Paternal diabetes programs sex-dependent placental alterations and fetal overgrowth

in Journal of Endocrinology
Authors:
Daiana Fornes Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina

Search for other papers by Daiana Fornes in
Current site
Google Scholar
PubMed
Close
,
Florencia Heinecke Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Laboratory of Programming of Metabolic Anomalies, CEFYBO, Buenos Aires, Argentina

Search for other papers by Florencia Heinecke in
Current site
Google Scholar
PubMed
Close
,
Cintia Romina Gatti Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina

Search for other papers by Cintia Romina Gatti in
Current site
Google Scholar
PubMed
Close
,
Sabrina Lorena Roberti Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina

Search for other papers by Sabrina Lorena Roberti in
Current site
Google Scholar
PubMed
Close
,
Verónica White Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Laboratory of Programming of Metabolic Anomalies, CEFYBO, Buenos Aires, Argentina

Search for other papers by Verónica White in
Current site
Google Scholar
PubMed
Close
,
Alicia Jawerbaum Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina

Search for other papers by Alicia Jawerbaum in
Current site
Google Scholar
PubMed
Close
, and
Evangelina Capobianco Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina

Search for other papers by Evangelina Capobianco in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7915-7251

Correspondence should be addressed to E Capobianco: evacapobianco@yahoo.com.ar
Restricted access
Rent on DeepDyve

Sign up for journal news

The aim of this study was to evaluate the paternal programming of sex-dependent alterations in fetoplacental growth and placental lipid metabolism regulated by peroxisome proliferator-activated receptor (PPAR) target genes in F1 diabetic males born from F0 pregestational diabetic rats. F1 control and diabetic male rats were mated with control female rats. On day 21 of gestation, F2 male and female fetoplacental growth, placental lipid levels, and protein and mRNA levels of genes involved in lipid metabolism and transport were evaluated. Fetal but not placental weight was increased in the diabetic group. Triglyceride, cholesterol and free fatty acid levels were increased in placentas of male fetuses from the diabetic group. The mRNA levels of Pparα and Pparγ coactivator 1α (Pgc-1α) were increased only in placentas of male fetuses from the diabetic group. Protein levels of PPARα and PGC-1α were decreased only in placentas of male fetuses from the diabetic group. No differences were found in Pparγ mRNA and protein levels in placentas from the diabetic group. The mRNA levels of genes involved in lipid synthesis showed no differences between groups, whereas the mRNA levels of genes involved in lipid oxidation and transport were increased only in placentas of male fetuses from the diabetic group. In conclusion, paternal diabetes programs fetal overgrowth and sex-dependent effects on the regulation of lipid metabolism in the placenta, where only placentas of male fetuses show an increase in lipid accumulation and mRNA expression of enzymes involved in lipid oxidation and transport pathways.

 

  • Collapse
  • Expand
  • Aye ILMH, Waddell BJ, Mark PJ & Keelan JA 2010 Placental ABCA1 and ABCG1 transporters efflux cholesterol and protect trophoblasts from oxysterol induced toxicity. Biochimica et Biophysica Acta 1801 10131024. (https://doi.org/10.1016/j.bbalip.2010.05.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barchuk M, Miksztowicz V, Zago V, Cevey A, López G, Goren N, Friedman S, Gelpi RJ, Morales C & Fernandez Tomé MDC et al.2018 Endothelial lipase is an alternative pathway for fatty acid release from lipoproteins: evidence from a high fat diet model of obesity in rats. Lipids 53 9931003. (https://doi.org/10.1002/lipd.12107)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barker DJP 2006 Adult consequences of fetal growth restriction. Clinical Obstetrics and Gynecology 49 270283. (https://doi.org/10.1097/00003081-200606000-00009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barker DJP, Eriksson JG, Forsén T & Osmond C 2002 Fetal origins of adult disease: strength of effects and biological basis. International Journal of Epidemiology 31 12351239. (https://doi.org/10.1093/ije/31.6.1235)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barrett HL, Kubala MH, Scholz Romero K, Denny KJ, Woodruff TM, McIntyre HD, Callaway LK & Nitert MD 2014 Placental lipases in pregnancies complicated by gestational diabetes mellitus (GDM). PLoS ONE 9 e104826. (https://doi.org/10.1371/journal.pone.0104826)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bligh EG & Dyer WJ 1959 A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37 911917. (https://doi.org/10.1139/o59-099)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bradford MM 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 248254. (https://doi.org/10.1006/abio.1976.9999)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bromfield JJ 2014 Seminal fluid and reproduction: much more than previously thought. Journal of Assisted Reproduction and Genetics 31 627636. (https://doi.org/10.1007/s10815-014-0243-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Capobianco E, Jawerbaum A, Romanini MC, White V, Pustovrh C, Higa R, Martinez N, Mugnaini MT, Soñez C & Gonzalez E 2005 15-Deoxy-Δ12,14-prostaglandin J2 and peroxisome proliferator-activated receptor γ (PPARγ) levels in term placental tissues from control and diabetic rats: modulatory effects of a PPRAγ agonist on nitridergic and lipid placental metabolism. Reproduction, Fertility, and Development 17 423433. (https://doi.org/10.1071/RD04067)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Capobianco E, Martínez N, Higa R, White V & Jawerbaum A 2008 The effects of maternal dietary treatments with natural PPAR ligands on lipid metabolism in fetuses from control and diabetic rats. Prostaglandins, Leukotrienes, and Essential Fatty Acids 79 191199. (https://doi.org/10.1016/j.plefa.2008.08.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Capobianco E, Pelesson M, Careaga V, Fornes D, Canosa I, Higa R, Maier M & Jawerbaum A 2015 Intrauterine programming of lipid metabolic alterations in the heart of the offspring of diabetic rats is prevented by maternal diets enriched in olive oil. Molecular Nutrition and Food Research 59 19972007. (https://doi.org/10.1002/mnfr.201500334)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Capobianco E, Fornes D, Linenberg I, Powell TL, Jansson T & Jawerbaum A 2016 A novel rat model of gestational diabetes induced by intrauterine programming is associated with alterations in placental signaling and fetal overgrowth. Molecular and Cellular Endocrinology 422 221232. (https://doi.org/10.1016/j.mce.2015.12.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chassen SS, Ferchaud-Roucher V, Gupta MB, Jansson T & Powell TL 2018 Alterations in placental long chain polyunsaturated fatty acid metabolism in human intrauterine growth restriction. Clinical Science 132 595607. (https://doi.org/10.1042/CS20171340)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feng J, Han J, Pearce SFA, Silverstein RL, Gotto AM, Hajjar DP & Nicholson AC 2000 Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-γ. Journal of Lipid Research 41 688696. (https://doi.org/10.1016/S0022-2275(2032377-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fernandez-Twinn DS, Hjort L, Novakovic B, Ozanne SE & Saffery R 2019 Intrauterine programming of obesity and type 2 diabetes. Diabetologia 62 1789–1801. (https://doi.org/10.1007/S00125-019-4951-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fornes D, White V, Higa R, Heinecke F, Capobianco E & Jawerbaum A 2018 Sex-dependent changes in lipid metabolism, PPAR pathways and microRNAs that target PPARs in the fetal liver of rats with gestational diabetes. Molecular and Cellular Endocrinology 461 1221. (https://doi.org/10.1016/j.mce.2017.08.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fornes D, Heinecke F, Roberti SL, White V, Capobianco E & Jawerbaum A 2020 Proinflammation in maternal and fetal livers and circulating miR-122 dysregulation in a GDM rat model induced by intrauterine programming. Molecular and Cellular Endocrinology 510 110824. (https://doi.org/10.1016/j.mce.2020.110824)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gabory A, Roseboom TJ, Moore T, Moore LG & Junien C 2013 Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biology of Sex Differences 4 5. (https://doi.org/10.1186/2042-6410-4-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Godfrey KM & Barker DJP 1995 Maternal nutrition in relation to fetal and placental growth. European Journal of Obstetrics, Gynecology, and Reproductive Biology 61 1522. (https://doi.org/10.1016/0028-2243(9502148-L)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hanson MA & Gluckman PD 2008 Developmental origins of health and disease: new insights. Basic and Clinical Pharmacology and Toxicology 102 9093. (https://doi.org/10.1111/j.1742-7843.2007.00186.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harder T, Rodekamp E, Schellong K, Dudenhausen JW & Plagemann A 2007 Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. American Journal of Epidemiology 165 849857. (https://doi.org/10.1093/aje/kwk071)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jansson T & Powell TL 2013 Role of placental nutrient sensing in developmental programming. Clinical Obstetrics and Gynecology 56 591601. (https://doi.org/10.1097/GRF.0b013e3182993a2e)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jawerbaum A & Capobianco E 2011 Review: Effects of PPAR activation in the placenta and the fetus: implications in maternal diabetes. Placenta 32 (Supplement 2) S212S217. (https://doi.org/10.1016/j.placenta.2010.12.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jawerbaum A & White V 2010 Animal models in diabetes and pregnancy. Endocrine Reviews 31 680701. (https://doi.org/10.1210/er.2009-0038)

  • Kautzky-Willer A, Harreiter J & Pacini G 2016 Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocrine Reviews 37 278316. (https://doi.org/10.1210/er.2015-1137)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lager S & Powell TL 2012 Regulation of nutrient transport across the placenta. Journal of Pregnancy 2012 179827. (https://doi.org/10.1155/2012/179827)

  • Larqué E, Pagán A, Prieto MT, Blanco JE, Gil-Sánchez A, Zornoza-Moreno M, Ruiz-Palacios M, Gázquez A, Demmelmair H & Parrilla JJ et al.2014 Placental fatty acid transfer: a key factor in fetal growth. Annals of Nutrition and Metabolism 64 247253. (https://doi.org/10.1159/000365028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lewis RM, Childs CE & Calder PC 2018a New perspectives on placental fatty acid transfer. Prostaglandins, Leukotrienes, and Essential Fatty Acids 138 2429. (https://doi.org/10.1016/j.plefa.2018.10.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lewis RM, Wadsack C & Desoye G 2018b Placental fatty acid transfer. Current Opinion in Clinical Nutrition and Metabolic Care 21 7882. (https://doi.org/10.1097/MCO.0000000000000443)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li J, Tsuprykov O, Yang X & Hocher B 2016 Paternal programming of offspring cardiometabolic diseases in later life. Journal of Hypertension 34 21112126. (https://doi.org/10.1097/HJH.0000000000001051)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martínez N, White V, Kurtz M, Higa R, Capobianco E & Jawerbaum A 2011a Activation of the nuclear receptor PPARα regulates lipid metabolism in foetal liver from diabetic rats: implications in diabetes-induced foetal overgrowth. Diabetes/Metabolism Research and Reviews 27 3546. (https://doi.org/10.1002/dmrr.1151)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martínez N, Kurtz M, Capobianco E, Higa R, White V & Jawerbaum A 2011b PPARα agonists regulate lipid metabolism and nitric oxide production and prevent placental overgrowth in term placentas from diabetic rats. Journal of Molecular Endocrinology 47 112. (https://doi.org/10.1530/JME-10-0173)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mirza AZ, Althagafi II & Shamshad H 2019 Role of PPAR receptor in different diseases and their ligands: physiological importance and clinical implications. European Journal of Medicinal Chemistry 166 502513. (https://doi.org/10.1016/j.ejmech.2019.01.067)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mitanchez D, Yzydorczyk C & Simeoni U 2015 What neonatal complications should the pediatrician be aware of in case of maternal gestational diabetes? World Journal of Diabetes 6 734–743. (https://doi.org/10.4239/wjd.v6.i5.734)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Monsalve FA, Pyarasani RD, Delgado-Lopez F & Moore-Carrasco R 2013 Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators of Inflammation 2013 549627. (https://doi.org/10.1155/2013/549627)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Munday MR & Hemingway CJ 1999 The regulation of acetyl-CoA carboxylase – a potential target for the action of hypolipidemic agents. Advances in Enzyme Regulation 39 205234. (https://doi.org/10.1016/S0065-2571(9800016-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA & Morris MJ 2010 Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467 963966. (https://doi.org/10.1038/nature09491)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patterson VS, Ribeiro TA, Yeo E, Kennedy KM, Mathias PC, Petrik JJ, Sloboda DM & Sloboda D 2022 Paternal obesity results in placental hypoxia and sex-specific impairments in placental vascularization and offspring metabolic function patrycja .Biol Reprod. Apr4 ioac066. (https://doi.org/10.1101/2021.03.27.437284)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perazzolo S, Hirschmugl B, Wadsack C, Desoye G, Lewis RM & Sengers BG 2017 The influence of placental metabolism on fatty acid transfer to the fetus. Journal of Lipid Research 58 443454. (https://doi.org/10.1194/jlr.P072355)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Portha B, Picon L & Rosselin G 1979 Chemical diabetes in the adult rat as the spontaneous evolution of neonatal diabetes. Diabetologia 17 371377. (https://doi.org/10.1007/BF01236272)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Portha B, Grandjean V & Movassat J 2019 Mother or father: who is in the front line? Mechanisms underlying the non-genomic transmission of obesity/diabetes via the maternal or the paternal line. Nutrients 11 233.(https://doi.org/10.3390/nu11020233)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roberti SL, Higa R, Sato H, Gomez Ribot D, Capobianco E & Jawerbaum A 2020 Olive oil supplementation prevents extracellular matrix deposition and reduces prooxidant markers and apoptosis in the offspring’s heart of diabetic rats. Reproductive Toxicology 95 137147. (https://doi.org/10.1016/j.reprotox.2020.05.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Savva C, Helguero LA, González-Granillo M, Couto D, Melo T, Li X, Angelin B, Domingues MR, Kutter C & Korach-André M 2021 Obese mother offspring have hepatic lipidic modulation that contributes to sex-dependent metabolic adaptation later in life. Communications Biology 4 14. (https://doi.org/10.1038/s42003-020-01513-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Segura MT, Demmelmair H, Krauss-Etschmann S, Nathan P, Dehmel S, Padilla MC, Rueda R, Koletzko B & Campoy C 2017 Maternal BMI and gestational diabetes alter placental lipid transporters and fatty acid composition. Placenta 57 144151. (https://doi.org/10.1016/j.placenta.2017.07.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sferruzzi-Perri AN & Camm EJ 2016 The programming power of the placenta. Frontiers in Physiology 7 33. (https://doi.org/10.3389/fphys.2016.00033)

  • Soubry A 2018 POHaD: why we should study future fathers. Environmental Epigenetics 4 dvy007. (https://doi.org/10.1093/eep/dvy007)

  • Tontonoz P & Spiegelman BM 2008 Fat and beyond: the diverse biology of PPARγ. Annual Review of Biochemistry 77 289312. (https://doi.org/10.1146/annurev.biochem.77.061307.091829)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Velazquez MA, Fleming TP & Watkins AJ 2019 Periconceptional environment and the developmental origins of disease. Journal of Endocrinology 242 T33T49. (https://doi.org/10.1530/JOE-18-0676)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wahli W & Michalik L 2012 PPARs at the crossroads of lipid signaling and inflammation. Trends in Endocrinology and Metabolism 23 351363. (doi:10.1016/j.tem.2012.05.001.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watkins AJ, Dias I, Tsuro H, Allen D, Emes RD, Moreton J, Wilson R, Ingram RJM & Sinclair KD 2018 Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. PNAS 115 1006410069. (https://doi.org/10.1073/pnas.1806333115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wei Y, Yang CR, Wei YP, Zhao ZA, Hou Y, Schatten H & Sun QY 2014 Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. PNAS 111 18731878. (https://doi.org/10.1073/pnas.1321195111)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • White V, Jawerbaum A, Mazzucco MB, Gauster M, Desoye G & Hiden U 2015 Diabetes-associated changes in the fetal insulin/insulin-like growth factor system are organ specific in rats. Pediatric Research 77 4855. (https://doi.org/10.1038/pr.2014.139)

    • PubMed
    • Search Google Scholar
    • Export Citation