Long-term role of neonatal microglia and monocytes in ovarian health

in Journal of Endocrinology
View More View Less
  • 1 School of Health and Biomedical Sciences RMIT University, Melbourne, Victoria, Australia
  • | 2 The Florey Institute of Neuroscience and Mental Health, Microscopy Facility, Melbourne, Victoria, Australia
  • | 3 Barwon Health Laboratory, Barwon Health, University Hospital, Geelong, Victoria, Australia
  • | 4 Institute for Physical and Mental Health and Clinical Transformation, School of Medicine, Deakin University, Geelong, Victoria, Australia
  • | 5 ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, Victoria, Australia

Correspondence should be addressed to L Sominsky: luba.sominsky@deakin.edu.au
Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

Early life microglia are essential for brain development, and developmental disruption in microglial activity may have long-term implications for the neuroendocrine control of reproduction. We and others have previously shown that early life immune activation compromises the long-term potential for reproductive function in females. However, the supportive role of microglia in female reproductive development is still unknown. Here, we examined the long-term programming effects of transient neonatal microglial and monocyte ablation on hypothalamic–pituitary–gonadal (HPG) axis function in female rats. We employed a Cx3cr1-Dtr transgenic Wistar rat model to acutely ablate microglia and monocytes, commencing on either postnatal day (P) 7 or 14, since the development of the HPG axis in female rodents primarily occurs during the first two to three postnatal weeks. After an acutely diminished expression of microglia and monocyte genes in the brain and ovaries, respectively, microglia had repopulated the brain by P21, albeit that cellular complexity was still reduced in both groups at this time. Removal of microglia and monocytes on P7, but not P14 reduced circulating luteinising hormone levels in adulthood and ovarian gonadotropin receptors mRNA. These changes were notably associated with fewer primary and antral follicles in these rats. These data suggest that transient ablation of microglia and monocytes at the start of the second but not the third postnatal week has long-term effects on ovarian health. The findings highlight the important developmental role of a healthy immune system for female potential reproductive capacity and the importance of critical developmental periods to adult ovarian health.

 

Society for Endocrinology logo

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 697 697 539
Full Text Views 26 26 14
PDF Downloads 24 24 14
  • Bell MR 2018 Comparing postnatal development of gonadal hormones and associated social behaviors in rats, mice, and humans. Endocrinology 159 25962613. (https://doi.org/10.1210/en.2018-00220)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernal AB, Vickers MH, Hampton MB, Poynton RA & Sloboda DM 2010 Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring. PLoS ONE 5 e15558. (https://doi.org/10.1371/journal.pone.0015558)

    • Search Google Scholar
    • Export Citation
  • Broekmans FJ, Soules MR & Fauser BC 2009 Ovarian aging: mechanisms and clinical consequences. Endocrine Reviews 30 465493. (https://doi.org/10.1210/er.2009-0006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai J, Lou HY, Dong MY, Lu XE, Zhu YM, Gao HJ & Huang HF 2007 Poor ovarian response to gonadotropin stimulation is associated with low expression of follicle-stimulating hormone receptor in granulosa cells. Fertility and Sterility 87 13501356. (https://doi.org/10.1016/j.fertnstert.2006.11.034)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron E, Ciofi P, Prevot V & Bouret SG 2012 Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function. Journal of Neuroscience 32 1148611494. (https://doi.org/10.1523/JNEUROSCI.6074-11.2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan KA, Jazwiec PA, Gohir W, Petrik JJ & Sloboda DM 2018 Maternal nutrient restriction impairs young adult offspring ovarian signaling resulting in reproductive dysfunction and follicle loss. Biology of Reproduction 98 664682. (https://doi.org/10.1093/biolre/ioy008)

    • Search Google Scholar
    • Export Citation
  • Clarkson J, Boon WC, Simpson ER & Herbison AE 2009 Postnatal development of an estradiol-kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology 150 32143220. (https://doi.org/10.1210/en.2008-1733)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clasadonte J, Poulain P, Hanchate NK, Corfas G, Ojeda SR & Prevot V 2011a Prostaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation. PNAS 108 1610416109. (https://doi.org/10.1073/pnas.1107533108)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clasadonte J, Sharif A, Baroncini M & Prevot V 2011b Gliotransmission by prostaglandin E(2): a prerequisite for GnRH neuronal function? Frontiers in Endocrinology 2 91. (https://doi.org/10.3389/fendo.2011.00091)

    • Search Google Scholar
    • Export Citation
  • Cohen PE, Zhu L & Pollard JW 1997 Absence of colony stimulating factor-1 in osteopetrotic (csfmop/csfmop) mice disrupts estrous cycles and ovulation. Biology of Reproduction 56 110118. (https://doi.org/10.1095/biolreprod56.1.110)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen PE, Zhu L, Nishimura K & Pollard JW 2002 Colony-stimulating factor 1 regulation of neuroendocrine pathways that control gonadal function in mice. Endocrinology 143 14131422. (https://doi.org/10.1210/endo.143.4.8754)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cottrell EC, Campbell RE, Han SK & Herbison AE 2006 Postnatal remodeling of dendritic structure and spine density in gonadotropin-releasing hormone neurons. Endocrinology 147 36523661. (https://doi.org/10.1210/en.2006-0296)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Luca SN, Sominsky L, Soch A, Wang H, Ziko I, Rank MM & Spencer SJ 2019 Conditional microglial depletion in rats leads to reversible anorexia and weight loss by disrupting gustatory circuitry. Brain, Behavior, and Immunity 77 7791. (https://doi.org/10.1016/j.bbi.2018.12.008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Luca SN, Miller AA, Sominsky L & Spencer SJ 2020a Microglial regulation of satiety and cognition. Journal of Neuroendocrinology 32 e12838. (https://doi.org/10.1111/jne.12838)

    • Search Google Scholar
    • Export Citation
  • De Luca SN, Soch A, Sominsky L, Nguyen TX, Bosakhar A & Spencer SJ 2020b Glial remodeling enhances short-term memory performance in Wistar rats. Journal of Neuroinflammation 17 52. (https://doi.org/10.1186/s12974-020-1729-4)

    • Search Google Scholar
    • Export Citation
  • Desroziers E, Mikkelsen JD, Duittoz A & Franceschini I 2012 Kisspeptin-immunoreactivity changes in a sex- and hypothalamic-region-specific manner across rat postnatal development. Journal of Neuroendocrinology 24 11541165. (https://doi.org/10.1111/j.1365-2826.2012.02317.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • di Clemente N, Racine C, Pierre A & Taieb J 2021 Anti-Mullerian hormone in female reproduction. Endocrine Reviews 42 753782. (https://doi.org/10.1210/endrev/bnab012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Natale MR, Soch A, Ziko I, de luca SN, Spencer SJ & Sominsky L 2019 Chronic predator stress in female mice reduces primordial follicle numbers: implications for the role of ghrelin. Journal of Endocrinology 241 201219. (https://doi.org/10.1530/JOE-19-0109)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duffy DM & Stouffer RL 2003 Luteinizing hormone acts directly at granulosa cells to stimulate periovulatory processes: modulation of luteinizing hormone effects by prostaglandins. Endocrine 22 249256. (https://doi.org/10.1385/ENDO:22:3:249)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durlinger AL, Visser JA & Themmen AP 2002 Regulation of ovarian function: the role of anti-Mullerian hormone. Reproduction 124 601609. (https://doi.org/10.1530/rep.0.1240601)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerasimova T, Thanasoula MN, Zattas D, Seli E, Sakkas D & Lalioti MD 2010 Identification and in vitro characterization of follicle stimulating hormone (FSH) receptor variants associated with abnormal ovarian response to FSH. Journal of Clinical Endocrinology and Metabolism 95 529536. (https://doi.org/10.1210/jc.2009-1304)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hammond TR, Dufort C, dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, Segel M & Nemesh J et al.2019 Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50 253.e6–271.e6. (https://doi.org/10.1016/j.immuni.2018.11.004)

    • Search Google Scholar
    • Export Citation
  • Hughes PM, Botham MS, Frentzel S, Mir A & Perry VH 2002 Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia 37 314327. (https://doi.org/10.1002/glia.10037)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeppesen JV, Anderson RA, Kelsey TW, Christiansen SL, Kristensen SG, Jayaprakasan K, raine-Fenning N, Campbell BK & yding andersen C 2013 Which follicles make the most anti-Mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Molecular Human Reproduction 19 519527. (https://doi.org/10.1093/molehr/gat024)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A & Littman DR 2000 Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Molecular and Cellular Biology 20 41064114. (https://doi.org/10.1128/MCB.20.11.4106-4114.2000)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kermath BA, Riha PD, Woller MJ, Wolfe A & Gore AC 2014 Hypothalamic molecular changes underlying natural reproductive senescence in the female rat. Endocrinology 155 35973609. (https://doi.org/10.1210/en.2014-1017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klawonn AM, Fritz M, Castany S, Pignatelli M, Canal C, Simila F, Tejeda HA, Levinsson J, Jaarola M & Jakobsson J et al.2021 Microglial activation elicits a negative affective state through prostaglandin-mediated modulation of striatal neurons. Immunity 54 225.e6–234.e6. (https://doi.org/10.1016/j.immuni.2020.12.016)

    • Search Google Scholar
    • Export Citation
  • Knox AMI, Li XF, kinsey-Jones JS, Wilkinson ES, Wu XQ, Cheng YS, Milligan SR, Lightman SL & O’byrne KT 2009 Neonatal lipopolysaccharide exposure delays puberty and alters hypothalamic Kiss1 and Kiss1r mRNA expression in the female rat. Journal of Neuroendocrinology 21 683689. (https://doi.org/10.1111/j.1365-2826.2009.01885.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konishi H, Okamoto T, Hara Y, Komine O, Tamada H, Maeda M, Osako F, Kobayashi M, Nishiyama A & Kataoka Y et al.2020 Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO Journal 39 e104464. (https://doi.org/10.15252/embj.2020104464)

    • Search Google Scholar
    • Export Citation
  • Lenz KM, Nugent BM, Haliyur R & Mccarthy MM 2013 Microglia are essential to masculinization of brain and behavior. Journal of Neuroscience 33 27612772. (https://doi.org/10.1523/JNEUROSCI.1268-12.2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin P, Nicholls L, Assareh H, Fang Z, Amos TG, Edwards RJ, Assareh AA & Voineagu I 2016 Transcriptome analysis of human brain tissue identifies reduced expression of complement complex C1Q Genes in Rett syndrome. BMC Genomics 17 427. (https://doi.org/10.1186/s12864-016-2746-7)

    • Search Google Scholar
    • Export Citation
  • McGee EA & Hsueh AJ 2000 Initial and cyclic recruitment of ovarian follicles. Endocrine Reviews 21 200214. (https://doi.org/10.1210/edrv.21.2.0394)

    • Search Google Scholar
    • Export Citation
  • Menassa DA & Gomez-Nicola D 2018 Microglial dynamics during human brain development. Frontiers in Immunology 9 1014. (https://doi.org/10.3389/fimmu.2018.01014)

    • Search Google Scholar
    • Export Citation
  • Moore AM, Prescott M & Campbell RE 2013 Estradiol negative and positive feedback in a prenatal androgen-induced mouse model of polycystic ovarian syndrome. Endocrinology 154 796806. (https://doi.org/10.1210/en.2012-1954)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchesne E & Everall IP 2010 Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biological Psychiatry 68 368376. (https://doi.org/10.1016/j.biopsych.2010.05.024)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Navarro VM, Castellano JM, fernandez-Fernandez R, Barreiro ML, Roa J, sanchez-Criado JE, Aguilar E, Dieguez C, Pinilla L & tena-Sempere M 2004 Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 145 45654574. (https://doi.org/10.1210/en.2004-0413)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicol B, Rodriguez K & Yao HH 2020 Aberrant and constitutive expression of FOXL2 impairs ovarian development and functions in mice. Biology of Reproduction 103 966977. (https://doi.org/10.1093/biolre/ioaa146)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padmanabhan V, Cardoso RC & Puttabyatappa M 2016 Developmental programming, a pathway to disease. Endocrinology 157 13281340. (https://doi.org/10.1210/en.2016-1003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pangas SA, Rademaker AW, Fishman DA & Woodruff TK 2002 Localization of the activin signal transduction components in normal human ovarian follicles: implications for autocrine and paracrine signaling in the ovary. Journal of Clinical Endocrinology and Metabolism 87 26442657. (https://doi.org/10.1210/jcem.87.6.8519)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E & Dumas L et al.2011 Synaptic pruning by microglia is necessary for normal brain development. Science 333 14561458. (https://doi.org/10.1126/science.1202529)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkhurst CN, Yang G, Ninan I, Savas JN, Yates 3rd JR, Lafaille JJ, Hempstead BL, Littman DR & Gan WB 2013 Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155 15961609. (https://doi.org/10.1016/j.cell.2013.11.030)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paxinos G & Watson C 2009 The Rat Brain in Stereotaxic Coordinates. Compact 6th ed. Elsevier.

  • Picut CA, Dixon D, Simons ML, Stump DG, Parker GA & Remick AK 2015 Postnatal ovary development in the rat: morphologic study and correlation of morphology to neuroendocrine parameters. Toxicologic Pathology 43 343353. (https://doi.org/10.1177/0192623314544380)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rulli SB, Cambiasso MJ & Ratner LD 2018 Programming of the reproductive axis by hormonal and genetic manipulation in mice. Reproduction 156 R101R109. (https://doi.org/10.1530/REP-18-0054)

    • Search Google Scholar
    • Export Citation
  • Russell DL & Robker RL 2007 Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Human Reproduction Update 13 289312. (https://doi.org/10.1093/humupd/dml062)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sati A, Prescott M, Holland S, Jasoni CL, Desroziers E & Campbell RE 2021 Morphological evidence indicates a role for microglia in shaping the PCOS-like brain. Journal of Neuroendocrinology 33 e12999. (https://doi.org/10.1111/jne.12999)

    • Search Google Scholar
    • Export Citation
  • Sato J, Hashimoto S, Doi T, Yamada N & Tsuchitani M 2014 Histological characteristics of the regression of corpora lutea in Wistar Hannover rats: the comparisons with Sprague-Dawley rats. Journal of Toxicologic Pathology 27 107113. (https://doi.org/10.1293/tox.2013-0054)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schafer DP & Stevens B 2015 Microglia function in central nervous system development and plasticity. Cold Spring Harbor Perspectives in Biology 7 a020545. (https://doi.org/10.1101/cshperspect.a020545)

    • Search Google Scholar
    • Export Citation
  • Schmidt D, Ovitt CE, Anlag K, Fehsenfeld S, Gredsted L, Treier AC & Treier M 2004 The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131 933942. (https://doi.org/10.1242/dev.00969)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sierra A, Paolicelli RC & Kettenmann H 2019 Cien Anos de microglia: milestones in a century of microglial research. Trends in Neurosciences 42 778792. (https://doi.org/10.1016/j.tins.2019.09.004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva MSB, Desroziers E, Hessler S, Prescott M, Coyle C, Herbison AE & Campbell RE 2019 Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: implications for polycystic ovary syndrome. EBiomedicine 44 582596. (https://doi.org/10.1016/j.ebiom.2019.05.065)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedlund KB & Hill JW 2020 The role of non-neuronal cells in hypogonadotropic hypogonadism. Molecular and Cellular Endocrinology 518 110996. (https://doi.org/10.1016/j.mce.2020.110996)

    • Search Google Scholar
    • Export Citation
  • Soch A, Sominsky L, Younesi S, de luca SN, Gunasekara M, Bozinovski S & Spencer SJ 2020 The role of microglia in the second and third postnatal weeks of life in rat hippocampal development and memory. Brain, Behavior, and Immunity 88 675687. (https://doi.org/10.1016/j.bbi.2020.04.082)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sominsky L, Walker AK, Ong LK, Tynan RJ, Walker FR & Hodgson DM 2012a Increased microglial activation in the rat brain following neonatal exposure to a bacterial mimetic. Behavioural Brain Research 226 351356. (https://doi.org/10.1016/j.bbr.2011.08.038)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sominsky L, Meehan CL, Walker AK, Bobrovskaya L, Mclaughlin EA & Hodgson DM 2012b Neonatal immune challenge alters reproductive development in the female rat. Hormones and Behavior 62 345355. (https://doi.org/10.1016/j.yhbeh.2012.02.005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sominsky L, Ziko I, Soch A, Smith JT & Spencer SJ 2016 Neonatal overfeeding induces early decline of the ovarian reserve: implications for the role of leptin. Molecular and Cellular Endocrinology 431 2435. (https://doi.org/10.1016/j.mce.2016.05.001)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sominsky L, de luca S & Spencer SJ 2018a Microglia: key players in neurodevelopment and neuronal plasticity. International Journal of Biochemistry and Cell Biology 94 5660. (https://doi.org/10.1016/j.biocel.2017.11.012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sominsky L, Jasoni CL, Twigg HR & Spencer SJ 2018b Hormonal and nutritional regulation of postnatal hypothalamic development. Journal of Endocrinology 237 R47R64. (https://doi.org/10.1530/JOE-17-0722)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sominsky L, Dangel T, Malik S, de luca SN, Singewald N & Spencer SJ 2021a Microglial ablation in rats disrupts the circadian system. FASEB Journal 35 e21195. (https://doi.org/10.1096/fj.202001555RR)

    • Search Google Scholar
    • Export Citation
  • Sominsky L, Younesi S, De Luca SN, Loone SM, Quinn KM & Spencer SJ 2021b Ovarian follicles are resistant to monocyte perturbations-implications for ovarian health with immune disruption. Biology of Reproduction 105 100112. (https://doi.org/10.1093/biolre/ioab049)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD & Stafford B et al.2007 The classical complement cascade mediates CNS synapse elimination. Cell 131 11641178. (https://doi.org/10.1016/j.cell.2007.10.036)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocco C, Telleria C & Gibori G 2007 The molecular control of corpus luteum formation, function, and regression. Endocrine Reviews 28 117149. (https://doi.org/10.1210/er.2006-0022)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tajima K, Orisaka M, Mori T & Kotsuji F 2007 Ovarian theca cells in follicular function. Reproductive Biomedicine Online 15 591609. (https://doi.org/10.1016/s1472-6483(1060392-6)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takumi K, Iijima N & Ozawa H 2011 Developmental changes in the expression of kisspeptin mRNA in rat hypothalamus. Journal of Molecular Neuroscience 43 138145. (https://doi.org/10.1007/s12031-010-9430-1)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terasawa E 2006 Postnatal remodeling of gonadotropin-releasing hormone I neurons: toward understanding the mechanism of the onset of puberty. Endocrinology 147 36503651. (https://doi.org/10.1210/en.2006-0588)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomic D, Miller KP, Kenny HA, Woodruff TK, Hoyer P & Flaws JA 2004 Ovarian follicle development requires Smad3. Molecular Endocrinology 18 22242240. (https://doi.org/10.1210/me.2003-0414)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremellen KP, Kolo M, Gilmore A & Lekamge DN 2005 Anti-Mullerian hormone as a marker of ovarian reserve. Australian and New Zealand Journal of Obstetrics and Gynaecology 45 2024. (https://doi.org/10.1111/j.1479-828X.2005.00332.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW & Pardo CA 2005 Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology 57 6781. (https://doi.org/10.1002/ana.20315)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vichaya EG, Malik S, Sominsky L, Ford BG, Spencer SJ & Dantzer R 2020 Microglia depletion fails to abrogate inflammation-induced sickness in mice and rats. Journal of Neuroinflammation 17 172. (https://doi.org/10.1186/s12974-020-01832-2)

    • Search Google Scholar
    • Export Citation
  • Walker AK, Nakamura T & Hodgson DM 2010 Neonatal lipopolysaccharide exposure alters central cytokine responses to stress in adulthood in Wistar rats. Stress 13 506515. (https://doi.org/10.3109/10253890.2010.489977)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker AK, Hiles SA, Sominsky L, Mclaughlin EA & Hodgson DM 2011 Neonatal lipopolysaccharide exposure impairs sexual development and reproductive success in the Wistar rat. Brain, Behavior, and Immunity 25 674684. (https://doi.org/10.1016/j.bbi.2011.01.004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinhard L, di bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, Exiga M, Vadisiute A, Raggioli A & Schertel A et al.2018 Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nature Communications 9 1228. (https://doi.org/10.1038/s41467-018-03566-5)

    • Search Google Scholar
    • Export Citation
  • Wiktor-Jedrzejczak W, Bartocci A, Ferrante Jr AW, Ahmed-Ansari A, Sell KW, Pollard JW & Stanley ER 1990 Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. PNAS 87 48284832. (https://doi.org/10.1073/pnas.87.12.4828)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida M, Sanbuissyo A, Hisada S, Takahashi M, Ohno Y & Nishikawa A 2009 Morphological characterization of the ovary under normal cycling in rats and its viewpoints of ovarian toxicity detection. Journal of Toxicological Sciences 34 (Supplement 1) SP189SP 1 97. (https://doi.org/10.2131/jts.34.s189)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Younesi S, Spencer SJ & Sominsky L 2021 Monocyte perturbation modulates the ovarian response to an immune challenge. Molecular and Cellular Endocrinology 536 111418. (https://doi.org/10.1016/j.mce.2021.111418)

    • Search Google Scholar
    • Export Citation
  • Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, Vyssotski AL, Bifone A, Gozzi A & Ragozzino D et al.2014 Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nature Neuroscience 17 400406. (https://doi.org/10.1038/nn.3641)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziko I, de luca S, Dinan T, Barwood JM, Sominsky L, Cai G, Kenny R, Stokes L, Jenkins TA & Spencer SJ 2014 Neonatal overfeeding alters hypothalamic microglial profiles and central responses to immune challenge long-term. Brain, Behavior, and Immunity 41 3243. (https://doi.org/10.1016/j.bbi.2014.06.014)

    • Crossref
    • Search Google Scholar
    • Export Citation