Effect of nighttime light exposure on glucose metabolism in protein-restricted mice

in Journal of Endocrinology
Authors:
Patricia Cristine Borck Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, São Paulo, Brazil

Search for other papers by Patricia Cristine Borck in
Current site
Google Scholar
PubMed
Close
,
Sarah Rickli Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, São Paulo, Brazil

Search for other papers by Sarah Rickli in
Current site
Google Scholar
PubMed
Close
,
Jean Franciesco Vettorazzi Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, São Paulo, Brazil
Union Education of Cascavel, UNIVEL, Cascavel, Paraná, Brazil

Search for other papers by Jean Franciesco Vettorazzi in
Current site
Google Scholar
PubMed
Close
,
Thiago Martins Batista Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, São Paulo, Brazil

Search for other papers by Thiago Martins Batista in
Current site
Google Scholar
PubMed
Close
,
Antonio Carlos Boschero Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, São Paulo, Brazil

Search for other papers by Antonio Carlos Boschero in
Current site
Google Scholar
PubMed
Close
,
Elaine Vieira Postgraduate Program on Physical Education, Universidade Católica de Brasília-UCB, Distrito Federal, Brazil

Search for other papers by Elaine Vieira in
Current site
Google Scholar
PubMed
Close
, and
Everardo Magalhães Carneiro Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, São Paulo, Brazil

Search for other papers by Everardo Magalhães Carneiro in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to P C Borck or E Vieira: pati.0816@gmail.com or elaine.vieira@ucb.br
Restricted access
Rent on DeepDyve

Sign up for journal news

Disruption of biological rhythms due to exposure to artificial light at night (ALAN) has emerged as a new risk factor for metabolic diseases. However, the effects of ALAN exposure on energy metabolism with concomitant misalignment in the circadian system caused by nutritional imbalance remain largely unexplored. Here, we evaluate whether a low-protein (LP) diet could enhance the effects induced by exposure to ALAN on the energy metabolism and consequently predispose to metabolic disorders. Male C57BL6/J mice were weaned on a normal protein (NP) or a LP diet and housed on 12 h light:12 h darkness (LD) cycle. After 6 weeks, mice maintained on their respective diets were subdivided into normal light/darkness cycle (NP/LD; LP/LD) or exposed to ALAN (NP/LL; LP/LL) for 8 weeks. We observed that exposure to ALAN concomitant to LP diet disrupts the behavioral rhythms, without shifting the timing of food intake. Furthermore, exposure to ALAN leads to increased body and fat pad weights, higher levels of fast and fed glycemia and glucose intolerance independent of the diet consumed. Importantly, the effects of ALAN on circadian regulation of insulin sensitivity were diet-dependent with LP/LL mice showing insulin resistance in an opposite time of day than NP/LL. At the molecular level, exposure to ALAN concurrent with LP diet increased the expression of phosphoenolpyruvate carboxykinase 1 in both periods analyzed and inverted the pattern of fibroblast growth factor 21 (Fgf21) expression in the liver. Our data suggest that dietary protein restriction modulates the effects induced by nighttime light exposure on glucose metabolism, which could be partially related with the dysregulation of hepatic Fgf21 expression.

 

  • Collapse
  • Expand
  • Babygirija R & Lamming DW 2021 The regulation of healthspan and lifespan by dietary amino acids. Translational Medicine of Aging 5 1730.(https://doi.org/10.1016/j.tma.2021.05.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boivin DB & Boudreau P 2014 Impacts of shift work on sleep and circadian rhythms. Pathologie-Biologie 62 292301. (https://doi.org/10.1016/j.patbio.2014.08.001)

  • Borck PC, Batista TM, Vettorazzi JF, Camargo RL, Boschero AC, Vieira E & Carneiro EM 2017 Protein malnutrition after weaning disrupts peripheral clock and daily insulin secretion in mice. Journal of Nutritional Biochemistry 50 5465. (https://doi.org/10.1016/j.jnutbio.2017.08.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Borck PC, Batista TM, Vettorazzi JF, Soares GM, Lubaczeuski C, Guan D, Boschero AC, Vieira E, Lazar MA & Carneiro EM 2018 Nighttime light exposure enhances Rev-erbalpha-targeting microRNAs and contributes to hepatic steatosis. Metabolism: Clinical and Experimental 85 250258. (https://doi.org/10.1016/j.metabol.2018.05.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Branco RCS, Camargo RL, Batista TM, Vettorazzi JF, Lubaczeuski C, Bomfim LHM, Silveira LR, Boschero AC, Zoppi CC & Carneiro EM 2019 Protein malnutrition mitigates the effects of a high-fat diet on glucose homeostasis in mice. Journal of Cellular Physiology 234 63136323. (https://doi.org/10.1002/jcp.27361)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Buijs RM & Kalsbeek A 2001 Hypothalamic integration of central and peripheral clocks. Nature Reviews: Neuroscience 2 521526. (https://doi.org/10.1038/35081582)

  • Camargo RL, Batista TM, Ribeiro RA, Branco RC, Da Silva PM, Izumi C, Araujo TR, Greene LJ, Boschero AC & Carneiro EM 2015 Taurine supplementation preserves hypothalamic leptin action in normal and protein-restricted mice fed on a high-fat diet. Amino Acids 47 24192435. (https://doi.org/10.1007/s00726-015-2035-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coomans CP, van den Berg SA, Lucassen EA, Houben T, Pronk AC, van der Spek RD, Kalsbeek A, Biermasz NR, Willems van Dijk K & Romijn JA et al.2013a The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes 62 11021108. (https://doi.org/10.2337/db12-0507)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coomans CP, van den Berg SA, Houben T, van Klinken JB, van den Berg R, Pronk AC, Havekes LM, Romijn JA, van Dijk KW & Biermasz NR et al.2013b Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. FASEB Journal 27 17211732. (https://doi.org/10.1096/fj.12-210898)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dibner C & Schibler U 2015 Circadian timing of metabolism in animal models and humans. Journal of Internal Medicine 277 513527. (https://doi.org/10.1111/joim.12347)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dibner C, Schibler U & Albrecht U 2010 The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annual Review of Physiology 72 517549. (https://doi.org/10.1146/annurev-physiol-021909-135821)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dube S, Errazuriz I, Cobelli C, Basu R & Basu A 2013 Assessment of insulin action on carbohydrate metabolism: physiological and non-physiological methods. Diabetic Medicine 30 664670. (https://doi.org/10.1111/dme.12189)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fonken LK, Lieberman RA, Weil ZM & Nelson RJ 2013 Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice. Endocrinology 154 38173825. (https://doi.org/10.1210/en.2013-1121)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fontana L, Cummings NE, Arriola Apelo SI, Neuman JC, Kasza I, Schmidt BA, Cava E, Spelta F, Tosti V & Syed FA et al.2016 Decreased consumption of branched-chain amino acids improves metabolic health. Cell Reports 16 520530. (https://doi.org/10.1016/j.celrep.2016.05.092)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fuller PM, Lu J & Saper CB 2008 Differential rescue of light- and food-entrainable circadian rhythms. Science 320 10741077. (https://doi.org/10.1126/science.1153277)

  • Huang W, Ramsey KM, Marcheva B & Bass J 2011 Circadian rhythms, sleep, and metabolism. Journal of Clinical Investigation 121 21332141. (https://doi.org/10.1172/JCI46043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Johnston JD 2014 Physiological responses to food intake throughout the day. Nutrition Research Reviews 27 107118. (https://doi.org/10.1017/S0954422414000055)

  • Kalsbeek A, La Fleur S, Van Heijningen C & Buijs RM 2004 Suprachiasmatic GABAergic inputs to the paraventricular nucleus control plasma glucose concentrations in the rat via sympathetic innervation of the liver. Journal of Neuroscience 24 76047613. (https://doi.org/10.1523/JNEUROSCI.5328-03.2004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kornmann B, Schaad O, Bujard H, Takahashi JS & Schibler U 2007 System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biology 5 e34. (https://doi.org/10.1371/journal.pbio.0050034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • La Fleur SE 2003 Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue. Journal of Neuroendocrinology 15 315322. (https://doi.org/10.1046/j.1365-2826.2003.01019.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • La Fleur SE, Kalsbeek A, Wortel J & Buijs RM 1999 A suprachiasmatic nucleus generated rhythm in basal glucose concentrations. Journal of Neuroendocrinology 11 643652. (https://doi.org/10.1046/j.1365-2826.1999.00373.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • la Fleur SE, Kalsbeek A, Wortel J, Fekkes ML & Buijs RM 2001 A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 50 12371243. (https://doi.org/10.2337/diabetes.50.6.1237)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, Munzberg H, Hutson SM, Gettys TW & Schwartz MW et al.2014 FGF21 is an endocrine signal of protein restriction. Journal of Clinical Investigation 124 39133922. (https://doi.org/10.1172/JCI74915)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laeger T, Albarado DC, Burke SJ, Trosclair L, Hedgepeth JW, Berthoud HR, Gettys TW, Collier JJ, Munzberg H & Morrison CD 2016 Metabolic responses to dietary protein restriction require an increase in FGF21 that is delayed by the absence of GCN2. Cell Reports 16 707716. (https://doi.org/10.1016/j.celrep.2016.06.044)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lees EK, Krol E, Grant L, Shearer K, Wyse C, Moncur E, Bykowska AS, Mody N, Gettys TW & Delibegovic M 2014 Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21. Aging Cell 13 817827. (https://doi.org/10.1111/acel.12238)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin JD, Liu C & Li S 2008 Integration of energy metabolism and the mammalian clock. Cell Cycle 7 453457. (https://doi.org/10.4161/cc.7.4.5442)

  • Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S & Vitaterna MH et al.2010 Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466 627631. (https://doi.org/10.1038/nature09253)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mendoza J, Graff C, Dardente H, Pevet P & Challet E 2005 Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. Journal of Neuroscience 25 15141522. (https://doi.org/10.1523/JNEUROSCI.4397-04.2005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mendoza J, Drevet K, Pevet P & Challet E 2008 Daily meal timing is not necessary for resetting the main circadian clock by calorie restriction. Journal of Neuroendocrinology 20 251260. (https://doi.org/10.1111/j.1365-2826.2007.01636.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Millward CA, Desantis D, Hsieh CW, Heaney JD, Pisano S, Olswang Y, Reshef L, Beidelschies M, Puchowicz M & Croniger CM 2010 Phosphoenolpyruvate carboxykinase (Pck1) helps regulate the triglyceride/fatty acid cycle and development of insulin resistance in mice. Journal of Lipid Research 51 14521463. (https://doi.org/10.1194/jlr.M005363)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakagawa H & Okumura N 2010 Coordinated regulation of circadian rhythms and homeostasis by the suprachiasmatic nucleus. Proceedings of the Japan Academy: Series B, Physical and Biological Sciences 86 391409. (https://doi.org/10.2183/pjab.86.391)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakagawa H, Nagai K, Kida K & Nishio T 1979 Control Mechanism of Circadian Rhythms of Feeding Behavior and Metabolism in Uenced by Food Intake, pp. 283297. Elsevier North-Holland Biomedical Press.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Obayashi K, Saeki K, Iwamoto J, Okamoto N, Tomioka K, Nezu S, Ikada Y & Kurumatani N 2013 Exposure to light at night, nocturnal urinary melatonin excretion, and obesity/dyslipidemia in the elderly: a cross-sectional analysis of the HEIJO-KYO study. Journal of Clinical Endocrinology and Metabolism 98 337344. (https://doi.org/10.1210/jc.2012-2874)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peplonska B, Bukowska A & Sobala W 2014 Rotating night shift work and physical activity of nurses and midwives in the cross-sectional study in Lodz, Poland. Chronobiology International 31 11521159. (https://doi.org/10.3109/07420528.2014.957296)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reppert SM & Weaver DR 2002 Coordination of circadian timing in mammals. Nature 418 935941. (https://doi.org/10.1038/nature00965)

  • Ribeiro RA, Vanzela EC, Oliveira CA, Bonfleur ML, Boschero AC & Carneiro EM 2010 Taurine supplementation: involvement of cholinergic/phospholipase C and protein kinase A pathways in potentiation of insulin secretion and Ca2+ handling in mouse pancreatic islets. British Journal of Nutrition 104 11481155. (https://doi.org/10.1017/S0007114510001820)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Solon-Biet SM, McMahon AC, Ballard JW, Ruohonen K, Wu LE, Cogger VC, Warren A, Huang X, Pichaud N & Melvin RG et al.2014 The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metabolism 19 418430. (https://doi.org/10.1016/j.cmet.2014.02.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG & Simpson SJ 2015 Macronutrients and caloric intake in health and longevity. Journal of Endocrinology 226 R17R28. (https://doi.org/10.1530/JOE-15-0173)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stone KP, Wanders D, Orgeron M, Cortez CC & Gettys TW 2014 Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice. Diabetes 63 37213733. (https://doi.org/10.2337/db14-0464)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sutton GM, Centanni AV & Butler AA 2010 Protein malnutrition during pregnancy in C57BL/6J mice results in offspring with altered circadian physiology before obesity. Endocrinology 151 15701580. (https://doi.org/10.1210/en.2009-1133)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takahashi JS 1992 Circadian clock genes are ticking. Science 258 238240. (https://doi.org/10.1126/science.1384127)

  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A & Jensen DR et al.2005 Obesity and metabolic syndrome in circadian clock mutant mice. Science 308 10431045. (https://doi.org/10.1126/science.1108750)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang C, Dai J, Yang M, Deng G, Xu S, Jia Y, Boden G, Ma ZA, Yang G & Li L 2014 Silencing of FGF-21 expression promotes hepatic gluconeogenesis and glycogenolysis by regulation of the STAT3-SOCS3 signal. FEBS Journal 281 21362147. (https://doi.org/10.1111/febs.12767)

    • PubMed
    • Search Google Scholar
    • Export Citation