Serotonin alters the response to a glucose challenge in lactating cows

in Journal of Endocrinology
Authors:
Virginia L Pszczolkowski Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA
Endocrinologh and Reproductive Physiology Graduate Training Program, University of Wisconsin, Madison, Wisconsin, USA

Search for other papers by Virginia L Pszczolkowski in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6476-6214
,
Meghan K Connelly Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA
Vita Plus Corporation, Madison, Wisconsin, USA

Search for other papers by Meghan K Connelly in
Current site
Google Scholar
PubMed
Close
,
Adam D Beard Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA
Endocrinologh and Reproductive Physiology Graduate Training Program, University of Wisconsin, Madison, Wisconsin, USA

Search for other papers by Adam D Beard in
Current site
Google Scholar
PubMed
Close
,
Amara D Benn Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA

Search for other papers by Amara D Benn in
Current site
Google Scholar
PubMed
Close
,
Jimena Laporta Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA
Endocrinologh and Reproductive Physiology Graduate Training Program, University of Wisconsin, Madison, Wisconsin, USA

Search for other papers by Jimena Laporta in
Current site
Google Scholar
PubMed
Close
,
Laura L Hernandez Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA
Endocrinologh and Reproductive Physiology Graduate Training Program, University of Wisconsin, Madison, Wisconsin, USA

Search for other papers by Laura L Hernandez in
Current site
Google Scholar
PubMed
Close
, and
Sebastian I Arriola Apelo Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA
Endocrinologh and Reproductive Physiology Graduate Training Program, University of Wisconsin, Madison, Wisconsin, USA

Search for other papers by Sebastian I Arriola Apelo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0274-5367

Correspondence should be addressed to S I Arriola Apelo: arriolaapelo@wisc.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Energy partitioning in lactating cows affects milk production, feed efficiency, and body reserves, with the latter having health implications for the transition into the following lactation. One molecule likely involved in the regulation of energy partitioning is serotonin. The objective of this experiment was to explore how increasing circulating serotonin, by intravenous infusion of the serotonin precursor 5-hydroxytryptophan (5-HTP), affects metabolic responses to a glucose challenge in midlactation cows as a means to manipulate energy partitioning. We intravenously infused Holstein cows with 5-HTP (1 mg/kg bodyweight dissolved in saline, n = 11) or saline alone as control (n = 9) over 1 h/day for 3 days. Cows were fasted overnight on day 2. On day 3, fasted cows were given an intravenous bolus of glucose (0.092 g/kg bodyweight). Blood samples were collected for the following 120 min for metabolic and hormonal analysis. Infusion of 5-HTP elevated circulating concentrations of serotonin and free fatty acids, reduced the concentration of insulin and amino acids, and did not affect the concentration of glucose and glucagon before the glucose challenge. Surrogate insulin sensitivity indices indicated improved insulin sensitivity in 5-HTP cows, but due to the unique metabolism of lactating ruminants, these index changes may instead reflect effects in insulin-independent glucose disposal, like milk synthesis. Challenging 5-HTP-treated cows with a glucose bolus reduced the insulin spike and blunted the decrease in free fatty acids, compared to saline cows, without changing glucose dynamics. Overall, these results suggest that serotonin stimulates insulin-independent glucose disposal, requiring less insulin to maintain normoglycemia.

Supplementary Materials

 

  • Collapse
  • Expand
  • Aschenbach JR, Kristensen NB, Donkin SS, Hammon HM & & Penner GB 2010 Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life 62 869877. (https://doi.org/10.1002/iub.400)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baumgard LH, Collier RJ & & Bauman DE 2017 A 100-year review: regulation of nutrient partitioning to support lactation. Journal of Dairy Science 100 1035310366. (https://doi.org/10.3168/jds.2017-13242)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bertrand PP & & Bertrand RL 2010 Serotonin release and uptake in the gastrointestinal tract. Autonomic Neuroscience: Basic and Clinical 153 4757. (https://doi.org/10.1016/j.autneu.2009.08.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bradford BJ & & Allen MS 2007 Depression in feed intake by a highly fermentable diet is related to plasma insulin concentration and insulin response to glucose Infusion1. Journal of Dairy Science 90 38383845. (https://doi.org/10.3168/jds.2007-0086)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cant JP, Reyes GC & & Seymour DJ 2022 Review: influence of postabsorptive metabolism on essential amino acid partitioning in lactating dairy cows. Animal 16(Supplement 3) 100573. (https://doi.org/10.1016/j.animal.2022.100573)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cardoso FC, Sears W, Leblanc SJ & & Drackley JK 2011. Technical note: Comparison of 3 methods for analyzing areas under the curve for glucose and nonesterified fatty acids concentrations following epinephrine challenge in dairy cows. Journal of Dairy Science 94 61116115. (https://doi.org/10.3168/jds.2011-4627)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carrasco G, Cruz MA, Gallaido V, Miguel P, Lagos M & & González C 1998 Plasma and platelet concentration and platelet uptake of serotonin in normal and pre-eclamptic pregnancies. Life Sciences 62 13231332. (https://doi.org/10.1016/s0024-3205(9800066-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cataldo Bascunan LR, Lyons C, Bennet H, Artner I & & Fex M 2019 Serotonergic regulation of insulin secretion. Acta Physiologica 225 e13101. (https://doi.org/10.1111/apha.13101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Connelly MK, Henschel SR, Kuehnl JM, Cheng AA, Nashold F & & Hernandez LL 2022 Physiological adaptations in early-lactation cows result in differential responses to calcium perturbation relative to nonlactating, nonpregnant cows. Journal of Dairy Science 105 904920. (https://doi.org/10.3168/jds.2021-20890)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Connelly MK, Marshall AM, Crump PM & & Hernandez LL 2020 Short communication: the effect of ruminal administration of 5-hydroxy-l-tryptophan on circulating serotonin concentrations. Journal of Dairy Science 103 1085010855. (https://doi.org/10.3168/jds.2019-18132)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Koster J, Hostens M, Hermans K, Van Den Broeck W & & Opsomer G 2016 Validation of different measures of insulin sensitivity of glucose metabolism in dairy cows using the hyperinsulinemic euglycemic clamp test as the gold standard. Domestic Animal Endocrinology 57 117126. (https://doi.org/10.1016/j.domaniend.2016.06.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Koster JD & & Opsomer G 2013 Insulin resistance in dairy cows. Veterinary Clinics of North America. Food Animal Practice 29 299322. (https://doi.org/10.1016/j.cvfa.2013.04.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • El-Merahbi R, Löffler M, Mayer A & & Sumara G 2015 The roles of peripheral serotonin in metabolic homeostasis. FEBS Letters 589 17281734. (https://doi.org/10.1016/j.febslet.2015.05.054)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Field SL, Marrero MG, Dado-Senn B, Skibiel AL, Ramos PM, Scheffler TL & & Laporta J 2021 Peripheral serotonin regulates glucose and insulin metabolism in Holstein dairy calves. Domestic Animal Endocrinology 74 106519. (https://doi.org/10.1016/j.domaniend.2020.106519)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Filsell OH, Jarrett IG, Taylor PH & & Keech DB 1969 Effects of fasting, diabetes and glucocorticoids on gluconeogenic enzymes in the sheep. Biochimica et Biophysica Acta 184 5463. (https://doi.org/10.1016/0304-4165(6990098-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • García-Roche M, Cañibe G, Casal A, Mattiauda DA, Ceriani M, Jasinsky A, Cassina A, Quijano C & & Carriquiry M 2021 Glucose and fatty acid metabolism of dairy cows in a total mixed ration or pasture-based system during lactation. Frontiers in Animal Science 2 622500. (https://doi.org/10.3389/fanim.2021.622500)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Groop LC, Bonadonna RC, Delprato S, Ratheiser K, Zyck K, Ferrannini E & & Defronzo RA 1989 Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. Journal of Clinical Investigation 84 205213. (https://doi.org/10.1172/JCI114142)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hernandez LL, Stiening CM, Wheelock JB, Baumgard LH, Parkhurst AM & & Collier RJ 2008 Evaluation of serotonin as a feedback inhibitor of lactation in the bovine. Journal of Dairy Science 91 18341844. (https://doi.org/10.3168/jds.2007-0766)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holtenius K, Agenäs S, Delavaud C & & Chilliard Y 2003 Effects of feeding intensity during the dry period. 2. Metabolic and hormonal responses. Journal of Dairy Science 86 883891. (https://doi.org/10.3168/jds.S0022-0302(0373671-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holtenius P & & Holtenius K 2007 A model to estimate insulin sensitivity in dairy cows. Acta Veterinaria Scandinavica 49 29. (https://doi.org/10.1186/1751-0147-49-29)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jaakson H, Karis P, Ling K, Ilves-Luht A, Samarütel J, Henno M, Jõudu I, Waldmann A, Reimann E, Pärn P, et al.2018 Adipose tissue insulin receptor and glucose transporter 4 expression, and blood glucose and insulin responses during glucose tolerance tests in transition Holstein cows with different body condition. Journal of Dairy Science 101 752766. (https://doi.org/10.3168/jds.2017-12877)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Janah L, Kjeldsen S, Galsgaard KD, Winther-Sørensen M, Stojanovska E, Pedersen J, Knop FK, Holst JJ & & Wewer Albrechtsen NJ 2019 Glucagon receptor signaling and glucagon resistance. International Journal of Molecular Sciences 20 3314. (https://doi.org/10.3390/ijms20133314)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kema IP, De Vries EGE & & Muskiet FA 2000 Clinical chemistry of serotonin and metabolites. Journal of Chromatography. B, Biomedical Sciences and Applications 747 3348. (https://doi.org/10.1016/s0378-4347(0000341-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kerestes M, Faigl V, Kulcsár M, Balogh O, Földi J, Fébel H, Chilliard Y & & Huszenicza G 2009 Periparturient insulin secretion and whole-body insulin responsiveness in dairy cows showing various forms of ketone pattern with or without puerperal metritis. Domestic Animal Endocrinology 37 250261. (https://doi.org/10.1016/j.domaniend.2009.07.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H, Fujitani Y, Kawamori R, Miyatsuka T, Kosaka Y, et al.2010 Serotonin regulates pancreatic beta cell mass during pregnancy. Nature Medicine 16 804808. (https://doi.org/10.1038/nm.2173)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Komatsu T, Itoh F, Kushibiki S & & Hodate K 2005 Changes in gene expression of glucose transporters in lactating and nonlactating cows. Journal of Animal Science 83 557564. (https://doi.org/10.2527/2005.833557x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuhn DM & & Hasegawa H 2020. Chapter 12 Tryptophan hydroxylase and serotonin synthesis regulation. In Handbook of the Behavioral Neurobiology of Serotonin. Müller CP, & Cunningham KA Eds. Elsevier 239256. (https://doi.org/10.1016/B978-0-444-64125-0.00012-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laliotis GP, Bizelis I & & Rogdakis E 2010 Comparative Approach of the de novo Fatty Acid Synthesis (Lipogenesis) between Ruminant and Non Ruminant Mammalian Species: from Biochemical Level to the Main Regulatory Lipogenic Genes. Current Genomics 11 168183. (https://doi.org/10.2174/138920210791110960)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laporta J, Moore SA, Weaver SR, Cronick CM, Olsen M, Prichard AP, Schnell BP, Crenshaw TD, Penagaricano F, Bruckmaier RM, et al.2015 Increasing serotonin concentrations alter calcium and energy metabolism in dairy cows. Journal of Endocrinology 226 4355. (https://doi.org/10.1530/JOE-14-0693)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laporta J, Peters TL, Weaver SR, Merriman KE & & Hernandez LL 2013 Feeding 5-hydroxy-l-tryptophan during the transition from pregnancy to lactation increases calcium mobilization from bone in rats. Domestic Animal Endocrinology 44 176184. (https://doi.org/10.1016/j.domaniend.2013.01.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Q, Hosaka T, Harada N, Nakaya Y & & Funaki M 2013 Activation of Akt through 5-HT2A receptor ameliorates serotonin-induced degradation of insulin receptor substrate-1 in adipocytes. Molecular and Cellular Endocrinology 365 2535. (https://doi.org/10.1016/j.mce.2012.08.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lozner EL, Winkler AW, Taylor FH & & Peters JP 1941 The intravenous glucose tolerance test. Journal of Clinical Investigation 20 507515. (https://doi.org/10.1172/JCI101243)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mackle TR, Dwyer DA, Ingvartsen KL, Chouinard PY, Ross DA & & Bauman DE 2000 Effects of insulin and Postruminal supply of protein on use of amino acids by the mammary gland for milk protein synthesis. Journal of Dairy Science 83 93105. (https://doi.org/10.3168/jds.S0022-0302(0074860-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Malacco VMR, Erickson M, Cardoso FF, Biese BP, Laguna JG & & Donkin SS 2020 Short communication: effect of glucose infusion dose and stage of lactation on glucose tolerance test kinetics in lactating dairy cows. Journal of Dairy Science 103 75477554. (https://doi.org/10.3168/jds.2019-17139)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mann S, Yepes FAL, Duplessis M, Wakshlag JJ, Overton TR, Cummings BP & & Nydam DV 2016. Dry period plane of energy: Effects on glucose tolerance in transition dairy cows. Journal of Dairy Science 99 7 017 17.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Markusfeld O, Galon N & & Ezra E 1997 Body condition score, health, yield and fertility in dairy cows. Veterinary Record 141 6772. (https://doi.org/10.1136/vr.141.3.67)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mathews AT, Rico JE, Sprenkle NT, Lock AL & & Mcfadden JW 2016 Increasing palmitic acid intake enhances milk production and prevents glucose-stimulated fatty acid disappearance without modifying systemic glucose tolerance in mid-lactation dairy cows. Journal of Dairy Science 99 88028816. (https://doi.org/10.3168/jds.2016-11295)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mawe GM & & Hoffman JM 2013 Serotonin signalling in the gut--functions, dysfunctions and therapeutic targets. Nature Reviews. Gastroenterology and Hepatology 10 473486. (https://doi.org/10.1038/nrgastro.2013.105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Megahed AA, Hiew MWH, Ragland D & & Constable PD 2019 Changes in skeletal muscle thickness and echogenicity and plasma creatinine concentration as indicators of protein and intramuscular fat mobilization in periparturient dairy cows. Journal of Dairy Science 102 55505565. (https://doi.org/10.3168/jds.2018-15063)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Menzies KK, Lee HJ, Lefevre C, Ormandy CJ, Macmillan KL & & Nicholas KR 2010 Insulin, a key regulator of hormone responsive milk protein synthesis during lactogenesis in murine mammary explants. Functional and Integrative Genomics 10 8795. (https://doi.org/10.1007/s10142-009-0140-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moore SAE, Laporta J, Crenshaw TD & & Hernandez LL 2015 Patterns of circulating serotonin and related metabolites in multiparous dairy cows in the peripartum period. Journal of Dairy Science 98 37543765.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakatani Y, Sato-Suzuki I, Tsujino N, Nakasato A, Seki Y, Fumoto M & & Arita H 2008 Augmented brain 5-HT crosses the blood–brain barrier through the 5-HT transporter in rat. European Journal of Neuroscience 27 24662472. (https://doi.org/10.1111/j.1460-9568.2008.06201.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nichols K, Dijkstra J, Van Laar H, Pacheco S, Van Valenberg HJ & & Bannink A 2019 Energy and nitrogen partitioning in dairy cows at low or high metabolizable protein levels is affected differently by postrumen glucogenic and lipogenic substrates. Journal of Dairy Science 102 395412. (https://doi.org/10.3168/jds.2018-15249)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pletscher A 1987 The 5-hydroxytryptamine system of blood platelets: physiology and pathophysiology. International Journal of Cardiology 14 177188. (https://doi.org/10.1016/0167-5273(8790007-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pszczolkowski VL & & Arriola Apelo SI 2020 The market for amino acids: understanding supply and demand of substrate for more efficient milk protein synthesis. Journal of Animal Science and Biotechnology 11 108. (https://doi.org/10.1186/s40104-020-00514-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pszczolkowski VL, Hu H, Zhang J, Connelly MK, Munsterman AS & & Arriola Apelo SI 2022 Effects of methionine, leucine, and insulin on circulating concentrations and mammary extraction of energy substrates and amino acids in lactating dairy cows. Domestic Animal Endocrinology 81 106730. (https://doi.org/10.1016/j.domaniend.2022.106730)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pszczolkowski VL, Zhang J, Pignato KA, Meyer EJ, Kurth MM, Lin A & & Arriola Apelo SI 2020 Insulin potentiates essential amino acids effects on mechanistic target of rapamycin complex 1 signaling in MAC-T cells. Journal of Dairy Science 103 1198812002. (https://doi.org/10.3168/jds.2020-18920)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schuh K, Sadri H, Häussler S, Webb LA, Urh C, Wagner M, Koch C, Frahm J, Dänicke S, Dusel G, et al.2019 Comparison of performance and metabolism from late pregnancy to early lactation in dairy cows with elevated v. normal body condition at dry-off. Animal 13 14781488. (https://doi.org/10.1017/S1751731118003385)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sumara G, Sumara O, Kim JK & & Karsenty G 2012 Gut-derived serotonin is a multifunctional determinant to fasting adaptation. Cell Metabolism 16 588600. (https://doi.org/10.1016/j.cmet.2012.09.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Torrence ME, Macarthur MR, Hosios AM, Valvezan AJ, Asara JM, Mitchell JR & & Manning BD 2021 The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals. eLife 10 e63326. (https://doi.org/10.7554/eLife.63326)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Valente EEL, Klotz JL & & Harmon DL 2021 5-hydroxytryptophan strongly stimulates serotonin synthesis in Holstein steers. Domestic Animal Endocrinology 74 106560. (https://doi.org/10.1016/j.domaniend.2020.106560)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Knegsel ATM, Van Den Brand H, Dijkstra J, Van Straalen WM, Heetkamp MJW, Tamminga S & & Kemp B 2007 Dietary energy source in dairy cows in early lactation: energy partitioning and milk composition. Journal of Dairy Science 90 14671476. (https://doi.org/10.3168/jds.S0022-0302(0771632-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wallace TM, Levy JC & & Matthews DR 2004 Use and abuse of HOMA modeling. Diabetes Care 27 14871495. (https://doi.org/10.2337/diacare.27.6.1487)

  • Wang X, Zhen YG, Zhang XF, Sun Z, Chen X, Aschalew ND, Wang T & & Qin GX 2021 Effect of dietary energy composition on the energy partitioning between milk production and body fat deposition in late lactating Holstein dairy cows. Livestock Science 250 104546. (https://doi.org/10.1016/j.livsci.2021.104546)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watanabe H, Rose M, Kanayama Y, Shirakawa H & & Aso H 2017 Energy homeostasis by the peripheral serotonergic system. Serotonin - A Chemical Messenger Between All Types of Living Cells .London, UK: IntechOpen. (https://doi.org/10.5772/intechopen.68831)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weaver SR, Jury NJ, Gregerson KA, Horseman ND & & Hernandez LL 2017 Characterization of mammary-specific disruptions for Tph1 and Lrp5 during murine lactation. Scientific Reports 7 15155. (https://doi.org/10.1038/s41598-017-15508-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zachut M, Honig H, Striem S, Zick Y, Boura-Halfon S & & Moallem U 2013 Periparturient dairy cows do not exhibit hepatic insulin resistance, yet adipose-specific insulin resistance occurs in cows prone to high weight loss. Journal of Dairy Science 96 56565669. (https://doi.org/10.3168/jds.2012-6142)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zafeiriou DI, Ververi A & & Vargiami E 2009 The serotonergic system: its role in pathogenesis and early developmental treatment of autism. Current Neuropharmacology 7 150157. (https://doi.org/10.2174/157015909788848848)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zarrin M, Wellnitz O & & Bruckmaier RM 2015 Conjoint regulation of glucagon concentrations via plasma insulin and glucose in dairy cows. Domestic Animal Endocrinology 51 7477. (https://doi.org/10.1016/j.domaniend.2014.11.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao FQ & & Keating AF 2007 Expression and regulation of glucose transporters in the bovine mammary gland. Journal of Dairy Science 90(Supplement 1) E76E86. (https://doi.org/10.3168/jds.2006-470)

    • PubMed
    • Search Google Scholar
    • Export Citation