Gap junctions regulate the activity of AgRP neurons and diet-induced obesity in male mice

in Journal of Endocrinology
View More View Less
  • 1 Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
  • | 2 Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil

Contributor Notes

Correspondence should be addressed to J Donato Jr: jdonato@icb.usp.br
Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

Recent studies indicated an important role of connexins, gap junction proteins, in the regulation of metabolism. However, most of these studies focused on the glial expression of connexins, whereas the actions of connexins in neurons are still poorly investigated. Thus, the present study had the objective to investigate the possible involvement of gap junctions, and in particular connexin 43 (CX43), for the central regulation of energy homeostasis. Initially, we demonstrated that hypothalamic CX43 expression was suppressed in fasted mice. Using whole-cell patch-clamp recordings, we showed that pharmacological blockade of gap junctions induced hyperpolarization and decreased the frequency of action potentials in 50–70% of agouti-related protein (AgRP)-expressing neurons, depending on the blocker used (carbenoxolone disodium, TAT-Gap19 or Gap 26). When recordings were performed with a biocytin-filled pipette, this intercellular tracer was detected in surrounding cells. Then, an AgRP-specific CX43 knockout (AgRPΔCX43) mouse was generated. AgRPΔCX43 mice exhibited no differences in body weight, adiposity, food intake, energy expenditure and glucose homeostasis. Metabolic responses to 24 h fasting or during refeeding were also not altered in AgRPΔCX43 mice. However, AgRPΔCX43 male, but not female mice, exhibited a partial protection against high-fat diet-induced obesity, even though no significant changes in energy intake or expenditure were detected. In summary, our findings indicate that gap junctions regulate the activity of AgRP neurons, and AgRP-specific CX43 ablation is sufficient to mildly prevent diet-induced obesity specifically in males.

 

Society for Endocrinology logo

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 837 837 545
Full Text Views 77 77 52
PDF Downloads 80 80 55
  • Aberg ND, Ronnback L & Eriksson PS 1999 Connexin43 mRNA and protein expression during postnatal development of defined brain regions. Brain Research: Developmental Brain Research 115 97101. (https://doi.org/10.1016/s0165-3806(9900052-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aberg ND, Carlsson B, Rosengren L, Oscarsson J, Isaksson OG, Ronnback L & Eriksson PS 2000 Growth hormone increases connexin-43 expression in the cerebral cortex and hypothalamus. Endocrinology 141 38793886. (https://doi.org/10.1210/endo.141.10.7731)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Allard C, Carneiro L, Grall S, Cline BH, Fioramonti X, Chretien C, Baba-Aissa F, Giaume C, Penicaud L & Leloup C 2014 Hypothalamic astroglial connexins are required for brain glucose sensing-induced insulin secretion. Journal of Cerebral Blood Flow and Metabolism 34 339346. (https://doi.org/10.1038/jcbfm.2013.206)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Andermann ML & Lowell BB 2017 Toward a wiring diagram understanding of appetite control. Neuron 95 757778. (https://doi.org/10.1016/j.neuron.2017.06.014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreoli MF, Donato J, Cakir I & Perello M 2019 Leptin resensitisation: a reversion of leptin-resistant states. Journal of Endocrinology 241 R81R96. (https://doi.org/10.1530/JOE-18-0606)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aponte Y, Atasoy D & Sternson SM 2011 AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nature Neuroscience 14 351355. (https://doi.org/10.1038/nn.2739)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, Kenny CD, McGovern RA, Chua Jr SC & Elmquist JK et al.2004 Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42 983991. (https://doi.org/10.1016/j.neuron.2004.06.004)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beutler LR, Corpuz TV, Ahn JS, Kosar S, Song W, Chen Y & Knight ZA 2020 Obesity causes selective and long-lasting desensitization of AgRP neurons to dietary fat. eLife 9 e55909. (https://doi.org/10.7554/eLife.55909)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bolborea M, Pollatzek E, Benford H, Sotelo-Hitschfeld T & Dale N 2020 Hypothalamic tanycytes generate acute hyperphagia through activation of the arcuate neuronal network. PNAS 117 1447314481. (https://doi.org/10.1073/pnas.1919887117)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bose S, Leclerc GM, Vasquez-Martinez R & Boockfor FR 2010 Administration of connexin43 siRNA abolishes secretory pulse synchronization in GnRH clonal cell populations. Molecular and Cellular Endocrinology 314 7583. (https://doi.org/10.1016/j.mce.2009.08.016)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Campbell RE, Ducret E, Porteous R, Liu X, Herde MK, Wellerhaus K, Sonntag S, Willecke K & Herbison AE 2011 Gap junctions between neuronal inputs but not gonadotropin-releasing hormone neurons control estrous cycles in the mouse. Endocrinology 152 22902301. (https://doi.org/10.1210/en.2010-1311)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalcanti-de-Albuquerque JP & Donato Jr J 2021 Rolling out physical exercise and energy homeostasis: focus on hypothalamic circuitries. Frontiers in Neuroendocrinology 63 100944. (https://doi.org/10.1016/j.yfrne.2021.100944)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chan YY, Steiner RA & Clifton DK 1996 Regulation of hypothalamic neuropeptide-Y neurons by growth hormone in the rat. Endocrinology 137 13191325. (https://doi.org/10.1210/endo.137.4.8625906)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cheron G, Gall D, Servais L, Dan B, Maex R & Schiffmann SN 2004 Inactivation of calcium-binding protein genes induces 160 Hz oscillations in the cerebellar cortex of alert mice. Journal of Neuroscience 24 434441. (https://doi.org/10.1523/JNEUROSCI.3197-03.2004)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • da Silva RP, Zampieri TT, Pedroso JA, Nagaishi VS, Ramos-Lobo AM, Furigo IC, Camara NO, Frazao R & Donato Jr J 2014 Leptin resistance is not the primary cause of weight gain associated with reduced sex hormone levels in female mice. Endocrinology 155 42264236. (https://doi.org/10.1210/en.2014-1276)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Souza GO, Wasinski F & Donato Jr J 2022 Characterization of the metabolic differences between male and female C57BL/6 mice. Life Sciences 301 120636. (https://doi.org/10.1016/j.lfs.2022.120636)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Donato Jr J, Wasinski F, Furigo IC, Metzger M & Frazao R 2021 Central regulation of metabolism by growth hormone. Cells 10 129. (https://doi.org/10.3390/cells10010129)

    • Search Google Scholar
    • Export Citation
  • Furigo IC, Teixeira PDS, de Souza GO, Couto GCL, Romero GG, Perello M, Frazao R, Elias LL, Metzger M & List EO et al.2019 Growth hormone regulates neuroendocrine responses to weight loss via AgRP neurons. Nature Communications 10 662. (https://doi.org/10.1038/s41467-019-08607-1)

    • Search Google Scholar
    • Export Citation
  • Guillebaud F, Barbot M, Barbouche R, Brezun JM, Poirot K, Vasile F, Lebrun B, Rouach N, Dallaporta M & Gaige S et al.2020 Blockade of glial connexin 43 hemichannels reduces food intake. Cells 9 2387. (https://doi.org/10.3390/cells9112387)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Henry FE, Sugino K, Tozer A, Branco T & Sternson SM 2015 Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss. eLife 4 e09800. (https://doi.org/10.7554/eLife.09800)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Houades V, Koulakoff A, Ezan P, Seif I & Giaume C 2008 Gap junction-mediated astrocytic networks in the mouse barrel cortex. Journal of Neuroscience 28 52075217. (https://doi.org/10.1523/JNEUROSCI.5100-07.2008)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hughes SW, Lorincz M, Cope DW, Blethyn KL, Kekesi KA, Parri HR, Juhasz G & Crunelli V 2004 Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron 42 253268. (https://doi.org/10.1016/s0896-6273(0400191-6)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kamegai J, Minami S, Sugihara H, Hasegawa O, Higuchi H & Wakabayashi I 1996 Growth hormone receptor gene is expressed in neuropeptide Y neurons in hypothalamic arcuate nucleus of rats. Endocrinology 137 21092112. (https://doi.org/10.1210/endo.137.5.8612554)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL & Lowell BB 2011 Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. Journal of Clinical Investigation 121 14241428. (https://doi.org/10.1172/JCI46229)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE, Garfield AS, Vong L, Pei H, Watabe-Uchida M & Uchida N et al.2014 An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507 238242. (https://doi.org/10.1038/nature12956)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lhomme T, Clasadonte J, Imbernon M, Fernandois D, Sauve F, Caron E, da Silva Lima N, Heras V, Martinez-Corral I & Mueller-Fielitz H et al.2021 Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons. Journal of Clinical Investigation 131 e140521. (https://doi.org/10.1172/JCI140521)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lowell BB 2019 New neuroscience of homeostasis and drives for food, water, and salt. New England Journal of Medicine 380 459471. (https://doi.org/10.1056/NEJMra1812053)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lyons DJ, Horjales-Araujo E & Broberger C 2010 Synchronized network oscillations in rat tuberoinfundibular dopamine neurons: switch to tonic discharge by thyrotropin-releasing hormone. Neuron 65 217229. (https://doi.org/10.1016/j.neuron.2009.12.024)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Molnar T, Dobolyi A, Nyitrai G, Barabas P, Heja L, Emri Z, Palkovits M & Kardos J 2011 Calcium signals in the nucleus accumbens: activation of astrocytes by ATP and succinate. BMC Neuroscience 12 96. (https://doi.org/10.1186/1471-2202-12-96)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morselli E, Frank AP, Palmer BF, Rodriguez-Navas C, Criollo A & Clegg DJ 2016 A sexually dimorphic hypothalamic response to chronic high-fat diet consumption. International Journal of Obesity 40 206209. (https://doi.org/10.1038/ijo.2015.114)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Olofsson LE, Unger EK, Cheung CC & Xu AW 2013 Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance. PNAS 110 E697E706. (https://doi.org/10.1073/pnas.1218284110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Palmer BF & Clegg DJ 2015 The sexual dimorphism of obesity. Molecular and Cellular Endocrinology 402 113119. (https://doi.org/10.1016/j.mce.2014.11.029)

  • Patel HR, Qi Y, Hawkins EJ, Hileman SM, Elmquist JK, Imai Y & Ahima RS 2006 Neuropeptide Y deficiency attenuates responses to fasting and high-fat diet in obesity-prone mice. Diabetes 55 30913098. (https://doi.org/10.2337/db05-0624)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pedroso JA, Silveira MA, Lima LB, Furigo IC, Zampieri TT, Ramos-Lobo AM, Buonfiglio DC, Teixeira PD, Frazao R & Donato Jr J 2016 Changes in leptin signaling by SOCS3 modulate fasting-induced hyperphagia and weight regain in mice. Endocrinology 157 39013914. (https://doi.org/10.1210/en.2016-1038)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pedroso JAB, de Mendonca POR, Fortes MAS, Tomaz I, Pecorali VL, Auricino TB, Costa IC, Lima LB, Furigo IC & Bueno DN et al.2017 SOCS3 expression in SF1 cells regulates adrenal differentiation and exercise performance. Journal of Endocrinology 235 207222. (https://doi.org/10.1530/JOE-17-0255)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pedroso JAB, Wasinski F & Donato Jr J 2020 Prolonged fasting induces long-lasting metabolic consequences in mice. Journal of Nutritional Biochemistry 84 108457. (https://doi.org/10.1016/j.jnutbio.2020.108457)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pereda AE 2014 Electrical synapses and their functional interactions with chemical synapses. Nature Reviews: Neuroscience 15 250263. (https://doi.org/10.1038/nrn3708)

  • Quinones M, Al-Massadi O, Folgueira C, Bremser S, Gallego R, Torres-Leal L, Haddad-Tovolli R, Garcia-Caceres C, Hernandez-Bautista R & Lam BYH et al.2018 p53 in AgRP neurons is required for protection against diet-induced obesity via JNK1. Nature Communications 9 3432. (https://doi.org/10.1038/s41467-018-05711-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rahmani B, Ghashghayi E, Zendehdel M, Khodadadi M & Hamidi B 2021 The crosstalk between brain mediators regulating food intake behavior in birds: a review. International Journal of Peptide Research and Therapeutics 27 23492370. (https://doi.org/10.1007/s10989-021-10257-1)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramos-Lobo AM & Donato Jr J 2017 The role of leptin in health and disease. Temperature 4 258291. (https://doi.org/10.1080/23328940.2017.1327003)

  • Roh E, Park JW, Kang GM, Lee CH, Dugu H, Gil SY, Song DK, Kim HJ, Son GH & Yu R et al.2018 Exogenous nicotinamide adenine dinucleotide regulates energy metabolism via hypothalamic connexin 43. Metabolism: Clinical and Experimental 88 5160. (https://doi.org/10.1016/j.metabol.2018.08.005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sominsky L, Ziko I, Nguyen TX, Quach J & Spencer SJ 2017 Hypothalamic effects of neonatal diet: reversible and only partially leptin dependent. Journal of Endocrinology 234 4156. (https://doi.org/10.1530/JOE-16-0631)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Szilvasy-Szabo A, Varga E, Beliczai Z, Lechan RM & Fekete C 2017 Localization of connexin 43 gap junctions and hemichannels in tanycytes of adult mice. Brain Research 1673 6471. (https://doi.org/10.1016/j.brainres.2017.08.010)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Teixeira PDS, Ramos-Lobo AM, Rosolen Tavares M, Wasinski F, Frazao R & Donato Jr J 2021 Characterization of the onset of leptin effects on the regulation of energy balance. Journal of Endocrinology 249 239251. (https://doi.org/10.1530/JOE-20-0076)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • van de Wall E, Leshan R, Xu AW, Balthasar N, Coppari R, Liu SM, Jo YH, MacKenzie RG, Allison DB & Dun NJ et al.2008 Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149 17731785. (https://doi.org/10.1210/en.2007-1132)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Walser M, Schioler L, Oscarsson J, Aberg MA, Svensson J, Aberg ND & Isgaard J 2014 Different modes of GH administration influence gene expression in the male rat brain. Journal of Endocrinology 222 181190. (https://doi.org/10.1530/JOE-14-0223)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu Q, Lemus MB, Stark R, Bayliss JA, Reichenbach A, Lockie SH & Andrews ZB 2014 The temporal pattern of cfos activation in hypothalamic, cortical, and brainstem nuclei in response to fasting and refeeding in male mice. Endocrinology 155 840853. (https://doi.org/10.1210/en.2013-1831)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu CS, Bongmba OYN, Yue J, Lee JH, Lin L, Saito K, Pradhan G, Li DP, Pan HL & Xu A et al.2017 Suppression of GHS-R in AgRP neurons mitigates diet-induced obesity by activating thermogenesis. International Journal of Molecular Sciences 18 832. (https://doi.org/10.3390/ijms18040832)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu J, Bartolome CL, Low CS, Yi X, Chien CH, Wang P & Kong D 2018 Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature 556 505509. (https://doi.org/10.1038/s41586-018-0049-7)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhu C, Jiang Z, Xu Y, Cai ZL, Jiang Q, Xu Y, Xue M, Arenkiel BR, Wu Q & Shu G et al.2020 Profound and redundant functions of arcuate neurons in obesity development. Nature Metabolism 2 763774. (https://doi.org/10.1038/s42255-020-0229-2)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation