101162176.(https://doi.org/10.1093/biolre/ioz059

    • Search Google Scholar
    • Export Citation
  • El-Sheikh Ali H, Legacki EL, Scoggin KE, Loux SC, Dini P, Esteller-Vico A, Conley AJ, Stanley SD & Ball BA 2020 Steroid synthesis and metabolism in the equine placenta during placentitis. Reproduction 159 289302. (https://doi.org/10.1530/REP-19-0420)

    • Search Google Scholar
    • Export Citation
  • Esteller-Vico A, Ball BA, Troedsson MHT & Squires EL 2017 Endocrine changes, fetal growth, and uterine artery hemodynamics after chronic estrogen suppression during the last trimester of equine pregnancy. Biology of Reproduction 96 414423. (https://doi.org/10.1095/biolreprod.116.140533)

    • Search Google Scholar
    • Export Citation
  • Gibson NP, Aigrain S, Roberts S, Evans TM, Osborne M & Pont F 2012 A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy. Monthly Notices of the Royal Astronomical Society 419 26832694. (https://doi.org/10.1111/j.1365-2966.2011.19915.x)

    • Search Google Scholar
    • Export Citation
  • Guncar G, Kukar M, Notar M, Brvar M, Cernelc P, Notar M & Notar M 2018 An application of machine learning to haematological diagnosis. Scientific Reports 8 411. (https://doi.org/10.1038/s41598-017-18564-8)

    • Search Google Scholar
    • Export Citation
  • Hamon M, Clarke SW, Houghton E, Fowden AL, Silver M, Rossdale PD, Ousey JC & Heap RB 1991 Production of 5α-dihydroprogesterone during late pregnancy in the mare. Journal of Reproduction and Fertility: Supplement 44 529535.

    • Search Google Scholar
    • Export Citation
  • Heazell AE, Hayes DJ, Whitworth M, Takwoingi Y, Bayliss SE & Davenport C 2019 Biochemical tests of placental function versus ultrasound assessment of fetal size for stillbirth and small-for-gestational-age infants. Cochrane Database of Systematic Reviews 5 CD012245. (https://doi.org/10.1002/14651858.CD012245.pub2)

    • Search Google Scholar
    • Export Citation
  • Hoffmann B, Gentz F & Failing K 1996 Investigations into the course of progesterone, oestrogen and eCG concentrations during normal and impaired pregnancy in the mare. Reproduction in Domestic Animals 31 717723. (https://doi.org/10.1111/j.1439-0531.1996.tb01444.x)

    • Search Google Scholar
    • Export Citation
  • Holtan DW, Houghton E, Silver M, Fowden AL, Ousey J & Rossdale PD 1991 Plasma progestagens in the mare, fetus and newborn foal. Journal of Reproduction and Fertility: Supplement 44 517528.

    • Search Google Scholar
    • Export Citation
  • Hyland JH & Langsford DA 1990 Changes in urinary and plasma oestrone sulphate concentrations after induction of foetal death in mares at 45 days of gestation. Australian Veterinary Journal 67 349351. (https://doi.org/10.1111/j.1751-0813.1990.tb07396.x)

    • Search Google Scholar
    • Export Citation
  • Kasman LH, Hughes JP, Stabenfeldt GH, Starr MD & Lasley BL 1988 Estrone sulfate concentrations as an indicator of fetal demise in horses. American Journal of Veterinary Research 49 184187.

    • Search Google Scholar
    • Export Citation
  • Khosravi P, Kazemi E, Zhan Q, Malmsten JE, Toschi M, Zisimopoulos P, Sigaras A, Lavery S, Cooper LAD & Hickman C et al.2019 Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digital Medicine 2 21. (https://doi.org/10.1038/s41746-019-0096-y)

    • Search Google Scholar
    • Export Citation
  • Legacki EL, Corbin CJ, Ball BA, Wynn M, Loux S, Stanley SD & Conley AJ 2016a Progestin withdrawal at parturition in the mare. Reproduction 152 323331. (https://doi.org/10.1530/REP-16-0227)

    • Search Google Scholar
    • Export Citation
  • Legacki EL, Scholtz EL, Ball BA, Stanley SD, Berger T & Conley AJ 2016b The dynamic steroid landscape of equine pregnancy mapped by mass spectrometry. Reproduction 151 421430. (https://doi.org/10.1530/REP-15-0547)

    • Search Google Scholar
    • Export Citation
  • Legacki EL, Ball BA, Corbin CJ, Loux SC, Scoggin KE, Stanley SD & Conley AJ 2017 Equine fetal adrenal, gonadal and placental steroidogenesis. Reproduction 154 445454. (https://doi.org/10.1530/REP-17-0239)

    • Search Google Scholar
    • Export Citation
  • Legacki EL, Scholtz EL, Ball BA, Esteller-Vico A, Stanley SD & Conley AJ 2019 Concentrations of sulphated estrone, estradiol and dehydroepiandrosterone measured by mass spectrometry in pregnant mares. Equine Veterinary Journal 51 802808. (https://doi.org/10.1111/evj.13109)

    • Search Google Scholar
    • Export Citation
  • Li B, Morris J & Martin EB 2002 Model selection for partial least squares regression. Chemometrics and Intelligent Laboratory Systems 64 7989. (https://doi.org/10.1016/S0169-7439(0200051-5)

    • Search Google Scholar
    • Export Citation
  • MacDonald PC & Siiteri PK 1966 The in vivo mechanisms of origin of estrogen in subjects with trophoblastic tumors. Steroids 8 589603. (https://doi.org/10.1016/0039-128x(6690001-8)

    • Search Google Scholar
    • Export Citation
  • Meirelles MG, Veras MM, Alonso MA, de Fátima Guimarães C, Nichia M & Fernandes CB 2017 Influence of maternal age and parity on placental structure and foal characteristics from birth up to 2 years of age. Journal of Equine Veterinary Science 56 6879. (https://doi.org/10.1016/j.jevs.2017.03.226)

    • Search Google Scholar
    • Export Citation
  • Murase H, Endo Y, Tsuchiya T, Kotoyori Y, Shikichi M, Ito K, Sato F & Nambo Y 2014 Ultrasonographic evaluation of equine fetal growth throughout gestation in normal mares using a convex transducer. Journal of Veterinary Medical Science 76 947953. (https://doi.org/10.1292/jvms.13-0259)

    • Search Google Scholar
    • Export Citation
  • Murphy BD & Martinuk SD 1991 Equine chorionic gonadotropin. Endocrine Reviews 12 2744. (https://doi.org/10.1210/edrv-12-1-27)

  • Nett TM, Holtan DW & Estergreen VL 1975 Oestrogens, LH, PMSG, and prolactin in serum of pregnant mares. Journal of Reproduction and Fertility: Supplement 23 457462.

    • Search Google Scholar
    • Export Citation
  • Nguyen PT, Conley AJ, Soboleva TK & Lee RS 2012a Multilevel regulation of steroid synthesis and metabolism in the bovine placenta. Molecular Reproduction and Development 79 239254. (https://doi.org/10.1002/mrd.22021)

    • Search Google Scholar
    • Export Citation
  • Nguyen PT, Lee RS, Conley AJ, Sneyd J & Soboleva TK 2012b Variation in 3beta-hydroxysteroid dehydrogenase activity and in pregnenolone supply rate can paradoxically alter androstenedione synthesis. Journal of Steroid Biochemistry and Molecular Biology 128 1220. (https://doi.org/10.1016/j.jsbmb.2011.10.003)

    • Search Google Scholar
    • Export Citation
  • Nguyen PT, Conley AJ, Sneyd J, Lee RS, Soboleva TK & Shorten PR 2013 The role of enzyme compartmentalization on the regulation of steroid synthesis. Journal of Theoretical Biology 332 5264. (https://doi.org/10.1016/j.jtbi.2013.04.021)

    • Search Google Scholar
    • Export Citation
  • Ousey JC, Rossdale PD, Cash RS & Worthy K 1987 Plasma concentrations of progestagens, oestrone sulphate and prolactin in pregnant mares subjected to natural challenge with equid herpesvirus-1. Journal of Reproduction and Fertility: Supplement 35 519528.

    • Search Google Scholar
    • Export Citation
  • Ousey JC, Houghton E, Grainger L, Rossdale PD & Fowden AL 2005 Progestagen profiles during the last trimester of gestation in thoroughbred mares with normal or compromised pregnancies. Theriogenology 63 18441856. (https://doi.org/10.1016/j.theriogenology.2004.08.010)

    • Search Google Scholar
    • Export Citation
  • Pawitan Y 2001 In All Likelihood Statistical Modelling and Inference Using Likelihood. London: Oxford University Press.

  • Raeside JI 2017 A brief account of the discovery of the fetal/placental unit for estrogen production in equine and human pregnancies: relation to human medicine. Yale Journal of Biology and Medicine 90 449461.

    • Search Google Scholar
    • Export Citation
  • Renaudin CD, Troedsson MH, Gillis CL, King VL & Bodena A 1997 Ultrasonographic evaluation of the equine placenta by transrectal and transabdominal approach in the normal pregnant mare. Theriogenology 47 559573. (https://doi.org/10.1016/s0093-691x(9700014-9)

    • Search Google Scholar
    • Export Citation
  • Renaudin CD, Gillis CL, Tarantal AF & Coleman DA 2000 Evaluation of equine fetal growth from day 100 of gestation to parturition by ultrasonography. Journal of Reproduction and Fertility: Supplement 651660.

    • Search Google Scholar
    • Export Citation
  • Robles M, Dubois C, Gautier C, Dahirel M, Guenon I, Bouraima-Lelong H, Viguie C, Wimel L, Couturier-Tarrade A & Chavatte-Palmer P 2018a Maternal parity affects placental development, growth and metabolism of foals until 1 year and a half. Theriogenology 108 321330. (https://doi.org/10.1016/j.theriogenology.2017.12.019)

    • Search Google Scholar
    • Export Citation
  • Robles M, Peugnet PM, Valentino SA, Dubois C, Dahirel M, Aubriere MC, Reigner F, Serteyn D, Wimel L & Tarrade A et al.2018b Placental structure and function in different breeds in horses. Theriogenology 108 136145. (https://doi.org/10.1016/j.theriogenology.2017.11.007)

    • Search Google Scholar
    • Export Citation
  • Rossdale PD, Ousey JC, Cottrill CM, Chavatte P, Allen WR & Mcgladdery AJ 1991 Effects of placental pathology on maternal plasma progestagen and mammary secretion calcium concentrations and on neonatal adrenocortical function in the horse. Journal of Reproduction and Fertility: Supplement 44 579590.

    • Search Google Scholar
    • Export Citation
  • Scholtz EL, Krishnan S, Ball BA, Corbin CJ, Moeller BC, Stanley SD, Mcdowell KJ, Hughes AL, Mcdonnell DP & Conley AJ 2014 Pregnancy without progesterone in horses defines a second endogenous biopotent progesterone receptor agonist, 5alpha-dihydroprogesterone. PNAS 111 33653370. (https://doi.org/10.1073/pnas.1318163111)

    • Search Google Scholar
    • Export Citation
  • Shikichi M, Iwata K, Ito K, Miyakoshi D, Murase H, Sato F, Korosue K, Nagata S & Nambo Y 2017 Abnormal pregnancies associated with deviation in progestin and estrogen profiles in late pregnant mares: a diagnostic aid. Theriogenology 98 7581. (https://doi.org/10.1016/j.theriogenology.2017.04.024)

    • Search Google Scholar
    • Export Citation
  • Shorten PR, Donnison M, Mcdonald RM, Meier S, Ledgard AM & Berg D 2018a A mathematical model of in vivo bovine blastocyst developmental to gestational day 15. Journal of Dairy Science 101 84018416. (https://doi.org/10.3168/jds.2017-14306)

    • Search Google Scholar
    • Export Citation
  • Shorten PR, Ledgard AM, Donnison M, Pfeffer PL, Mcdonald RM & Berg DK 2018b A mathematical model of the interaction between bovine blastocyst developmental stage and progesterone-stimulated uterine factors on differential embryonic development observed on day 15 of gestation. Journal of Dairy Science 101 736751. (https://doi.org/10.3168/jds.2017-12845)

    • Search Google Scholar
    • Export Citation
  • Siiteri PK & MacDonald PC 1966 Placental estrogen biosynthesis during human pregnancy. Journal of Clinical Endocrinology and Metabolism 26 751761. (https://doi.org/10.1210/jcem-26-7-751)

    • Search Google Scholar
    • Export Citation
  • Squires EL, Stevens WB, Pickett BW & Nett TM 1979 Role of pregnant mare serum gonadotropin in luteal function of pregnant mares. American Journal of Veterinary Research 40 889891.

    • Search Google Scholar
    • Export Citation
  • Toh TS, Dondelinger F & Wang D 2019 Looking beyond the hype: applied AI and machine learning in translational medicine. EBioMedicine 47 607615. (https://doi.org/10.1016/j.ebiom.2019.08.027)

    • Search Google Scholar
    • Export Citation
  • Urwin VE & Allen WR 1982 Pituitary and chorionic gonadotrophic control of ovarian function during early pregnancy in equids. Journal of Reproduction and Fertility: Supplement 32 371381.

    • Search Google Scholar
    • Export Citation
  • Verrelst J, Alonso L, Rivera Caicedo JP, Moreno J & Camps-Valls G 2013 Gaussian process retrieval of chlorophyll content from imaging spectroscopy data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6 867874. (https://doi.org/10.1109/JSTARS.2012.2222356)

    • Search Google Scholar
    • Export Citation
  • Wang R, Pan W, Jin L, Li Y, Geng Y, Gao C, Chen G, Wang H, Ma D & Liao S 2019 Artificial intelligence in reproductive medicine. Reproduction 158 R139R154. (https://doi.org/10.1530/REP-18-0523)

    • Search Google Scholar
    • Export Citation
  • Webb S 2018 Deep learning for biology. Nature 554 555557. (https://doi.org/10.1038/d41586-018-02174-z)

  • Wesson JA & Ginther OJ 1980 Fetal and maternal gonads and gonadotropins in the pony. Biology of Reproduction 22 735743. (https://doi.org/10.1095/biolreprod22.4.735)

    • Search Google Scholar
    • Export Citation
  • Wilsher S & Allen WR 2003 The effects of maternal age and parity on placental and fetal development in the mare. Equine Veterinary Journal 35 476483. (https://doi.org/10.2746/042516403775600550)

    • Search Google Scholar
    • Export Citation
  • Wilsher S & Allen WR 2011 Factors influencing equine chorionic gonadotrophin production in the mare. Equine Veterinary Journal 43 430438. (https://doi.org/10.1111/j.2042-3306.2010.00309.x)

    • Search Google Scholar
    • Export Citation
  • Wynn MAA, Ball BA, May J, Esteller-Vico A, Canisso I, Squires E & Troedsson M 2018 Changes in maternal pregnane concentrations in mares with experimentally-induced, ascending placentitis. Theriogenology 122 130136. (https://doi.org/10.1016/j.theriogenology.2018.09.001)

    • Search Google Scholar
    • Export Citation
  • You JB, Mccallum C, Wang Y, Riordon J, Nosrati R & Sinton D 2021 Machine learning for sperm selection. Nature Reviews: Urology 18 387403. (https://doi.org/10.1038/s41585-021-00465-1)

    • Search Google Scholar
    • Export Citation
  • Zhang Y, Cong Q, Xie Y, JingxiuYang & Zhao B 2008 Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine. Spectrochimica Acta: Part A, Molecular and Biomolecular Spectroscopy 71 14081413. (https://doi.org/10.1016/j.saa.2008.04.020)

    • Search Google Scholar
    • Export Citation