Regulation of adipose tissue development and energy metabolism by VEGFB isoforms

in Journal of Endocrinology
Authors:
Yang Chen School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China

Search for other papers by Yang Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3689-2680
,
Xin Li School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China

Search for other papers by Xin Li in
Current site
Google Scholar
PubMed
Close
,
Jing Zhang Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China

Search for other papers by Jing Zhang in
Current site
Google Scholar
PubMed
Close
,
Mingjiao Zhang Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China

Search for other papers by Mingjiao Zhang in
Current site
Google Scholar
PubMed
Close
,
Salah Adlat Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China

Search for other papers by Salah Adlat in
Current site
Google Scholar
PubMed
Close
,
Xiaodan Lu Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China

Search for other papers by Xiaodan Lu in
Current site
Google Scholar
PubMed
Close
,
Dan Li Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China

Search for other papers by Dan Li in
Current site
Google Scholar
PubMed
Close
,
Honghong Jin Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China

Search for other papers by Honghong Jin in
Current site
Google Scholar
PubMed
Close
,
Chenhao Wang Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China

Search for other papers by Chenhao Wang in
Current site
Google Scholar
PubMed
Close
,
Zin Mar Oo Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China

Search for other papers by Zin Mar Oo in
Current site
Google Scholar
PubMed
Close
,
Farooq Hayel Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China

Search for other papers by Farooq Hayel in
Current site
Google Scholar
PubMed
Close
,
Quangang Chen School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China

Search for other papers by Quangang Chen in
Current site
Google Scholar
PubMed
Close
,
Xufeng Han School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China

Search for other papers by Xufeng Han in
Current site
Google Scholar
PubMed
Close
,
Renjin Chen School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China

Search for other papers by Renjin Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2754-4211
,
Xuechao Feng Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China

Search for other papers by Xuechao Feng in
Current site
Google Scholar
PubMed
Close
,
Luqing Zhang Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China

Search for other papers by Luqing Zhang in
Current site
Google Scholar
PubMed
Close
, and
Yaowu Zheng Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China

Search for other papers by Yaowu Zheng in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8044-1292

Correspondence should be addressed to Y Zheng, L Zhang, X Feng or R Jin: zhengyw442@nenu.edu.cn, zhangluqing@gmail.com, fengxc997@nenu.edu.cn or crj@xzhmu.edu.cn

*(Y Chen, X Li, J Zhang and M Zhang contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

Obesity is caused by imbalanced energy intake and expenditure. Excessive energy intake and storage in adipose tissues are associated with many diseases. Several studies have demonstrated that vascular growth endothelial factor B (VEGFB) deficiency induces obese phenotypes. However, the roles of VEGFB isoforms VEGFB167 and VEGFB186 in adipose tissue development and function are still not clear. In this study, genetic mouse models of adipose-specific VEGFB167 and VEGFB186 overexpression (aP2-Vegfb167 tg/+and aP2-Vegfb186tg/+) were generated and their biologic roles were investigated. On regular chow, adipose-specific VEGFB186 is negatively associated with white adipose tissues (WATs) and positively regulates brown adipose tissues (BATs). VEGFB186 upregulates energy metabolism and metabolism-associated genes. In contrast, VEGFB167 has a nominal role in adipose development and function. On high-fat diet, VEGFB186 expression can reverse the phenotypes of VEGFB deletion. VEGFB186 overexpression upregulates BAT-associated genes and downregulates WAT-associated genes. VEGFB186 and VEGFB167 have very distinct roles in the regulation of adipose development and energy metabolism. As a key regulator of adipose tissue development and energy metabolism, VEGFB186 may be a target for obesity prevention and treatment.

 

  • Collapse
  • Expand
  • Bostrom P, Andersson L, Rutberg M, Perman J, Lidberg U, Johansson BR, Fernandez-Rodriguez J, Ericson J, Nilsson T, Boren J, et al.2007 SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nature Cell Biology 9 12861293. (https://doi.org/10.1038/ncb1648)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cai L, Lubitz J, Flegal KM & & Pamuk ER 2010 The predicted effects of chronic obesity in middle age on medicare costs and mortality. Medical Care 48 510517. (https://doi.org/10.1097/MLR.0b013e3181dbdb20)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castro AV, Kolka CM, Kim SP & & Bergman RN 2014 Obesity, insulin resistance and comorbidities? Mechanisms of association. Arquivos Brasileiros de Endocrinologia e Metabologia 58 600609. (https://doi.org/10.1590/0004-2730000003223)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cedikova M, Kripnerova M, Dvorakova J, Pitule P, Grundmanova M, Babuska V, Mullerova D & & Kuncova J 2016 Mitochondria in White, Brown, and Beige Adipocytes. Stem Cells International 2016 6067349. (https://doi.org/10.1155/2016/6067349)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen Y, Zhao M, Wang C, Wen H, Zhang Y, Lu M, Adlat S, Zheng T, Zhang M, Li D, et al.2020 Adipose vascular endothelial growth factor B is a major regulator of energy metabolism. Journal of Endocrinology 244 511521. (https://doi.org/10.1530/JOE-19-0341)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen Y, Zhao M, Zheng T, Adlat S, Jin H, Wang C, Li D, Zaw Myint MZ, Yao Y, Xu L, et al.2019 Repression of adipose vascular endothelial growth factor reduces obesity through adipose browning. American Journal of Physiology. Endocrinology and Metabolism 316 E145E155. (https://doi.org/10.1152/ajpendo.00196.2018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cong L & & Zhang F 2015 Genome engineering using CRISPR-Cas9 system. Methods in Molecular Biology 1239 197217. (https://doi.org/10.1007/978-1-4939-1862-1_10)

  • Esteve Rafols M 2014 Adipose tissue: cell heterogeneity and functional diversity. Endocrinologia y Nutricion: organo de la Sociedad Espanola de Endocrinologia y Nutricion 61 100112. (https://doi.org/10.1016/j.endonu.2013.03.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fain JN, Madan AK, Hiler ML, Cheema P & & Bahouth SW 2004 Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145 22732282. (https://doi.org/10.1210/en.2003-1336)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grimmond S, Lagercrantz J, Drinkwater C, Silins G, Townson S, Pollock P, Gotley D, Carson E, Rakar S, Nordenskjold M, et al.1996 Cloning and characterization of a novel human gene related to vascular endothelial growth factor. Genome Research 6 124131. (https://doi.org/10.1101/gr.6.2.124)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hagberg C, Mehlem A, Falkevall A, Muhl L & & Eriksson U 2013 Endothelial fatty acid transport: role of vascular endothelial growth factor B. Physiology (Bethesda) 28 125134. (https://doi.org/10.1152/physiol.00042.2012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, Van Meeteren LA, Samen E, Lu L, Vanwildemeersch M, et al.2010 Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464 917921. (https://doi.org/10.1038/nature08945)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, Shinoda K, Chen Y, Lu X, Maretich P, et al.2017 UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nature Medicine 23 14541465. (https://doi.org/10.1038/nm.4429)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jin H, Li D, Wang X, Jia J, Chen Y, Yao Y, Zhao C, Lu X, Zhang S, Togo J, et al.2018 VEGF and VEGFB play balancing roles in adipose differentiation, gene expression, and function. Endocrinology 159 20362049. (https://doi.org/10.1210/en.2017-03246)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karpanen T, Bry M, Ollila HM, Seppanen-Laakso T, Liimatta E, Leskinen H, Kivela R, Helkamaa T, Merentie M, Jeltsch M, et al.2008 Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy. Circulation Research 103 10181026. (https://doi.org/10.1161/CIRCRESAHA.108.178459)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kazantzis M & & Stahl A 2012 Fatty acid transport proteins, implications in physiology and disease. Biochimica et Biophysica Acta 1821 852857. (https://doi.org/10.1016/j.bbalip.2011.09.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li X, Aase K, Li H, Von Euler G & & Eriksson U 2001 Isoform-specific expression of VEGF-B in normal tissues and tumors. Growth Factors 19 4959. (https://doi.org/10.3109/08977190109001075)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li X, Lee C, Tang Z, Zhang F, Arjunan P, Li Y, Hou X, Kumar A & & Dong L 2009 VEGF-B: a survival, or an angiogenic factor? Cell Adhesion and Migration 3 322327. (https://doi.org/10.4161/cam.3.4.9459)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luna-Luna M, Medina-Urrutia A, Vargas-Alarcon G, Coss-Rovirosa F, Vargas-Barron J & & Perez-Mendez Ó 2015 Adipose tissue in metabolic syndrome: onset and progression of atherosclerosis. Archives of Medical Research 46 392407. (https://doi.org/10.1016/j.arcmed.2015.05.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Madsen L, Pedersen LM, Lillefosse HH, Fjaere E, Bronstad I, Hao Q, Petersen RK, Hallenborg P, Ma T, De Matteis R, et al.2010 UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLoS One 5 e11391. (https://doi.org/10.1371/journal.pone.0011391)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McGown C, Birerdinc A & & Younossi ZM 2014 Adipose tissue as an endocrine organ. Clinics in Liver Disease 18 4158. (https://doi.org/10.1016/j.cld.2013.09.012)

  • Mick GJ, Wang X & & Mccormick K 2002 White adipocyte vascular endothelial growth factor: regulation by insulin. Endocrinology 143 948953. (https://doi.org/10.1210/endo.143.3.8673)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nishimoto Y & & Tamori Y 2017 CIDE family-mediated unique lipid droplet morphology in white adipose tissue and brown adipose tissue determines the adipocyte energy metabolism. Journal of Atherosclerosis and Thrombosis 24 989998. (https://doi.org/10.5551/jat.RV17011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mission JF, Marshall NE & & Caughey AB 2015. Pregnancy risks associated with obesity. Obstetrics and Gynecology Clinics of North America 42 335353. (https://doi.org/10.1016/j.ogc.2015.01.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Olofsson B, Pajusola K, Kaipainen A, Von Euler G, Joukov V, Saksela O, Orpana A, Pettersson RF, Alitalo K & & Eriksson U 1996 Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 93 25762581. (https://doi.org/10.1073/pnas.93.6.2576)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Olsson AK, Dimberg A, Kreuger J & & Claesson-Welsh L 2006 VEGF receptor signalling - in control of vascular function. Nature Reviews. Molecular Cell Biology 7 359371. (https://doi.org/10.1038/nrm1911)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robciuc MR, Kivela R, Williams IM, De Boer JF, Van Dijk TH, Elamaa H, Tigistu-Sahle F, Molotkov D, Leppanen VM, Kakela R, et al.2016 VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metabolism 23 712724. (https://doi.org/10.1016/j.cmet.2016.03.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schmitz-Peiffer C 2010 Targeting ceramide synthesis to reverse insulin resistance. Diabetes 59 23512353. (https://doi.org/10.2337/db10-0912)

  • Shimizu I & & Walsh K 2015 The whitening of brown fat and its implications for weight management in obesity. Current Obesity Reports 4 224229. (https://doi.org/10.1007/s13679-015-0157-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stuttfeld E & & Ballmer-Hofer K 2009 Structure and function of VEGF receptors. IUBMB Life 61 915922. (https://doi.org/10.1002/iub.234)

  • Sun C, Zeng R, Cao G, Song Z, Zhang Y & & Liu C 2015 Vibration training triggers brown adipocyte relative protein expression in rat white adipose tissue. BioMed Research International 2015 919401. (https://doi.org/10.1155/2015/919401)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang QA, Tao C, Gupta RK & & Scherer PE 2013 Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine 19 13381344. (https://doi.org/10.1038/nm.3324)

    • PubMed
    • Search Google Scholar
    • Export Citation