Participation of leukaemia inhibitory factor in follicular development and steroidogenesis in rat ovaries

in Journal of Endocrinology
Authors:
S Peña Center for Neurobiochemical studies in Endocrine Diseases, Laboratory of Neurobiochemistry, Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile

Search for other papers by S Peña in
Current site
Google Scholar
PubMed
Close
,
M Rubio Center for Neurobiochemical studies in Endocrine Diseases, Laboratory of Neurobiochemistry, Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile

Search for other papers by M Rubio in
Current site
Google Scholar
PubMed
Close
,
C Vargas Center for Neurobiochemical studies in Endocrine Diseases, Laboratory of Neurobiochemistry, Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile

Search for other papers by C Vargas in
Current site
Google Scholar
PubMed
Close
,
C Alanis Center for Neurobiochemical studies in Endocrine Diseases, Laboratory of Neurobiochemistry, Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile

Search for other papers by C Alanis in
Current site
Google Scholar
PubMed
Close
, and
AH Paredes Center for Neurobiochemical studies in Endocrine Diseases, Laboratory of Neurobiochemistry, Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile

Search for other papers by AH Paredes in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3496-5663

Correspondence should be addressed to A H Paredes: aparedes@ciq.uchile.cl
Restricted access
Rent on DeepDyve

Sign up for journal news

Leukaemia inhibitory factor (LIF) is a cytokine belonging to the interleukin-6 family that is important at the reproductive level in the uterine implantation process. However, there is very little evidence regarding its effect at the ovarian level. The aim of this work was to study the local involvement of the LIF/LIFRβ system in follicular development and steroidogenesis in rat ovaries. To carry out this research, LIF/LIFR/GP130 transcript and protein levels were measured in fertile and sub-fertile rat ovaries, and in vitro experiments were performed to assess STAT3 activation. Then, in in vivo experiments, LIF was administered chronically and locally for 28 days to the ovaries of rats by means of an osmotic minipump to enable us to evaluate the effect on folliculogenesis and steroidogenesis. It was determined by quantitative polymerase chain reaction and western blot that LIF and its receptors are present in fertile and sub-fertile ovaries and that LIF varies during the oestrous cycle, being higher during the oestrus and meta/dioestrus stages. In addition to this, it was found that LIF can activate STAT3 pathways and cause pSTAT3 formation. It was also observed that LIF decreases the number and size of preantral and antral follicles without altering the number of atretic antral follicles and can increase the number of corpora lutea, with a notable increase in the levels of progesterone (P4). It is therefore possible to infer that LIF exerts an important effect in vivo on folliculogenesis, ovulation and steroidogenesis, specifically the synthesis of P4.

 

  • Collapse
  • Expand
  • Acuña E, Fornes R, Fernandois D, Garrido MP, Greiner M, Lara HE & & Paredes AH 2009 Increases in norepinephrine release and ovarian cyst formation during ageing in the rat. Reproductive Biology and Endocrinology: RB&E 7 64. (https://doi.org/10.1186/1477-7827-7-64)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Auernhammer CJ & & Melmed S 2000 Leukemia-Inhibitory Factor-neuroimmune modulator of endocrine function. Endocrine Reviews 21 313345. (https://doi.org/10.1210/edrv.21.3.0400)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bamberger AM, Schulte HM, Wullbrand A, Jung R, Beil FU & & Bamberger CM 2000 Expression of leukemia inhibitory factor (LIF) and LIF receptor (LIF-R) in the human adrenal cortex: implications for steroidogenesis. Molecular and Cellular Endocrinology 162 145149. (https://doi.org/10.1016/S0303-7207(0000200-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bhatt H, Brunet LJ & & Stewart CL 1991 Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proceedings of the National Academy of Sciences of the United States of America 88 1140811412. (https://doi.org/10.1073/pnas.88.24.11408)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Calder M, Chan YM, Raj R, Pampillo M, Elbert A, Noonan M, Gillio-Meina C, Caligioni C, Bérubé NG, Bhattacharya M, et al.2014 Implantation failure in female Kiss1-/- mice is independent of their hypogonadic state and can be partially rescued by leukemia inhibitory factor. Endocrinology 155 30653078. (https://doi.org/10.1210/en.2013-1916)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chávez-Genaro R, Lombide P, Domínguez R, Rosas P & & Vázquez-Cuevas F 2007 Sympathetic pharmacological denervation in ageing rats: effects on ovulatory response and follicular population. Reproduction, Fertility, and Development 19 954960. (https://doi.org/10.1071/RD07075)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen C, Shen L, Cao S, Li X, Xuan W, Zhang J, Huang X, Bin J, Xu D, Li Get al. 2014 Cytosolic CARP promotes angiotensin II- or pressure overload-induced cardiomyocyte hypertrophy through calcineurin accumulation. PLoS ONE 9 e104040. (https://doi.org/10.1371/journal.pone.0104040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cora MC, Kooistra L & & Travlos G 2015 Vaginal cytology of the laboratory rat and mouse: review and criteria for the staging of the estrous cycle using stained Vaginal smears. Toxicologic Pathology 43 776793. (https://doi.org/10.1177/0192623315570339)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coskun S, Uzumcu M, Jaroudi K, Hollanders JMG, Parhar RS & & al-Sedairy ST 1998 Presence of leukemia inhibitory factor and interleukin-12 in human follicular fluid during follicular growth. American Journal of Reproductive Immunology 40 1318. (https://doi.org/10.1111/j.1600-0897.1998.tb00382.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cruz G, Fernandois D & & Paredes AH 2017 Ovarian function and reproductive senescence in the rat: role of ovarian sympathetic innervation. Reproduction 153 R59R68. (https://doi.org/10.1530/REP-16-0117)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • da Nóbrega JE, Gonçalves PBD, Chaves RN, Magalhães DDM, Rossetto R, Lima-Verde IB, Pereira GR, Campello CC, Figueiredo JR & & De Oliveira JFC 2012 Leukemia inhibitory factor stimulates the transition of primordial to primary follicle and supports the goat primordial follicle viability in vitro. Zygote 20 7378. (https://doi.org/10.1017/S0967199411000074)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davis JS & & Rueda BR 2002 The corpus luteum: an ovarian structure with maternal instincts and suicidal tendencies. Frontiers in Bioscience: a Journal and Virtual Library 7 d1949d1978. (https://doi.org/10.2741/davis1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • del Campo M, Lagos N & & Lara H 2020 In vivo blockade of ovarian sympathetic activity by neosaxitoxin prevents polycystic ovary in rats. Journal of Endocrinology 244 523533. (https://doi.org/10.1530/JOE-19-0545)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • del Campo M, Piquer B, Witherington J, Sridhar A & & Lara HE 2019 Effect of superior ovarian nerve and plexus nerve sympathetic denervation on ovarian-derived infertility provoked by estradiol exposure to rats. Frontiers in Physiology 10 349. (https://doi.org/10.3389/fphys.2019.00349)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dewailly D, Andersen CY, Balen A, Broekmans F, Dilaver N, Fanchin R, Griesinger G, Kelsey TW, La marca A, Lambalk C, et al.2014 The physiology and clinical utility of anti-Müllerian hormone in women. Human Reproduction Update 20 370385. (https://doi.org/10.1093/humupd/dmt062)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dong J, Guo C, Zhou S, Zhao A, Li J, Mi Y & & Zhang C 2022 Leukemia inhibitory factor prevents chicken follicular atresia through PI3K/AKT and Stat3 signaling pathways. Molecular and Cellular Endocrinology 543 111550. (https://doi.org/10.1016/j.mce.2021.111550)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Durlinger ALL, Kramer P, Karels B, De Jong FH, Uilenbroek JTJ, Grootegoed JA & & Themmen APN 1999 Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology 140 57895796. (https://doi.org/10.1210/endo.140.12.7204)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eddie SL, Childs AJ, Jabbour HN & & Anderson RA 2012 Developmentally regulated IL6-type cytokines signal to germ cells in the human fetal ovary. Molecular Human Reproduction 18 8895. (https://doi.org/10.1093/molehr/gar061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fan Y-Y, Zhang J-M, Wang H, Liu X-Y & & Yang F-H 2013 Leukemia inhibitory factor inhibits the proliferation of primary rat astrocytes induced by oxygen-glucose deprivation. Acta Neurobiologiae Experimentalis73485494.

    • PubMed
    • Export Citation
  • Fernandois D, Lara HE & & Paredes AH 2012 Blocking of β-adrenergic receptors during the subfertile period inhibits spontaneous ovarian cyst formation in rats. Hormone and Metabolic Research 44 682687. (https://doi.org/10.1055/s-0032-1304607)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fernandois D, Cruz G, Na EK, Lara HE & & Paredes AH 2017 Kisspeptin level in the aging ovary is regulated by the sympathetic nervous system. Journal of Endocrinology 232 97105. (https://doi.org/10.1530/JOE-16-0181)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fukada K, Korsching S & & Towle MF 1997 Tissue-specific and ontogenetic regulation of LIF protein levels determined by quantitative enzyme immunoassay. Growth Factors 14 279295. (https://doi.org/10.3109/08977199709021526)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gomarasca M, Banfi G & & Lombardi G 2020 Myokines: the endocrine coupling of skeletal muscle and bone. Advances in Clinical Chemistry 94 155218. (https://doi.org/10.1016/bs.acc.2019.07.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hawkins DE, Belfiore CJ, Kile JP & & Niswender GD 1993 Regulation of messenger ribonucleic acid encoding 3-hydroxysteroid dehydrogenase/A 5-A 4 isomerase in the ovine corpus luteum. Biology of Reproduction 48 11851190. (https://doi.org/10.1095/biolreprod48.5.1185)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu Q, Huang C, Wang Y & & Wu R 2015 Expression of leukemia inhibitory factor in the rat retina following acute ocular hypertension. Molecular Medicine Reports12657783. (https://doi.org/10.3892/mmr.2015.4287)

    • PubMed
    • Export Citation
  • Kamohara H, Sakamoto K, Ishiko T, Masuda Y, Abe T & & Ogawa M 1997 Leukemia inhibitory factor induces apoptosis and proliferation of human carcinoma cells through different oncogene pathways. International Journal of Cancer 72 687695. (https://doi.org/10.1002/(SICI)1097-0215(19970807)72:4<687::AID-IJC22>3.0.CO;2-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Komatsu K, Koya T, Wang J, Yamashita M, Kikkawa F & & Iwase A 2015 Analysis of the effect of leukemia inhibitory factor on follicular growth in cultured murine ovarian tissue. Biology of Reproduction 93 18. (https://doi.org/10.1095/biolreprod.115.128421)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lara HE, Dissen GA, Leyton V, Paredes A, Fuenzalida H, Fiedler JL & & Ojeda SR 2000 An increased intraovarian synthesis of nerve growth factor and its low affinity receptor is a principal component of steroid-induced polycystic ovary in the rat. Endocrinology 141 10591072. (https://doi.org/10.1210/endo.141.3.7395)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lass A, Weiser W, Munafo A & & Loumaye E 2001 Leukemia inhibitory factor in human reproduction. Fertility and Sterility 76 10911096. (https://doi.org/10.1016/S0015-0282(0102878-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu P, Zhang X, Hu J, Cui L, Zhao S, Jiao X & & Qin Y 2020 Dysregulated cytokine profile associated with biochemical premature ovarian insufficiency. American Journal of Reproductive Immunology 84 e13292. (https://doi.org/10.1111/aji.13292)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mikhaylova IV, Jääskeläinen T, Jääskeläinen J, Palvimo JJ & & Voutilainen R 2008 Leukemia inhibitory factor as a regulator of steroidogenesis in human NCI-H295R adrenocortical cells. Journal of Endocrinology 199 435444. (https://doi.org/10.1677/JOE-08-0377)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mo X, Wu G, Yuan D, Jia B, Liu C, Zhu S & & Hou Y 2014 Leukemia inhibitory factor enhances bovine oocyte maturation and early embryo development. Molecular Reproduction and Development 81 608618. (https://doi.org/10.1002/mrd.22327)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Murphy MJ, Halow NG, Royer PA & & Hennebold JD 2016 Leukemia inhibitory factor is necessary for ovulation in female rhesus macaques. Endocrinology 157 43784387. (https://doi.org/10.1210/en.2016-1283)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nicola NA & & Babon JJ 2015 Leukemia inhibitory factor (LIF). Cytokine and Growth Factor Reviews 26 533544. (https://doi.org/10.1016/j.cytogfr.2015.07.001)

  • Nilsson EE, Kezele P & & Skinner MK 2002 Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Molecular and Cellular Endocrinology 188 6573. (https://doi.org/10.1016/S0303-7207(0100746-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pastuschek J, Poetzsch J, Morales-Prieto DM, Schleußner E, Markert UR & & Georgiev G 2015 Stimulation of the JAK/STAT pathway by LIF and OSM in the human granulosa cell line COV434. Journal of Reproductive Immunology 108 4855. (https://doi.org/10.1016/j.jri.2015.03.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ricu MA, Ramirez VD, Paredes AH & & Lara HE 2012 Evidence for a celiac ganglion-ovarian kisspeptin neural network in the rat: intraovarian anti-kisspeptin delays vaginal opening and alters estrous cyclicity. Endocrinology 153 49664977. (https://doi.org/10.1210/en.2012-1279)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosario GX & & Stewart CL 2016 The multifaceted actions of leukaemia Inhibitory factor in mediating uterine receptivity and embryo implantation. American Journal of Reproductive Immunology 75 246255. (https://doi.org/10.1111/aji.12474)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Salehnia M, Fayazi M & & Ehsani S 2017 Leukemia inhibitory factor increases the proliferation of human endometrial stromal cells and expression of genes related to pluripotency. International Journal of Reproductive Biomedicine 15 209216. (https://doi.org/10.29252/ijrm.15.4.209)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schere-Levy C, Buggiano V, Quaglino A, Gattelli A, Cirio MC, Piazzon I, Vanzulli S & & Kordon EC 2003 Leukemia inhibitory factor induces apoptosis of the mammary epithelial cells and participates in mouse mammary gland involution. Experimental Cell Research 282 3547. (https://doi.org/10.1006/excr.2002.5666)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Segrave AM, Mager DE, Charman SA, Edwards GA & & Porter CJH 2004 Pharmacokinetics of recombinant human leukemia inhibitory factor in sheep. Journal of Pharmacology and Experimental Therapeutics 309 10851092. (https://doi.org/10.1124/jpet.103.063289)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simamura E, Shimada H, Higashi N, Uchishiba M, Otani H & & Hatta T 2010 Maternal leukemia inhibitory factor (LIF) promotes fetal neurogenesis via a LIF-ACTH-LIF signaling relay pathway. Endocrinology151 18531862. (https://doi.org/10.1210/en.2009-0985)

    • PubMed
    • Export Citation
  • Squicciarini V, Riquelme R, Wilsterman K, Bentley GE & & Lara HE 2018 Role of RFRP-3 in the development of cold stress-induced polycystic ovary phenotype in rats. Journal of Endocrinology 239 81–91. (https://doi.org/10.1530/JOE-18-0357)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Köntgen F & & Abbondanzo SJ 1992 Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359 7679. (https://doi.org/10.1038/359076a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Suman P, Malhotra SS & & Gupta SK 2013 LIF-STAT signaling and trophoblast biology. JAK-STAT 2 e25155. (https://doi.org/10.4161/jkst.25155)

  • Sutherland JM, Keightley RA, Nixon B, Roman SD, Robker RL, Russell DL & & Mclaughlin EA 2012 Suppressor of cytokine signaling 4 (SOCS4): moderator of ovarian primordial follicle activation. Journal of Cellular Physiology 227 11881198. (https://doi.org/10.1002/jcp.22837)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Rooij IAJ, Broekmans FJM, Scheffer GJ, Looman CWN, Habbema JDF, De Jong FH, Fauser BJCM, Themmen APN & & Te Velde ER 2005 Serum antiMüllerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility: a longitudinal study. Fertility and Sterility 83 979987. (https://doi.org/10.1016/j.fertnstert.2004.11.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y, Yuan K, Li X, Su Z, Li X, Guan H, Su Y, Ge HS & & Ge RS 2016 Leukemia inhibitory factor stimulates steroidogenesis of rat immature Leydig cells via increasing the expression of steroidogenic acute regulatory protein. Growth Factors 34 166176. (https://doi.org/10.1080/08977194.2016.1183199)

    • PubMed
    • Search Google Scholar
    • Export Citation