Increased osteoblast GαS level determines bone response to hyperparathyroidism in female mice

in Journal of Endocrinology
Authors:
Lucia Zhang Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada

Search for other papers by Lucia Zhang in
Current site
Google Scholar
PubMed
Close
,
Kathy K Lee Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada

Search for other papers by Kathy K Lee in
Current site
Google Scholar
PubMed
Close
,
Kim S Sugamori Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Kim S Sugamori in
Current site
Google Scholar
PubMed
Close
,
Marc D Grynpas Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada

Search for other papers by Marc D Grynpas in
Current site
Google Scholar
PubMed
Close
, and
Jane Mitchell Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Jane Mitchell in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1001-7490

Correspondence should be addressed to J Mitchell: jane.mitchell@utoronto.ca
Restricted access
Rent on DeepDyve

Sign up for journal news

GS, the stimulatory heterotrimeric G protein, is an essential regulator of osteogenesis and bone turnover. To determine if increasing GαS in osteoblasts alters bone responses to hyperparathyroidism, we used a transgenic mouse line overexpressing GαS in osteoblasts (GS-Tg mice). Primary osteoblasts from GS-Tg mice showed increased basal and parathyroid hormone (PTH)-stimulated cAMP and greater responses to PTH than cells from WT mice. Skeletal responses to 2-week continuous PTH administration (cPTH) in female mice resulted in trabecular bone loss in WT mice but 74% and 34% increase in trabecular bone mass in long bones and vertebrae, respectively, in GS-Tg mice. Vertebral biomechanical strength was compromised by cPTH treatment in WT mice but not in GS-Tg. Increased peritrabecular fibrosis was greatly increased by cPTH in Gs-Tg compared to WT mice and corresponded with greater increases in Wnt pathway proteins in trabecular bone. Cortical bone responded negatively to cPTH in WT and Gs-Tg mice with large increases in porosity, decreased cortical thickness and compromised biomechanical properties. These results demonstrate that hyperparathyroidism can increase trabecular bone when GS expression and cAMP stimulation in osteoblasts are increased but this is not the case in cortical bone where increased GS expression exacerbates cortical bone loss.

 

  • Collapse
  • Expand
  • Aurbach GD & Potts Jr JT 1964 The parathyroids. Advances in Metabolic Disorders 15 4593. (https://doi.org/10.1016/b978-1-4831-6748-0.50007-0)

  • Ben-Awadh AN, Delgado-Calle J, Tu XL, Kuhlenschmidt K, Allen MR, Plotkin LI & Bellido T 2014 Parathyroid hormone receptor signaling induces bone resorption in the adult skeleton by directly regulating the RANKL gene in osteocytes. Endocrinology 155 2797–2809. (https://doi.org/10.1210/en.2014-1046)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bilezikian JP 2018 Primary hyperparathyroidism. Journal of Clinical Endocrinology and Metabolism 103 39934004. (https://doi.org/10.1210/jc.2018-01225)

  • Calvi LM, Sims NA, Hunzelman JL, Knight MC, Giovannetti A, Saxton JM, Kronenberg HM, Baron R & Schipani E 2001 Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. Journal of Clinical Investigation 107 277286. (https://doi.org/10.1172/JCI11296)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Charbonneau A, Melancon A, Lavoie C & Lavoie JM 2005 Alterations in hepatic glucagon receptor density and in G(s)alpha and G(i)alpha(2) protein content with diet-induced hepatic steatosis: effects of acute exercise. American Journal of Physiology: Endocrinology and Metabolism 289 E8E14. (https://doi.org/10.1152/ajpendo.00570.2004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Christiansen P, Steiniche T, Brockstedt H, Mosekilde L, Hessov I & Melsen F 1993 Primary hyperparathyroidism: iliac crest cortical thickness, structure, and remodeling evaluated by histomorphometric methods. Bone 14 755762. (https://doi.org/10.1016/8756-3282(9390207-q)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • dela Cruz A, Mattocks M, Sugamori KS, Grynpas MD & Mitchell J 2014 Reduced trabecular bone mass and strength in mice overexpressing Gα11 protein in cells of the osteoblast lineage. Bone 59 211222. (https://doi.org/10.1016/j.bone.2013.11.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dempster DW, Müller R, Zhou H, Kohler T, Shane E, Parisien M, Silverberg SJ & Bilezikian JP 2007 Preserved three-dimensional cancellous bone structure in mild primary hyperparathyroidism. Bone 41 1924. (https://doi-org.myaccess.library.utoronto.ca/10.1016/j.bone.2007.03.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR & Parfitt AM 2013 Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. Journal of Bone and Mineral Research 28 217. (https://doi.org/10.1002/jbmr.1805)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dumitrescu CE & Collins MT 2008 McCune–Albright syndrome. Orphanet Journal of Rare Diseases 3 12. (https://doi.org/10.1186/1750-1172-3-12)

  • Egan JJ, Gronowicz G & Rodan GA 1991 Parathyroid hormone promotes the disassembly of cytoskeletal actin and myosin in cultured osteoblastic cells: mediation by cyclic AMP. Journal of Cellular Biochemistry 45 101111. (https://doi.org/10.1002/jcb.240450117)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Finkelstein JS, Klibanski A, Arnold AL, Toth TL, Hornstein MD & Neer RM 1998 Prevention of estrogen deficiency-related bone loss with human parathyroid hormone-(1–34): a randomized controlled trial. JAMA 280 10671073. (https://doi.org/10.1001/jama.280.12.1067)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frey UH, Hauner H, Joeckel KH, Manthey I, Brockmeyer N & Siffert W 2008 A novel promoter polymorphism in the human gene GNAS affects binding of transcription factor upstream stimulatory factor 1, G alpha s protein expression and body weight regulation. Pharmacogenetics and Genomics 18 141151. (https://doi.org/10.1097/FPC.0b013e3282f49964)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frey UH, Adamzik M, Kottenberg-Assenmacher E, Jakob H, Manthey I, Broecker-Preuss M, Bergman L, Heusch G, Siffert W & Peters J et al.2009 A novel functional haplotype in the human GNAS gene alters G alpha s expression, responsiveness to beta-adrenoceptor stimulation, and peri-operative cardiac performance. European Heart Journal 30 14021410. (https://doi.org/10.1093/eurheartj/ehn572)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guthrie JR, Ebeling PR, Hooper JL, Barrett-Connor E, Dennerstein L, Dudley EC, Burger HG & Wark JD 1998 A prospective study of bone loss in menopausal Australian-born women. Osteoporosis International 8 282290. (https://doi.org/10.1007/s001980050066)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hodsman AB, Bauer DC, Dempster DW, Dian L, Hanley DA, Harris ST, Kendler DL, McClung MR, Miller PD & Olszynski WP et al.2005 Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocrine Reviews 26 688703. (https://doi.org/10.1210/er.2004-0006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hong SHH, Lu X, Names MS & Mitchell J 2009 Regulation of osterix (Osx, Sp7) and the Osx promoter by parathyroid hormone in osteoblasts. Journal of Molecular Endocrinology 43 197207. (https://doi.org/10.1677/JME-09-0012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hsiao EC, Boudignon BM, Chang WC, Bencsik M, Peng J, Nguyen TD, Manalac C, Halloran BP, Conklin BR & Nissenson RA 2008 Osteoblast expression of an engineered Gs-coupled receptor dramatically increases bone mass. PNAS 105 12091214. (https://doi.org/10.1073/pnas.0707457105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iida-Klein A, Lu SS, Kapadia R, Burkhart M, Moreno A, Dempster DW & Lindsay R 2005 Short-term continuous infusion of human parathyroid hormone 1–34 fragment is catabolic with decreased trabecular connectivity density accompanied by hypercalcemia in C57BL/J6 mice. Journal of Endocrinology 186 549557. (https://doi.org/10.1677/joe.1.06270)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jia B, Wang Z, Sun X, Chen J, Zhao J & Qiu X 2019 Long noncoding RNA LINC00707 sponges miR-370-3p to promote osteogenesis of human bone marrow-derived mesenchymal stem cells through upregulating WNT2B. Stem Cell Research and Therapy 10 67. (https://doi.org/10.1186/s13287-019-1161-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM & Manolagas SC 1999 Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. Journal of Clinical Investigation 104 439446. (https://doi.org/10.1172/JCI6610)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jilka RL, O’Brien CA, Ali AA, Roberson PK, Weinstein RS & Manolagas SC 2009 Intermittent PTH stimulates periosteal bone formation by actions on post-mitotic preosteoblasts. Bone 44 275286. (https://doi.org/10.1016/j.bone.2008.10.037)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jongen JW, Willemstein-van Hove EC, van der Meer JM, Bos MP, Juppner H, Segre GV, Abou-Samra AB, Feyen JH & Herrmann-Erlee MP 1996 Down-regulation of the receptor for parathyroid hormone (PTH) and PTH-related peptide by PTH in primary fetal rat osteoblasts. Journal of Bone and Mineral Research 11 12181225. (https://doi.org/10.1002/jbmr.5650110905)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kalavantavanich K & Schramm CM 2000 Dexamethasone potentiates high-affinity beta-agonist binding and G(s)alpha protein expression in airway smooth muscle. American Journal of Physiology: Lung Cellular and Molecular Physiology 278 L1101L1106. (https://doi.org/10.1152/ajplung.2000.278.5.L1101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kho D, MacDonald C, Johnson R, Unsworth CP, O’Carroll SJ, du Mez E, Angel CE & Graham ES 2015 Application of xCELLigence RTCA biosensor technology for revealing the profile and window of drug responsiveness in real time. Biosensors 5 199222. (https://doi.org/10.3390/bios5020199)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim SW, Pajevic PD, Selig M, Barry KJ, Yang JY, Shin CS, Baek WY, Kim JE & Kronenberg HM 2012 Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts. Journal of Bone and Mineral Research 27 20752084. (https://doi.org/10.1002/jbmr.1665)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim JM, Lin C, Stavre Z, Greenblatt MB & Shin JH 2020 Osteoblast-osteoclast communication and bone homeostasis. Cells 9 20732087. (https://doi.org/10.3390/cells9092073)

  • Krempien B 1979 Bone modelling processes at the endosteal surface of human femora. Scanning electron microscopical studies in normal bone and in renal osteodystrophy. Virchows Archiv A: Pathological Anatomy and Histology 382 7388. (https://doi.org/10.1007/BF01102742)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krishnan V, Bryant HU & Macdougald OA 2006 Regulation of bone mass by Wnt signaling. Journal of Clinical Investigation 116 12021209. (https://doi.org/10.1172/JCI28551)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lewiecki EM & Miller PD 2013 Skeletal effects of primary hyperparathyroidism: bone mineral density and fracture risk. Journal of Clinical Densitometry 16 2832. (https://doi.org/10.1016/j.jocd.2012.11.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lo JC, Zheng P, Grimsrud CD, Chandra M, Ettinger B, Budayr A, Lau G, Baur MM, Hui RL & Neugebauer R 2014 Racial/ethnic differences in hip and diaphyseal femur fractures. Osteoporosis International 25 23132318. (https://doi.org/10.1007/s00198-014-2750-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lomri A & Marie PJ 1990 Distinct effects of calcium- and cyclic AMP-enhancing factors on cytoskeletal synthesis and assembly in mouse osteoblastic cells. Biochimica et Biophysica Acta 1052 179186. (https://doi.org/10.1016/0167-4889(9090074-n)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lotinun S, Sibonga JD & Turner RT 2005 Evidence that the cells responsible for marrow fibrosis in a rat model for hyperparathyroidism are preosteoblasts. Endocrinology 146 4074–4081. (https://doi.org/10.1210/en.2005-0480)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mattera R, Graziano MP, Yatani A, Zhou Z, Graf R, Codina J, Birnbaumer L, Gilman AG & Brown AM 1989 Splice variants of the alpha subunit of the G protein Gs activate both adenylyl cyclase and calcium channels. Science 243 804807. (https://doi.org/10.1126/science.2536957)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Millard SM, Louie AM, Wattanachanya L, Wronski TJ, Conklin BR & Nissenson RA 2011 Blockade of receptor-activated G(i) signaling in osteoblasts in vivo leads to site-specific increases in cortical and cancellous bone formation. Journal of Bone and Mineral Research 26 822832. (https://doi.org/10.1002/jbmr.273)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Misra M, Ackerman KE, Bredella MA, Stanford FC, Faje AT, Nordberg A, Derrico NP & Bouxsein ML 2017 Racial differences in bone microarchitecture and estimated strength at the distal radius and distal tibia in older adolescent girls: a cross-sectional study. Journal of Racial and Ethnic Health Disparities 4 587598. (https://doi.org/10.1007/s40615-016-0262-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mitchell J & Bansal A 1997 Dexamethasone increases Galpha(q-11) expression and hormone stimulated phospholipase C activity in UMR-106-01 cells. American Journal of Physiology: Endocrinology and Metabolism 273 E528E535. (https://doi.org/10.1152/ajpendo.1997.273.3.E528)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mosekilde L 2008 Primary hyperparathyroidism and the skeleton. Clinical Endocrinology 69 119. (https://doi.org/10.1111/j.1365-2265.2007.03162.x)

  • O’Brien CA, Plotkin LI, Galli C, Goellner JJ, Gortazar AR, Allen MR, Robling AG, Bouxsein M, Schipani E & Turner CH et al.2008 Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS ONE 3 e2942. (https://doi.org/10.1371/journal.pone.0002942)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM & Recker RR 1987 Bone histomorphometry: standardization of nomenclature, symbols, and units. report of the ASBMR Histomorphometry Nomenclature Committee. Journal of Bone and Mineral Research 2 595610. (https://doi.org/10.1002/jbmr.5650020617)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parisien M, Silverberg SJ, Shane E, Dempster DW & Bilezikian JP 1990 Bone disease in primary hyperparathyroidism. Endocrinol Metab Clin North Am. 19 1934.

  • Sakamoto A, Chen M, Nakamura T, Xie T, Karsenty G & Weinstein LS 2005 Deficiency of the G-protein alpha-subunit G(s)alpha in osteoblasts leads to differential effects on trabecular and cortical bone. Journal of Biological Chemistry 280 2136921375. (https://doi.org/10.1074/jbc.M500346200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silverberg SJ, Shane E, de la Cruz L, Dempster DW, Feldman F, Seldin D, Jacobs TP, Siris ES, Cafferty M & Parisien MV 1989 Skeletal disease in primary hyperparathyroidism. Journal of Bone and Mineral Research 4 283291. (https://doi.org/10.1002/jbmr.5650040302)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sinha P, Aarnisalo P, Chubb R, Ono N, Fulzele K, Selig M, Saeed H, Chen M, Weinstein LS & Pajevic PD et al.2014 Loss of Gsalpha early in the osteoblast lineage favors adipogenic differentiation of mesenchymal progenitors and committed osteoblast precursors. Journal of Bone and Mineral Research 29 24142426. (https://doi.org/10.1002/jbmr.2270)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sinha P, Aarnisalo P, Chubb R, Poulton IJ, Guo J, Nachtrab G, Kinura T, Swami S, Saeed H & Chen M et al.2016 Loss of G(s)alpha in the postnatal skeleton leads to low bone mass and a blunted response to anabolic parathyroid hormone therapy. Journal of Biological Chemistry 291 16311642. (https://doi.org/10.1074/jbc.M115.679753)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smigel M, Katada T, Northup JK, Bokoch GM, Ui M & Gilman AG 1984 Mechanisms of guanine nucleotide-mediated regulation of adenylate cyclase activity. Advances in Cyclic Nucleotide and Protein Phosphorylation Research 17 118.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stern AR, Stern MM, Van Dyke ME, Jähn K, Prideaux M & Bonewald LF 2012 Isolation and culture of primary osteocytes from the long bones of skeletaly mature and aged mice. BioTechniques 52 361373. (https://doi.org/10.2144/0000113876)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Szulc P, Marchand F, Duboeuf F & Delmas PD 2000 Cross-sectional assessment of age-related bone loss in men: the MINOS study. Bone 26 123129. (https://doi.org/10.1016/s8756-3282(9900255-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tougaard L, Hau C, Rodbro P & Ditzelet J 1977 Bone mineralization and bone mineral content in primary hyperparathyroidism. Acta Endocrinologica 84 314319. (https://doi.org/10.1530/acta.0.0840314)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vu TD, Wang XF, Wang Q, Cusano NE, Irani D, Silva BC, Ghasem-Zadeh A, Udesky J, Romano ME & Zebaze R et al.2013 New insights into the effects of primary hyperparathyroidism on the cortical and trabecular compartments of bone. Bone 55 5763. (https://doi.org/10.1016/j.bone.2013.03.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang J, Gilchrist A & Stern PH 2011 Antagonist minigenes identify genes regulated by parathyroid hormone through G protein-selective and G protein co-regulated mechanisms in osteoblastic cells. Cellular Signalling 23 380388. (https://doi.org/10.1016/j.cellsig.2010.10.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weinstein LS, Gejman PV, Friedman E, Kadowaki T, Collins RM, Gershon ES & Spiegal AM 1990 Mutations of the Gs alpha-subunit gene in Albright hereditary osteodystrophy detected by denaturing gradient gel-electrophoresis. PNAS 87 82878290. (https://doi.org/10.1073/pnas.87.21.8287)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang X, Lee FYG & Ward GS 1997 Increased expression of Gsα enhances activation of the adenylyl cyclase signal transduction cascade. Molecular Endocrinology 11 10531061. (https://doi.org/10.1210/mend.11.8.9957)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu XP & Chandrasekhar S 1997 Parathyroid hormone (PTH 1–34) regulation of rat osteocalcin gene transcription. Endocrinology 138 30853092. (https://doi.org/10.1210/endo.138.8.5315)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang L, Sugamori KS, Claridge C, dela Cruz A, Grynpas MD & Mitchell J 2017 Overexpression of Gαs in murine osteoblasts in vivo leads to increased bone mass and decreased bone quality. Journal of Bone and Mineral Research 32 21712181. (https://doi.org/10.1002/jbmr.3223)

    • PubMed
    • Search Google Scholar
    • Export Citation