Mitochondrial respiration in thoracic perivascular adipose tissue of diabetic mice

in Journal of Endocrinology
Authors:
Aryane Cruz Oliveira Pinho Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal

Search for other papers by Aryane Cruz Oliveira Pinho in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2235-2237
,
Diana Santos Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal

Search for other papers by Diana Santos in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9292-5961
,
Inês Baldeiras Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal

Search for other papers by Inês Baldeiras in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8106-7308
,
Ana Burgeiro Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal

Search for other papers by Ana Burgeiro in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8467-3840
,
Emelindo C Leal Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal

Search for other papers by Emelindo C Leal in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8467-3840
, and
Eugenia Carvalho Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal
APDP-Portuguese Diabetes Association, Lisbon, Portugal

Search for other papers by Eugenia Carvalho in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1748-9861

Correspondence should be addressed to A C O Pinho or E Carvalho: aryanepinho@cnc.uc.pt or ecarvalh@cnc.uc.pt
Restricted access
Rent on DeepDyve

Sign up for journal news

Introduction

Thoracic perivascular adipose tissue (tPVAT) has a phenotype resembling brown AT. Dysfunctional tPVAT appears to be linked to vascular dysfunction.

Methods

We evaluated uncoupling protein 1 (UCP1) expression by Western blot, oxidative stress by measuring lipid peroxidation, the antioxidant capacity by HPLC and spectrophotometry, and mitochondrial respiration by high-resolution respirometry (HRR) in tPVAT, compared to inguinal white AT (iWAT), obtained from non-diabetic (NDM) and streptozocin-induced diabetic (STZ-DM) mice. Mitochondrial respiration was assessed by HRR using protocol 1: complex I and II oxidative phosphorylation (OXPHOS) and protocol 2: fatty acid oxidation (FAO) OXPHOS. OXPHOS capacity in tPVAT was also evaluated after UCP1 inhibition by guanosine 5'-diphosphate (GDP).

Results

UCP1 expression was higher in tPVAT when compared with iWAT in both NDM and STZ-DM mice. The malondialdehyde concentration was elevated in tPVAT from STZ-DM compared to NDM mice. Glutathione peroxidase and reductase activities, as well as reduced glutathione levels, were not different between tPVAT from NDM and STZ-DM mice but were lower compared to iWAT of STZ-DM mice. OXPHOS capacity of tPVAT was significantly decreased after UCP1 inhibition by GDP in protocol 1. While there were no differences in the OXPHOS capacity between NDM and STZ-DM mice in protocol 1, it was increased in STZ-DM compared to NDM mice in protocol 2. Moreover, complex II- and FAO-linked respiration were elevated in STZ-DM mice under UCP1 inhibition.

Conclusions

Pharmacological therapies could be targeted to modulate UCP1 activity with a significant impact in the uncoupling of mitochondrial bioenergetics in tPVAT.

 

  • Collapse
  • Expand
  • Akhmedov AT, Rybin V & Marín-García J 2015 Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Failure Reviews 20 227249. (https://doi.org/10.1007/s10741-014-9457-4)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aldiss P, Davies G, Woods R, Budge H, Sacks HS & Symonds ME 2017 ‘Browning’ the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk. International Journal of Cardiology 228 265274. (https://doi.org/10.1016/j.ijcard.2016.11.074)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aldiss P, Symonds ME, Lewis JE, Boocock DJ, Miles AK, Bloor I, Ebling FJP & Budge H 2019 Interscapular and perivascular brown adipose tissue respond differently to a short-term high-fat diet. Nutrients 11 1065. (https://doi.org/10.3390/nu11051065)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Argentato PP, de Cássia César H, Estadella D & Pisani LP 2018 Programming mediated by fatty acids affects uncoupling protein 1 (UCP-1) in brown adipose tissue. British Journal of Nutrition 120 619627. (https://doi.org/10.1017/S0007114518001629)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Azul L, Leandro A, Boroumand P, Klip A, Seiça R & Sena CM 2020 Increased inflammation, oxidative stress and a reduction in antioxidant defense enzymes in perivascular adipose tissue contribute to vascular dysfunction in type 2 diabetes. Free Radical Biology and Medicine 146 264274. (https://doi.org/10.1016/j.freeradbiomed.2019.11.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bose C, Alves I, Singh P, Palade PT, Carvalho E, Børsheim E, Jun SR, Cheema A, Boerma M, Awasthi S, et al.2020 Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell 19 e13261. (https://doi.org/10.1111/acel.13261)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown NK, Zhou Z, Zhang J, Zeng R, Wu J, Eitzman DT, Chen YE & Chang L 2014 Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arteriosclerosis, Thrombosis, and Vascular Biology 34 16211630. (https://doi.org/10.1161/ATVBAHA.114.303029)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Calderon-Dominguez M, Alcalá M, Sebastián D, Zorzano A, Viana M, Serra D & Herrero L 2017 Brown adipose tissue bioenergetics: A new methodological approach. Advancement of Science 4 1600274. (https://doi.org/10.1002/advs.201600274)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carroll AM, Haines LR, Pearson TW, Fallon PG, Walsh CM, Brennan CM, Breen EP & Porter RK 2005 Identification of a functioning mitochondrial uncoupling protein 1 in thymus. Journal of Biological Chemistry 280 1553415543. (https://doi.org/10.1074/jbc.M413315200)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carvalho E, Adams SH, Børsheim E, Blackburn ML, Ono-Moore KD, Cotter M, Bowlin AK & Yeruva L 2020 Neonatal diet impacts liver mitochondrial bioenergetics in piglets fed formula or human milk. BMC Nutrition 6 13. (https://doi.org/10.1186/s40795-020-00338-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, Rothenberg FG, Neltner B, Romig-Martin SA, Dickson EW, et al.2009 Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circulation Research 104 541549. (https://doi.org/10.1161/CIRCRESAHA.108.182998)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cheng J, Nanayakkara G, Shao Y, Cueto R, Wang L, Yang WY, Tian Y, Wang H & Yang X 2017 Mitochondrial proton leak plays a critical role in pathogenesis of cardiovascular diseases. Advances in Experimental Medicine and Biology 982 359370. (https://doi.org/10.1007/978-3-319-55330-6_20)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chicco AJ, Le CH, Schlater A, Nguyen A, Kaye S, Beals JW, Scalzo RL, Bell C, Gnaiger E, Costa DP, et al.2014 High fatty acid oxidation capacity and phosphorylation control despite elevated leak and reduced respiratory capacity in northern elephant seal muscle mitochondria. Journal of Experimental Biology 217 29472955. (https://doi.org/10.1242/jeb.105916)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chondronikola M, Annamalai P, Chao T, Porter C, Saraf MK, Cesani F & Sidossis LS 2015 A percutaneous needle biopsy technique for sampling the supraclavicular brown adipose tissue depot of humans. International Journal of Obesity 39 15611564. (https://doi.org/10.1038/ijo.2015.76)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cui Y, Xu X, Bi H, Zhu Q, Wu J, Xia X, Qiushi R & Ho PC 2006 Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: the role of reactive oxygen species in diabetic retinopathy. Experimental Eye Research 83 807816. (https://doi.org/10.1016/j.exer.2006.03.024)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cutruzzolà A, Parise M, Scavelli FB, Barone M, Gnasso A & Irace C 2021 Time in range does not associate with carotid artery wall thickness and endothelial function in Type 1 diabetes. Journal of Diabetes Science and Technology 16 904911. (https://doi.org/10.1177/1932296821993178)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • da Costa RM, Fais RS, Dechandt CRP, Louzada-Junior P, Alberici LC, Lobato NS & Tostes RC 2017 Increased mitochondrial ROS generation mediates the loss of the anti-contractile effects of perivascular adipose tissue in high-fat diet obese mice. British Journal of Pharmacology 174 35273541. (https://doi.org/10.1111/bph.13687)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Meis L, Ketzer LA, Camacho-Pereira J & Galina A 2012 Brown adipose tissue mitochondria: modulation by GDP and fatty acids depends on the respiratory substrates. Bioscience Reports 32 5359. (https://doi.org/10.1042/BSR20100144)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dechandt CRP, Couto-Lima CA & Alberici LC 2016 Triglyceride depletion of brown adipose tissue enables analysis of mitochondrial respiratory function in permeabilized biopsies. Analytical Biochemistry 515 5560. (https://doi.org/10.1016/j.ab.2016.09.015)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Doerrier C, Garcia-Souza LF, Krumschnabel G, Wohlfarter Y, Mészáros AT & Gnaiger E 2018 High-resolution FluoRespirometry and OXPHOS protocols for human cells, permeabilized fibers from small biopsies of muscle, and isolated mitochondria. Methods in Molecular Biology 1782 3170. (https://doi.org/10.1007/978-1-4939-7831-1_3)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Echtay KS & Brand MD 2007 4-Hydroxy-2-nonenal and uncoupling proteins: an approach for regulation of mitochondrial ROS production. Redox Report: Communications in Free Radical Research 12 2629. (https://doi.org/10.1179/135100007X162158)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Emelyanova L, Boukatina A, Myers C, Oyarzo J, Lustgarten J, Shi Y & Jahangir A 2019 High calories but not fat content of lard-based diet contribute to impaired mitochondrial oxidative phosphorylation in C57BL/6J mice heart. PLoS ONE 14 e0217045. (https://doi.org/10.1371/journal.pone.0217045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J & Czech MP 2011 Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. American Journal of Physiology-Heart and Circulatory Physiology 301 H1425H1437. (https://doi.org/10.1152/ajpheart.00376.2011)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • García-Ruiz I, Solís-Muñoz P, Fernández-Moreira D, Grau M, Colina F, Muñoz-Yagüe T & Solís-Herruzo JA 2014 High-fat diet decreases activity of the oxidative phosphorylation complexes and causes nonalcoholic steatohepatitis in mice. Disease Models and Mechanisms 7 12871296. (https://doi.org/10.1242/dmm.016766)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gil P, Fariñas F, Casado A & López-Fernández E 2002 Malondialdehyde: a possible marker of ageing. Gerontology 48 209214. (https://doi.org/10.1159/000058352)

  • Goldberg D & Spooner R 1983 Glutathione reductase. In Methods in Enzymatic Analysis, pp. 258265. New York: Verlag Chemie Weinheim Academic Press

  • Gómez-Serrano M, Camafeita E, López JA, Rubio MA, Bretón I, García-Consuegra I, García-Santos E, Lago J, Sánchez-Pernaute A, Torres A, et al.2017 Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes. Redox Biology 11 415428. (https://doi.org/10.1016/j.redox.2016.12.013)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gonzalez-Armenta JL, Gao Z, Appt SE, Vitolins MZ, Michalson KT, Register TC, Shively CA & Molina AJA 2019 Skeletal muscle mitochondrial respiration is elevated in female cynomolgus macaques fed a western compared with a Mediterranean diet. Journal of Nutrition 149 14931502. (https://doi.org/10.1093/jn/nxz092)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hageman JJ, Bast A & Vermeulen NP 1992 Monitoring of oxidative free radical damage in vivo: analytical aspects. Chemico-Biological Interactions 82 243293. (https://doi.org/10.1016/0009-2797(9290001-2)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hildebrand S, Stümer J & Pfeifer A 2018 PVAT and its relation to brown, beige, and white adipose tissue in development and function. Frontiers in Physiology 9 70. (https://doi.org/10.3389/fphys.2018.00070)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Keuper M, Sachs S, Walheim E, Berti L, Raedle B, Tews D, Fischer-Posovszky P, Wabitsch M, Hrabě de Angelis M, Kastenmüller G, et al.2017 Activated macrophages control human adipocyte mitochondrial bioenergetics via secreted factors. Molecular Metabolism 6 12261239. (https://doi.org/10.1016/j.molmet.2017.07.008)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kraunsøe R, Boushel R, Hansen CN, Schjerling P, Qvortrup K, Støckel M, Mikines KJ & Dela F 2010 Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity. Journal of Physiology 588 20232032. (https://doi.org/10.1113/jphysiol.2009.184754)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leal EC, Carvalho E, Tellechea A, Kafanas A, Tecilazich F, Kearney C, Kuchibhotla S, Auster ME, Kokkotou E, Mooney DJ, et al.2015 Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype. American Journal of Pathology 185 16381648. (https://doi.org/10.1016/j.ajpath.2015.02.011)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu J, Li J, Li WJ & Wang CM 2013 The role of uncoupling proteins in diabetes mellitus. Journal of Diabetes Research 2013 585897. (https://doi.org/10.1155/2013/585897)

  • Magalhães-Novais S, Bermejo-Millo JC, Loureiro R, Mesquita KA, Domingues MR, Maciel E, Melo T, Baldeiras I, Erickson JR, Holy J, et al.2020 2020 cell quality control mechanisms maintain stemness and differentiation potential of P19 embryonic carcinoma cells. Autophagy 16 313333. (https://doi.org/10.1080/15548627.2019.1607694)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Makrecka-Kuka M, Korzh S, Videja M, Vilks K, Cirule H, Kuka J, Dambrova M & Liepinsh E 2020 Empagliflozin protects cardiac mitochondrial fatty acid metabolism in a mouse model of diet-induced lipid overload. Cardiovascular Drugs and Therapy 34 791797. (https://doi.org/10.1007/s10557-020-06989-9)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P, Däbritz JHM, Gottlieb E, Latorre I, et al.2016 Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167 457 .e13470.e13. (https://doi.org/10.1016/j.cell.2016.08.064)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nicholls DG & Rial E 1999 A history of the first uncoupling protein, UCP1. Journal of Bioenergetics and Biomembranes 31 399406. (https://doi.org/10.1023/a:1005436121005)

  • Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, et al.2000 Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404 787790. (https://doi.org/10.1038/35008121)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nosalski R & Guzik TJ 2017 Perivascular adipose tissue inflammation in vascular disease. British Journal of Pharmacology 174 34963513. (https://doi.org/10.1111/bph.13705)

  • Ortega SP, Chouchani ET & Boudina S 2017 Stress turns on the heat: regulation of mitochondrial biogenesis and UCP1 by ROS in adipocytes. Adipocyte 6 5661. (https://doi.org/10.1080/21623945.2016.1273298)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Padilla J, Jenkins NT, Vieira-Potter VJ & Laughlin MH 2013 Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 304 R543R552. (https://doi.org/10.1152/ajpregu.00567.2012)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paglia DE & Valentine WN 1967 Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine 70 158169.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pesta D & Gnaiger E 2012 High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods in Molecular Biology 810 2558. (https://doi.org/10.1007/978-1-61779-382-0_3)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Porter C, Herndon DN, Chondronikola M, Chao T, Annamalai P, Bhattarai N, Saraf MK, Capek KD, Reidy PT, Daquinag AC, et al.2016 Human and mouse brown adipose tissue mitochondria have comparable UCP1 function. Cell Metabolism 24 246255. (https://doi.org/10.1016/j.cmet.2016.07.004)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V & Orekhov AN 2020 The diabetes mellitus-atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation. International Journal of Molecular Sciencis 2 1 1835. (https://doi.org/10.3390/ijms21051835)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rose S, Carvalho E, Diaz EC, Cotter M, Bennuri SC, Azhar G, Frye RE, Adams SH & Børsheim E 2019 A comparative study of mitochondrial respiration in circulating blood cells and skeletal muscle fibers in women. American Jornal of Physiology. Endocrinology and Metabolism 317 E503E512. (https://doi.org/10.1152/ajpendo.00084.2019)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saadane A, Lessieur EM, Du Y, Liu H & Kern TS 2020 Successful induction of diabetes in mice demonstrates no gender difference in development of early diabetic retinopathy. PLoS ONE 15 e0238727. (https://doi.org/10.1371/journal.pone.0238727)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sale MM, Hsu FC, Palmer ND, Gordon CJ, Keene KL, Borgerink HM, Sharma AJ, Bergman RN, Taylor KD, Saad MF, et al.2007 The uncoupling protein 1 gene, UCP1, is expressed in mammalian islet cells and associated with acute insulin response to glucose in African American families from the IRAS Family Study. BMC Endocrine Disorders 7 1. (https://doi.org/10.1186/1472-6823-7-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S & Spiegelman BM 2011 Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. Journal of Clinical Investigation 121 96105. (https://doi.org/10.1172/JCI44271)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B & Nedergaard J 2013 UCP1 in Brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Reports 5 11961203. (https://doi.org/10.1016/j.celrep.2013.10.044)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • van Marken Lichtenbelt WD & Schrauwen P 2011 Implications of nonshivering thermogenesis for energy balance regulation in humans. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 301 R285R296. (https://doi.org/10.1152/ajpregu.00652.2010)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Victorio JA & Davel AP 2020 Perivascular adipose tissue oxidative stress on the pathophysiology of cardiometabolic diseases. Current Hypertension Reviews 16 192200. (https://doi.org/10.2174/1573402115666190410153634)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Villacorta L & Chang L 2015 The role of perivascular adipose tissue in vasoconstriction, arterial stiffness, and aneurysm. Hormone Molecular Biology and Clinical Investigation 21 137147. (https://doi.org/10.1515/hmbci-2014-0048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Winn NC, Grunewald ZI, Gastecki ML, Woodford ML, Welly RJ, Clookey SL, Ball JR, Gaines TL, Karasseva NG, Kanaley JA, et al.2017a Deletion of UCP1 enhances ex vivo aortic vasomotor function in female but not male mice despite similar susceptibility to metabolic dysfunction. American Journal of Physiology-Endocrinology and Metabolism 313 E402E412. (https://doi.org/10.1152/ajpendo.00096.2017)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Winn NC, Vieira-Potter VJ, Gastecki ML, Welly RJ, Scroggins RJ, Zidon TM, Gaines TL, Woodford ML, Karasseva NG, Kanaley JA, et al.2017b Loss of UCP1 exacerbates Western diet-induced glycemic dysregulation independent of changes in body weight in female mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 312 R74R84. (https://doi.org/10.1152/ajpregu.00425.2016)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Woyda-Ploszczyca AM & Jarmuszkiewicz W 2014 Different effects of guanine nucleotides (GDP and GTP) on protein-mediated mitochondrial proton leak. PLoS ONE 9 e98969. (https://doi.org/10.1371/journal.pone.0098969)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, et al.2012 Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150 366376. (https://doi.org/10.1016/j.cell.2012.05.016)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation