Isoflurane stress induces region-specific glucocorticoid levels in neonatal mouse brain

in Journal of Endocrinology
Authors:
Jordan E Hamden Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Jordan E Hamden in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8152-6113
,
Katherine M Gray Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Katherine M Gray in
Current site
Google Scholar
PubMed
Close
,
Melody Salehzadeh Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Melody Salehzadeh in
Current site
Google Scholar
PubMed
Close
, and
Kiran K Soma Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Kiran K Soma in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2169-8092

Correspondence should be addressed to K K Soma: ksoma@psych.ubc.ca
Restricted access
Rent on DeepDyve

Sign up for journal news

The profound programming effects of early life stress (ELS) on brain and behavior are thought to be primarily mediated by adrenal glucocorticoids (GCs). However, in mice, stressors are often administered between postnatal days 2 and 12 (PND2–12), during the stress hyporesponsive period (SHRP), when adrenal GC production is greatly reduced at baseline and in response to stressors. During the SHRP, specific brain regions produce GCs at baseline, but it is unknown if brain GC production increases in response to stressors. We treated mice at PND1 (pre-SHRP), PND5 (SHRP), PND9 (SHRP), and PND13 (post-SHRP) with an acute stressor (isoflurane anesthesia), vehicle control (oxygen), or neither (baseline). We measured a panel of progesterone and six GCs in the blood, hippocampus, cerebral cortex, and hypothalamus via liquid chromatography tandem mass spectrometry. At PND1, baseline corticosterone levels were high and did not increase in response to stress. At PND5, baseline corticosterone levels were very low, increases in brain corticosterone levels were greater than the increase in blood corticosterone levels, and stress had region-specific effects. At PND9, baseline corticosterone levels were low and increased similarly and moderately in response to stress. At PND13, blood corticosterone levels were higher than those at PND9, and corticosterone levels were higher in blood than in brain regions. These data illustrate the rapid and profound changes in stress physiology during neonatal development and suggest that neurosteroid production is a possible mechanism by which ELS has enduring effects on brain and behavior.

Supplementary Materials

 

  • Collapse
  • Expand
  • Ahima RS & Harlan RE 1990 Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system. Neuroscience 39 579604. (https://doi.org/10.1016/0306-4522(9090244-x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bath KG 2020 Synthesizing views to understand sex differences in response to early life adversity. Trends in Neurosciences 43 300310. (https://doi.org/10.1016/j.tins.2020.02.004)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bekhbat M, Merrill L, Kelly SD, Lee V & Gretchen NG 2016 Brief anesthesia by isoflurane alters plasma corticosterone levels distinctly in male and female rats: Implications for tissue collection methods. Behavioral Brain Research 205 122125. (https://doi.org/10.1016/j.bbr.2016.03.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bilbo SD, Biedenkapp JC, Der-Avakian A, Watkins LR, Rudy JW & Maier SF 2005 Neonatal infection-induced memory impairment after lipopolysaccharide in adulthood is prevented via caspase-1 inhibition. Journal of Neuroscience 25 80008009. (https://doi.org/10.1523/JNEUROSCI.1748-05.2005)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bilbo SD, Yirmiya R, Amat J, Paul ED, Watkins LR & Maier SF 2008 Bacterial infection early in life protects against stressor-induced depressive-like symptoms in adult rats. Psychoneuroendocrinology 33 261269. (https://doi.org/10.1016/j.psyneuen.2007.11.008)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Butte JC, Kakihana R & Noble EP 1972 Rat and mouse brain corticosterone. Endocrinology 90 10911100. (https://doi.org/10.1210/endo-90-4-1091)

  • Campagna JA, Miller KW & Forman SA 2003 Mechanisms of actions of inhaled anesthetics. New England Journal of Medicine 348 21102124. (https://doi.org/10.1056/NEJMra021261)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chapman DP, Whitfield CL, Felitti VJ, Dube SR, Edwards VJ & Anda RF 2004 Adverse childhood experiences and the risk of depressive disorders in adulthood. Journal of Affective Disorders 82 217225. (https://doi.org/10.1016/j.jad.2003.12.013)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen Y, Bender RA, Frotscher M & Baram TZ 2001 Novel and transient populations of corticotropin-releasing hormone-expressing neurons in developing hippocampus suggest unique functional roles: a quantitative spatiotemporal analysis. Journal of Neuroscience 21 71717181. (https://doi.org/10.1523/JNEUROSCI.21-18-07171.2001)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cintra A, Zoli M, Rosen L, Agnati LF, Okret S, Wikström AC, Gustafsson JA & Fuxe K 1994 Mapping and computer assisted morphometry and microdensitometry of glucocorticoid receptor immunoreactive neurons and glial cells in the rat central nervous system. Neuroscience 62 843897. (https://doi.org/10.1016/0306-4522(9490481-2)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cirulli F, Santucci D, Laviola G, Alleva E & Levine S 1994 Behavioral and hormonal responses to stress in the newborn mouse: effects of maternal deprivation and chlordiazepoxide. Developmental Psychobiology 27 301316. (https://doi.org/10.1002/dev.420270505)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cobice DF, Mackay CL, Goodwin RJ, McBride A, Langridge-Smith PR, Webster SP, Walker BR & Andrew R 2013 Mass spectrometry imaging for dissecting steroid intracrinology within target tissues. Analytical Chemistry 85 1157611584. (https://doi.org/10.1021/ac402777k)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Croft AP, O’Callaghan MJ, Shaw SG, Connolly G, Jacquot C & Little HJ 2008 Effects of minor laboratory procedures, adrenalectomy, social defeat or acute alcohol on regional brain concentrations of corticosterone. Brain Research 1238 1222. (https://doi.org/10.1016/j.brainres.2008.08.009)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • D’Amato FR, Cabib S, Puglisi-Allegra S, Patacchioli FR, Cigliana G, Maccari S & Angelucci L 1992 Effects of acute and repeated exposure to stress on the hypothalamo-pituitary-adrenocortical activity in mice during postnatal development. Hormones and Behavior 26 474485. (https://doi.org/10.1016/0018-506x(9290015-n)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gehrand AL, Phillips J, Malott K & Raff H 2020 Corticosterone, adrenal, and the pituitary-gonadal axis in neonatal rats: effect of maternal separation and hypoxia. Endocrinology 161 bqaa085. (https://doi.org/10.1210/endocr/bqaa085)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gilmour JS, Coutinho AE, Cailhier JF, Man TY, Clay M, Thomas G, Harris HJ, Mullins JJ, Seckl JR & Savill JS et al.2006 Local amplification of glucocorticoids by 11β-hydroxysteroid dehydrogenase type 1 promotes macrophage phagocytosis of apoptotic leukocytes. Journal of Immunology 176 76057611. (https://doi.org/10.4049/jimmunol.176.12.7605)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goodwill HL, Manzano-Nieves G, Gallo M, Lee HI, Oyerinde E, Serre T & Bath KG 2019 Early life stress leads to sex differences in development of depressive-like outcomes in a mouse model. Neuropsychopharmacology 44 711720. (https://doi.org/10.1038/s41386-018-0195-5)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gottfried‐Blackmore A, Sierra A, Mcewen BS, Ge R & Bulloch K 2010 Microglia express functional 11β‐hydroxysteroid dehydrogenase type 1. Glia 58 12571266. (https://doi.org/10.1002/glia.21007)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP, Freeman TC, Summers KM & McColl BW 2016 Microglial brain region – dependent diversity and selective regional sensitivities to aging. Nature Neuroscience 19 504516. (https://doi.org/10.1038/nn.4222)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gray P 1971 Pituitary-adrenocortical response to stress in the neonatal rat. Endocrinology 89 11261128. (https://doi.org/10.1210/endo-89-4-1126)

  • Gunnar MR & Donzella B 2002 Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology 27 199220. (https://doi.org/10.1016/s0306-4530(0100045-2)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hamden JE, Salehzadeh M, Jalabert C, O’Leary TP, Snyder JS, Gomez-Sanchez CE & Soma KK 2019 Measurement of 11-dehydrocorticosterone in mice, rats and songbirds: effects of age, sex and stress. General and Comparative Endocrinology 281 173182. (https://doi.org/10.1016/j.ygcen.2019.05.018)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hamden JE, Salehzadeh M, Gray KM, Forys BJ & Soma KK 2021a Isoflurane stress induces glucocorticoid production in mouse lymphoid organs. Journal of Endocrinology 251 137148. (https://doi.org/10.1530/JOE-21-0154)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hamden JE, Gray KM, Salehzadeh M, Kachkovski GV, Forys BJ, Ma C, Austin SH & Soma KK 2021b Steroid profiling of glucocorticoids in microdissected mouse brain across development. Developmental Neurobiology 81 189206. (https://doi.org/10.1002/dneu.22808)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Higo S, Hojo Y, Ishii H, Komatsuzaki Y, Ooishi Y, Murakami G, Mukai H, Yamazaki T, Nakahara D & Barron A et al.2011 Endogenous synthesis of corticosteroids in the hippocampus. PLoS ONE 6 e21631. (https://doi.org/10.1371/journal.pone.0021631)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hojo Y, Higo S, Kawato S, Hatanaka Y, Ooishi Y, Murakami G, Ishii H, Komatsuzaki Y, Ogiue-Ikeda M & Mukai H et al.2011 Hippocampal synthesis of sex steroids and corticosteroids: essential for modulation of synaptic plasticity. Frontiers in Endocrinology 2 43. (https://doi.org/10.3389/fendo.2011.00043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holmes MC & Seckl JR 2006 The role of 11β-hydroxysteroid dehydrogenases in the brain. Molecular and Cellular Endocrinology 248 914. (https://doi.org/10.1016/j.mce.2005.12.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hostettler N, Bianchi P, Gennari-Moser C, Kassahn D, Schoonjans K, Corazza N & Brunner T 2012 Local glucocorticoid production in the mouse lung is induced by immune cell stimulation. Allergy 67 227234. (https://doi.org/10.1111/j.1398-9995.2011.02749.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vöckler J, Dikranian K, Tenkova TI, Stefovska V, Turski L & Olney JW 1999 Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283 7074. (https://doi.org/10.1126/science.283.5398.70)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jevtovic-Todorovic V & Olney JW 2008 Pro: anesthesia-induced developmental neuroapoptosis: status of the evidence. Anesthesia and Analgesia 106 16591663. (https://doi.org/10.1213/ane.0b013e3181731ff2)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kostadinova F, Schwaderer J, Sebeo V & Brunner T 2014 Why does the gut synthesize glucocorticoids? Annals of Medicine 46 490497. (https://doi.org/10.3109/07853890.2014.932920)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lajud N, Roque A, Cajero M, Gutiérrez-Ospina G & Torner L 2012 Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood. Psychoneuroendocrinology 37 410420. (https://doi.org/10.1016/j.psyneuen.2011.07.011)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee JR & Loepke AW 2018 Does pediatric anesthesia cause brain damage? Addressing parental and provider concerns in light of compelling animal studies and seemingly ambivalent human data. Korean Journal of Anesthesiology 71 255–273. (https://doi.org/10.4097/kja.d.18.00165)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lehmann J, Russig H, Feldon J & Pryce CR 2002 Effect of a single maternal separation at different pup ages on the corticosterone stress response in adult and aged rats. Pharmacology, Biochemistry, and Behavior 73 141145. (https://doi.org/10.1016/s0091-3057(0200788-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Levine S 2002 Enduring effects of early experience on adult behavior. In Hormones, Brain and Behavior, pp. 535542. Elsevier.

  • Liu D, Caldji C, Sharma S, Plotsky PM & Meaney MJ 2000 Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinepherine release in the hypothalamic paraventricular nucleus. Journal of Neuroendocrinology 12 512. (https://doi.org/10.1046/j.1365-2826.2000.00422.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • MacKenzie SM, Dewar D, Stewart W, Fraser R, Connell JM & Davies E 2008 The transcription of steroidogenic genes in the human cerebellum and hippocampus: a comparative survey of normal and Alzheimer’s tissue. Journal of Endocrinology 196 123130. (https://doi.org/10.1677/JOE-07-0427)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mataradze GD, Kurabekova RM & Rozen VB 1992 The role of sex steroids in the formation of sex-differentiated concentrations of corticosteroid-binding globulin in rats. Journal of Endocrinology 132 235240. (https://doi.org/10.1677/joe.0.1320235)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCormick CM, Kehoe P & Kovacs S 1998 Corticosterone release in response to repeated, short episodes of neonatal isolation: evidence of sensitization. International Journal of Developmental Neuroscience 16 175185. (https://doi.org/10.1016/s0736-5748(9800026-4)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meaney MJ & Plotsky PM 2000 Long-term behavioral and neuroendocrine adaptations to adverse early experience. Biological Basis for Mind Body Interactions 122 81–103.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meaney MJ, Sapolsky RM & McEwen BS 1985 The development of the glucocorticoid receptor system in the rat limbic brain. I. Ontogeny and autoregulation. Brain Research 350 159164. (https://doi.org/10.1016/0165-3806(8590259-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mellon SH & Deschepper CF 1993 Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Research 629 283292. (https://doi.org/10.1016/0006-8993(9391332-m)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mirescu C, Peters JD & Gould E 2004 Early life experience alters response of adult neurogenesis to stress. Nature Neuroscience 7 841846. (https://doi.org/10.1038/nn1290)

  • Moisan MP, Seckl JR & Edwards CR 1990 11Beta-hydroxysteroid dehydrogenase bioactivity and messenger RNA expression in rat forebrain: localization in hypothalamus, hippocampus, and cortex. Endocrinology 127 14501455. (https://doi.org/10.1210/endo-127-3-1450)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Monder C & White PC 1993 11β-Hydroxysteroid dehydrogenase. In Vitamins and Hormones, pp. 187271. Elsevier. (https://doi.org/10.1016/S0083-6729(0860447-1)

  • Nikolakis G & Zouboulis CC 2014 Skin and glucocorticoids: effects of local skin glucocorticoid impairment on skin homeostasis. Experimental Dermatology 23 807808. (https://doi.org/10.1111/exd.12519)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, Quigley EM, Cryan JF & Dinan TG 2009 Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biological Psychiatry 65 263267. (https://doi.org/10.1016/j.biopsych.2008.06.026)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paxinos G, Halliday G, Watson C, Koutcherov Y & Wang H 2007 Atlas of the Developing Mouse Brain. London, UK: Elsevier.

  • Plotsky PM & Meaney MJ 1993 Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Research: Molecular Brain Research 18 195200. (https://doi.org/10.1016/0169-328x(9390189-v)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Salehzadeh M, Hamden JE, Li MX, Bajaj H, Wu RS & Soma KK 2022 Glucocorticoid production in lymphoid organs: acute effects of lipopolysaccharide in neonatal and adult mice. Endocrinology 163 bqab244. (https://doi.org/10.1210/endocr/bqab244)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sapolsky RM & Meaney MJ 1986 Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Research 396 6476. (https://doi.org/10.1016/s0006-8993(8680190-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sapolsky RM, Romero LM & Munck AU 2000 How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews 21 5589. (https://doi.org/10.1210/edrv.21.1.0389)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schmidt MV, Enthoven L, van der Mark M, Levine S, de Kloet ER & Oitzl MS 2003 The postnatal development of the hypothalamic-pituitary-adrenal axis in the mouse. International Journal of Developmental Neuroscience 21 125132. (https://doi.org/10.1016/s0736-5748(0300030-3)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skobowiat C, Dowdy JC, Sayre RM, Tuckey RC & Slominski A 2011 Cutaneous hypothalamic-pituitary-adrenal axis homolog: regulation by ultraviolet radiation. American Journal of Physiology: Endocrinology and Metabolism 301 E484E493. (https://doi.org/10.1152/ajpendo.00217.2011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Slominski A, Zbytek B, Nikolakis G, Manna PR, Skobowiat C, Zmijewski M, Li W, Janjetovic Z, Postlethwaite A, Zouboulis CC, et al.2013 Steroidogenesis in the skin: implications for local immune functions. Journal of Steroid Biochemistry and Molecular Biology 137 107123. (https://doi.org/10.1016/j.jsbmb.2013.02.006)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spinedi E, Chisari A, Pralong F & Gaillard RC 1997 Sexual dimorphism in the mouse hypothalamic-pituitary-adrenal axis function after endotoxin and insulin stresses during development. Neuroimmunomodulation 4 7783. (https://doi.org/10.1159/000097324)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taves MD, Gomez-Sanchez CE & Soma KK 2011 Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function. American Journal of Physiology: Endocrinology and Metabolism 301 E11E24. (https://doi.org/10.1152/ajpendo.00100.2011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taves MD, Plumb AW, Sandkam BA, Ma C, Van Der Gugten JG, Holmes DT, Close DA, Abraham N & Soma KK 2015 Steroid profiling reveals widespread local regulation of glucocorticoid levels during mouse development. Endocrinology 156 511522. (https://doi.org/10.1210/en.2013-1606)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tobiansky DJ, Kachkovski GV, Enos RT, Schmidt KL, Murphy EA & Soma KK 2020 Sucrose consumption alters steroid and dopamine signalling in the female rat brain. Journal of Endocrinology 245 231246. (https://doi.org/10.1530/JOE-19-0386)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vargas J, Junco M, Gomez C & Lajud N 2016 Early life stress increases metabolic risk, HPA axis reactivity, and depressive-like behavior when combined with postweaning social isolation in rats. PLoS ONE 11 e0162665. (https://doi.org/10.1371/journal.pone.0162665)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Viau V, Sharma S & Meaney MJ 1996 Changes in plasma adrenocorticotropin, corticosterone, corticosteroid‐binding globulin, and hippocampal glucocorticoid receptor occupancy/translocation in rat pups in response to stress. Journal of Neuroendocrinology 8 18. (https://doi.org/10.1111/j.1365-2826.1996.tb00680.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Viberg H 2009 Exposure to polybrominated diphenyl ethers 203 and 206 during the neonatal brain growth spurt affects proteins important for normal neurodevelopment in mice. Toxicological Sciences 109 306311. (https://doi.org/10.1093/toxsci/kfp074)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wei R, Wang J, Su M, Jia E, Chen S, Chen T & Ni Y 2018 Missing value imputation approach for mass spectrometry-based metabolomics data. Scientific Reports 8 663. (https://doi.org/10.1038/s41598-017-19120-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yan XX, Toth Z, Schultz L, Ribak CE & Baram TZ 1998 Corticotropin‐releasing hormone (CRH)‐containing neurons in the immature rat hippocampal formation: light and electron microscopic features and colocalization with glutamate decarboxylase and parvalbumin. Hippocampus 8 231243. (https://doi.org/10.1002/(SICI)1098-1063(1998)8:3<231::AID-HIPO6>3.0.CO;2-M)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ye P, Kenyon CJ, Mackenzie SM, Nichol K, Seckl JR, Fraser R, Connell JM & Davies E 2008 Effects of ACTH, dexamethasone, and adrenalectomy on 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) gene expression in the rat central nervous system. Journal of Endocrinology 196 305311. (https://doi.org/10.1677/JOE-07-0439)

    • PubMed
    • Search Google Scholar
    • Export Citation