β2AR against myocarditis-lipid deposition depends on estrogenic environment in stress

in Journal of Endocrinology
Authors:
Xi Tao Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China

Search for other papers by Xi Tao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7606-0363
,
Yaxin Xu Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China

Search for other papers by Yaxin Xu in
Current site
Google Scholar
PubMed
Close
,
Joseph Adu-Amankwaah Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China

Search for other papers by Joseph Adu-Amankwaah in
Current site
Google Scholar
PubMed
Close
,
Zheng Gong The School of Public Affairs & Governance, Silliman University, Dumaguete, Negros, Philippines

Search for other papers by Zheng Gong in
Current site
Google Scholar
PubMed
Close
,
Yuxuan Wang The Second Clinical School of Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China

Search for other papers by Yuxuan Wang in
Current site
Google Scholar
PubMed
Close
,
Fei Huang Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China

Search for other papers by Fei Huang in
Current site
Google Scholar
PubMed
Close
, and
Hong Sun Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China

Search for other papers by Hong Sun in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2135-3107

Correspondence should be addressed to H Sun: sunh@xzhmu.edu.cn
Restricted access
Rent on DeepDyve

Sign up for journal news

Cardiac lipid accumulation and inflammation have been linked to stress. There is mounting evidence that estrogen reduces lipid deposition and has anti-inflammatory properties; however, the exact mechanism is unknown. Recent studies showed that NLRP3 inflammasome is a key trigger of cardiac inflammation, and it is also involved in the progression of metabolic diseases. This study investigated the crucial role of the NLRP3 inflammasome in lipid accumulation during stress and the regulatory mechanism of estrogen in this process. Stress models were established by isoproterenol treatments in mice and H9c2 cells. With 5 mM isoproterenol, NLRP3 inflammasome activation was observed earlier at 0.5 h than that of lipid accumulation at 1 h in H9c2 cells. At 1 h after stress, the isoproterenol concentration required for NLRP3 inflammasome activation was lower compared to the concentration required for lipid deposition in mice myocardia and H9c2 cells; the former required 210 mg/kg or 10 μM for activation while the latter required 280 mg/kg or 5 mM. Knocking out or inhibiting NLRP3 inflammasome reduced myocardial lipid accumulation caused by stress in the mice myocardia and H9c2 cells. Estrogen downregulated NLRP3 inflammasome and reduced lipid accumulation in cardiomyocytes during stress. Finally, the anti-inflammatory and lipid-lowering effect of estrogen disappeared in β2ARKO mice and H9c2 cells pre-treated with ICI118,551. In conclusion, the upregulation of NLRP3 inflammasome induced by stress led to myocardial lipid accumulation, and β2AR downregulated NLRP3 inflammasome thereby reducing lipid accumulation which was dependent on the estrogenic environment.

 

  • Collapse
  • Expand
  • Adu-Amankwaah J, Adzika GK, Adekunle AO, Ndzie Noah ML, Mprah R, Bushi A, Akhter N, Xu Y, Huang F & Chatambarara B et al.2021 The Synergy of ADAM17-Induced Myocardial Inflammation and Metabolic Lipids Dysregulation During Acute Stress: New Pathophysiologic Insights Into Takotsubo Cardiomyopathy. Frontiers in Cardiovascular Medicine 8 696413. (https://doi.org/10.3389/fcvm.2021.696413)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Adzika GK, Hou H, Adekunle AO, Rizvi R, Adu-Amankwaah J, Shang W, Li K, Deng QM, Mprah R & Ndzie Noah ML et al.2021 Isoproterenol-induced cardiomyopathy recovery intervention: amlexanox and forskolin enhances the resolution of catecholamine stress-induced maladaptive myocardial remodeling. Frontiers in Cardiovascular Medicine 8 719805. (https://doi.org/10.3389/fcvm.2021.719805)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bertero E & Maack C 2018 Calcium signaling and reactive oxygen species in mitochondria. Circulation Research 122 14601478. (https://doi.org/10.1161/CIRCRESAHA.118.310082)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Borchert T, Hübscher D, Guessoum CI, Lam TD, Ghadri JR, Schellinger IN, Tiburcy M, Liaw NY, Li Y & Haas J et al.2017 Catecholamine-dependent β-adrenergic signaling in a pluripotent stem cell model of takotsubo cardiomyopathy. Journal of the American College of Cardiology 70 975991. (https://doi.org/10.1016/j.jacc.2017.06.061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Camell CD, Sander J, Spadaro O, Lee A, Nguyen KY, Wing A, Goldberg EL, Youm YH, Brown CW & Elsworth J et al.2017 Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550 119123. (https://doi.org/10.1038/nature24022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen F, Yu H, Zhang H, Zhao R, Cao K, Liu Y, Luo J & Xue Q 2021 Estrogen normalizes maternal HFD-induced cardiac hypertrophy in offspring by regulating AT2R. Journal of Endocrinology 250 112. (https://doi.org/10.1530/JOE-20-0562)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fiserova I, Trinh MD, Elkalaf M, Vacek L, Heide M, Martinkova S, Bechynska K, Kosek V, Hajslova J & Fiser O et al.2022 Isoprenaline modified the lipidomic profile and reduced β-oxidation in HL-1 cardiomyocytes: in vitro model of takotsubo syndrome. Frontiers in Cardiovascular Medicine 9 917989. (https://doi.org/10.3389/fcvm.2022.917989)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fu L, Zhang H, Ong’achwa Machuki J, Zhang T, Han L, Sang L, Wu L, Zhao Z, James Turley M & Hu X et al.2021 GPER mediates estrogen cardioprotection against epinephrine-induced stress. Journal of Endocrinology 249 209222. (https://doi.org/10.1530/JOE-20-0451)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fusco R, Siracusa R, Genovese T, Cuzzocrea S & Di Paola R 2020 Focus on the role of NLRP3 inflammasome in diseases. International Journal of Molecular Sciences 21 4223. (https://doi.org/10.3390/ijms21124223)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • García RD, Asensio JA, Perdicaro DJ & de Los Ángeles Peral M 2022 The Role of Inflammation as a Preponderant Risk Factor in Cardiovascular Diseases. Current Vascular Pharmacology 20 244259. (https://doi.org/10.2174/1570161120666220201160038)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Higashihara T, Nishi H, Takemura K, Watanabe H, Maruyama T, Inagi R, Tanaka T & Nangaku M 2021 β2-adrenergic receptor agonist counteracts skeletal muscle atrophy and oxidative stress in uremic mice. Scientific Reports 11 9130. (https://doi.org/10.1038/s41598-021-88438-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hou H, Zhao Z, Machuki JO, Zhang L, Zhang Y, Fu L, Wu J, Liu Y, Harding SE & Sun H 2018 Estrogen deficiency compromised the β(2). Pflugers Archiv 470 559570. (https://doi.org/10.1007/s00424-017-2098-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hou H, Adzika GK, Wu Q, Ma T, Ma Y, Geng J, Shi M, Fu L, Rizvi R & Gong Z et al.2021 Estrogen attenuates chronic stress-induced cardiomyopathy by adaptively regulating macrophage polarizations via β(2)-adrenergic receptor modulation. Frontiers in Cell and Developmental Biology 9 737003. (https://doi.org/10.3389/fcell.2021.737003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jiao L, Machuki JO, Wu Q, Shi M, Fu L, Adekunle AO, Tao X, Xu C, Hu X & Yin Z et al.2020 Estrogen and calcium handling proteins: new discoveries and mechanisms in cardiovascular diseases. American Journal of Physiology. Heart and Circulatory Physiology 318 H820–H829. (https://doi.org/10.1152/ajpheart.00734.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kivimäki M & Steptoe A 2018 Effects of stress on the development and progression of cardiovascular disease. Nature Reviews. Cardiology 15 215229. (https://doi.org/10.1038/nrcardio.2017.189)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li X, Long J, Zong L, Zhang C, Yang Z & Guo S 2022 ZNF561-AS1 regulates cell proliferation and apoptosis in myocardial infarction through miR-223-3p/NLRP3 axis. Cell Transplantation 31 9636897221077928. (https://doi.org/10.1177/09636897221077928)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li X, Zhang Y, Xia M, Gulbins E, Boini KM & Li PL 2014 Activation of Nlrp3 inflammasomes enhances macrophage lipid-deposition and migration: implication of a novel role of inflammasome in atherogenesis. PLoS One 9 e87552. (https://doi.org/10.1371/journal.pone.0087552)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu D, Zeng X, Li X, Mehta JL & Wang X 2018 Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases. Basic Research in Cardiology 113 5. (https://doi.org/10.1007/s00395-017-0663-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Machuki JO, Zhang HY, Harding SE & Sun H 2018 Molecular pathways of oestrogen receptors and β-adrenergic receptors in cardiac cells: recognition of their similarities, interactions and therapeutic value. Acta Physiologica (Oxford, England) 222 e12978. (https://doi.org/10.1111/apha.12978)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marstrand P, Han L, Day SM, Olivotto I, Ashley EA, Michels M, Pereira AC, Wittekind SG, Helms A & Saberi S et al.2020 Hypertrophic cardiomyopathy with left ventricular systolic dysfunction: insights from the SHaRe registry. Circulation 141 13711383. (https://doi.org/10.1161/CIRCULATIONAHA.119.044366)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martínez GJ, Celermajer DS & Patel S 2018 The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis 269 262271. (https://doi.org/10.1016/j.atherosclerosis.2017.12.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meng Q, Li Y, Ji T, Chao Y, Li J, Fu Y, Wang S, Chen Q, Chen W & Huang F et al.2021 Estrogen prevent atherosclerosis by attenuating endothelial cell pyroptosis via activation of estrogen receptor α-mediated autophagy. Journal of Advanced Research 28 149164. (https://doi.org/10.1016/j.jare.2020.08.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meyers AK & Zhu X 2020 The NLRP3 inflammasome: metabolic regulation and contribution to inflammaging. Cells 9 1808. (https://doi.org/10.3390/cells9081808)

  • Mohankumar SMJ, Balasubramanian P, Subramanian M & Mohankumar PS 2018 Chronic estradiol exposure - harmful effects on behavior, cardiovascular and reproductive functions. Reproduction 156 R169–R186. (https://doi.org/10.1530/REP-18-0116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Rooyen DM, Haczeyni F, Teoh NC, Savard C & Ioannou GN et al.2017 NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. Journal of Hepatology 66 10371046. (https://doi.org/10.1016/j.jhep.2017.01.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naftolin F, Friedenthal J, Nachtigall R & Nachtigall L 2019 Cardiovascular health and the menopausal woman: the role of estrogen and when to begin and end hormone treatment. F1000Research 8 1576. (https://doi.org/10.12688/f1000research.15548.1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ndzie Noah ML, Adzika GK, Mprah R, Adekunle AO, Adu-Amankwaah J & Sun H 2021 Sex-gender disparities in cardiovascular diseases: the effects of estrogen on eNOS, lipid profile, and NFATs during catecholamine stress. Frontiers in Cardiovascular Medicine 8 639946. (https://doi.org/10.3389/fcvm.2021.639946)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Orecchioni M, Kobiyama K, Winkels H, Ghosheh Y, Mcardle S, Mikulski Z, Kiosses WB, Fan Z, Wen L & Jung Y et al.2022 Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science 375 214221. (https://doi.org/10.1126/science.abg3067)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ortega-Hernández GA, Martínez-Martínez E, Jurado-López R, Luaces M, Islas F, Gómez-Garre D, Delgado-Valero B, Lagunas E & Ramchandani B 2019. The impact of cardiac lipotoxicity on cardiac function and mirnas signature in obese and non-obese rats with myocardial infarction. Scientific Reports 9 444. (https://doi.org/10.1038/s41598-018-36914-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peng Q, Yin R, Zhu X, Jin L, Wang J, Pan X & Ma A 2022 miR-155 activates the NLRP3 inflammasome by regulating the MEK/ERK/NF-κB pathway in carotid atherosclerotic plaques in ApoE(-/-) mice. Journal of Physiology and Biochemistry 78 365375. (https://doi.org/10.1007/s13105-022-00871-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qi C, Shao Y, Liu X, Wang D & Li X 2019 The cardioprotective effects of icariin on the isoprenaline-induced takotsubo-like rat model: involvement of reactive oxygen species and the TLR4/NF-κB signaling pathway. International Immunopharmacology 74 105733. (https://doi.org/10.1016/j.intimp.2019.105733)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rampanelli E, Orsó E, Ochodnicky P, Liebisch G, Bakker PJ, Claessen N, Butter LM, Van Den Bergh Weerman MA, Florquin S & schmitz G et al.2017. Metabolic injury-induced NLRP3 inflammasome activation dampens phospholipid degradation. Scientific Reports 7 2861. (https://doi.org/10.1038/s41598-017-01994-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sasaki Y, Ikeda Y, Miyauchi T, Uchikado Y, Akasaki Y & Ohishi M 2020 Estrogen-SIRT1 axis plays a pivotal role in protecting arteries against menopause-induced senescence and atherosclerosis. Journal of Atherosclerosis and Thrombosis 27 4759. (https://doi.org/10.5551/jat.47993)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scally C, Abbas H, Ahearn T, Srinivasan J, Mezincescu A, Rudd A, Spath N, Yucel-Finn A, Yuecel R & Oldroyd K et al.2019 Myocardial and systemic inflammation in acute stress-induced (takotsubo) cardiomyopathy. Circulation 139 15811592. (https://doi.org/10.1161/CIRCULATIONAHA.118.037975)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sessa WC 2018 Estrogen reduces LDL (low-density lipoprotein) transcytosis. Arteriosclerosis, Thrombosis, and Vascular Biology 38 22762277. (https://doi.org/10.1161/ATVBAHA.118.311620)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shao Y, Redfors B, Ståhlman M, Täng MS, Miljanovic A, Möllmann H, Troidl C, Szardien S, Hamm C & Nef Y et al.2013 A mouse model reveals an important role for catecholamine-induced lipotoxicity in the pathogenesis of stress-induced cardiomyopathy. European Journal of Heart Failure 15 922. (https://doi.org/10.1093/eurjhf/hfs161)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Speer T, Dimmeler S, Schunk SJ, Fliser D & Ridker PM 2022 Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. Nature Reviews. Nephrology 18 762778. (https://doi.org/10.1038/s41581-022-00621-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Suceveanu AI, Mazilu L, Katsiki N, Parepa I, Voinea F, Pantea-Stoian A, Rizzo M, Botea F, Herlea V & Serban D et al.2020 NLRP3 inflammasome biomarker-could be the new tool for improved cardiometabolic syndrome outcome. Metabolites 10 448. (https://doi.org/10.3390/metabo10110448)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Suetomi T, Miyamoto S & Brown JH 2019 Inflammation in nonischemic heart disease: initiation by cardiomyocyte CaMKII and NLRP3 inflammasome signaling. American Journal of Physiology. Heart and Circulatory Physiology 317 H877–H890. (https://doi.org/10.1152/ajpheart.00223.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Toldo S, Mezzaroma E, Buckley LF, Potere N, Di Nisio M, Biondi-Zoccai G, Van Tassell BW & Abbate A 2022 Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacology and Therapeutics 236 108053. (https://doi.org/10.1016/j.pharmthera.2021.108053)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vaccarezza M, Papa V, Milani D, Gonelli A, Secchiero P, Zauli G, Gemmati D & Tisato V 2020 Sex/gender-specific imbalance in CVD: could physical activity help to improve clinical outcome targeting CVD molecular mechanisms in women? International Journal of Molecular Sciences 21 1477. (https://doi.org/10.3390/ijms21041477)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang X, Cheng Y, Xue H, Yue Y, Zhang W & Li X 2015 Fargesin as a potential β₁ adrenergic receptor antagonist protects the hearts against ischemia/reperfusion injury in rats via attenuating oxidative stress and apoptosis. Fitoterapia 105 1625. (https://doi.org/10.1016/j.fitote.2015.05.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Westley KV, August KJ, Alger MR & Markey CH 2021 Main and interactive effects of diabetes distress and stress from life events on overall psychological distress. Journal of Health Psychology 26 312318. (https://doi.org/10.1177/1359105318804865)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xiao H, Li H, Wang JJ, Zhang JS, Shen J, An XB, Zhang CC, Wu JM, Song Y & Wang XY et al.2018 IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. European Heart Journal 39 6069. (https://doi.org/10.1093/eurheartj/ehx261)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu C, Liu A, Sun H, Sun Y, Wang G, Gao L, Hao Y & Yan C 2010 beta2-Adrenoceptor confers cardioprotection against hypoxia in isolated ventricular myocytes and the effects depend on estrogenic environment. Journal of Receptor and Signal Transduction Research 30 255261. (https://doi.org/10.3109/10799893.2010.488242)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang F, Li N, Gaman MA & Wang N 2021 Raloxifene has favorable effects on the lipid profile in women explaining its beneficial effect on cardiovascular risk: a meta-analysis of randomized controlled trials. Pharmacological Research 166 105512. (https://doi.org/10.1016/j.phrs.2021.105512)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zeng W, Wu D, Sun Y, Suo Y, Yu Q, Zeng M, Gao Q, Yu B, Jiang X & Wang Y 2021 The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Scientific Reports 11 19305. (https://doi.org/10.1038/s41598-021-98437-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zghyer F, Botheju WSP, Kiss JE, Michos ED, Corretti MC, Mukherjee M & Hays AG 2021 Cardiovascular imaging in stress cardiomyopathy (takotsubo syndrome). Frontiers in Cardiovascular Medicine 8 799031. (https://doi.org/10.3389/fcvm.2021.799031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang X, Zhang JH, Chen XY, Hu QH, Wang MX, Jin R, Zhang QY, Wang W, Wang R & Kang LL et al.2015 Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxidants and Redox Signaling 22 848870. (https://doi.org/10.1089/ars.2014.5868)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhaolin Z, Guohua L, Shiyuan W & Zuo W 2019 Role of pyroptosis in cardiovascular disease. Cell Proliferation 52 e12563. (https://doi.org/10.1111/cpr.12563)