SIRT3 overexpression in rat muscle does not ameliorate peripheral insulin resistance

in Journal of Endocrinology
Authors:
Brenna Osborne Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, New South Wales, Australia
Department of Cellular and Molecular Medicine, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Brenna Osborne in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0197-3010
,
Lauren E Wright Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia

Search for other papers by Lauren E Wright in
Current site
Google Scholar
PubMed
Close
,
Amanda E Brandon Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
Charles Perkins Centre, University of Sydney, New South Wales, Australia

Search for other papers by Amanda E Brandon in
Current site
Google Scholar
PubMed
Close
,
Ella Stuart Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia

Search for other papers by Ella Stuart in
Current site
Google Scholar
PubMed
Close
,
Lewin Small Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia

Search for other papers by Lewin Small in
Current site
Google Scholar
PubMed
Close
,
Joris Hoeks NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands

Search for other papers by Joris Hoeks in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0265-0870
,
Patrick Schrauwen NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands

Search for other papers by Patrick Schrauwen in
Current site
Google Scholar
PubMed
Close
,
David A Sinclair Department of Genetics, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by David A Sinclair in
Current site
Google Scholar
PubMed
Close
,
Magdalene K Montgomery Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
Department of Anatomy & Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Magdalene K Montgomery in
Current site
Google Scholar
PubMed
Close
,
Gregory J Cooney Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
Charles Perkins Centre, University of Sydney, New South Wales, Australia

Search for other papers by Gregory J Cooney in
Current site
Google Scholar
PubMed
Close
, and
Nigel Turner Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, New South Wales, Australia
Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia

Search for other papers by Nigel Turner in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0119-9328

Correspondence should be addressed to N Turner: n.turner@victorchang.edu.au
Restricted access
Rent on DeepDyve

Sign up for journal news

Reduced expression of the NAD+-dependent deacetylase, SIRT3, has been associated with insulin resistance and metabolic dysfunction in humans and rodents. In this study, we investigated whether specific overexpression of SIRT3 in vivo in skeletal muscle could prevent high-fat diet (HFD)-induced muscle insulin resistance. To address this, we used a muscle-specific adeno-associated virus (AAV) to overexpress SIRT3 in rat tibialis and extensor digitorum longus (EDL) muscles. Mitochondrial substrate oxidation, substrate switching and oxidative enzyme activity were assessed in skeletal muscles with and without SIRT3 overexpression. Muscle-specific insulin action was also assessed by hyperinsulinaemic–euglycaemic clamps in rats that underwent a 4-week HFD-feeding protocol. Ex vivo functional assays revealed elevated activity of selected SIRT3-target enzymes including hexokinase, isocitrate dehydrogenase and pyruvate dehydrogenase that was associated with an increase in the ability to switch between fatty acid- and glucose-derived substrates in muscles with SIRT3 overexpression. However, during the clamp, muscles from rats fed an HFD with increased SIRT3 expression displayed equally impaired glucose uptake and insulin-stimulated glycogen synthesis as the contralateral control muscle. Intramuscular triglyceride content was similarly increased in the muscle of high-fat-fed rats, regardless of SIRT3 status. Thus, despite SIRT3 knockout (KO) mouse models indicating many beneficial metabolic roles for SIRT3, our findings show that muscle-specific overexpression of SIRT3 has only minor effects on the acute development of skeletal muscle insulin resistance in high-fat-fed rats.

Supplementary Materials

 

  • Collapse
  • Expand
  • Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX & & Finkel T 2008 A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America 105 1444714452. (https://doi.org/10.1073/pnas.0803790105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arce-Molina R, Cortés-Molina F, Sandoval PY, Galaz A, Alegría K, Schirmeier S, Barros LF & & San Martín A 2020 A highly responsive pyruvate sensor reveals pathway-regulatory role of the mitochondrial pyruvate carrier MPC. eLife 9 e53917. (https://doi.org/10.7554/eLife.53917)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Atherton HJ, Schroeder MA, Dodd MS, Heather LC, Carter EE, Cochlin LE, Nagel S, Sibson NR, Radda GK, Clarke K, et al.2011 Validation of the in vivo assessment of pyruvate dehydrogenase activity using hyperpolarised 13C MRS. NMR in Biomedicine 24 201208. (https://doi.org/10.1002/nbm.1573)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bakshi I, Brown SHJ, Brandon AE, Suryana E, Mitchell TW, Turner N & & Cooney GJ 2018 Increasing acyl CoA thioesterase activity alters phospholipid profile without effect on insulin action in skeletal muscle of rats. Scientific Reports 8 13967. (https://doi.org/10.1038/s41598-018-32354-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boyle KE, Newsom SA, Janssen RC, Lappas M & & Friedman JE 2013 Skeletal muscle MnSOD, mitochondrial complex II, and SIRT3 enzyme activities are decreased in maternal obesity during human pregnancy and gestational diabetes mellitus. Journal of Clinical Endocrinology and Metabolism 98 E1601E1609. (https://doi.org/10.1210/jc.2013-1943)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y, Zhang D, Scadden DT & & Chen D 2013 SIRT3 reverses aging-associated degeneration. Cell Reports 3 319327. (https://doi.org/10.1016/j.celrep.2013.01.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, Cooney GJ, Febbraio MA & & Kraegen EW 2009 Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 58 550558. (https://doi.org/10.2337/db08-1078)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Caton PW, Richardson SJ, Kieswich J, Bugliani M, Holland ML, Marchetti P, Morgan NG, Yaqoob MM, Holness MJ & & Sugden MC 2013 Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients. Diabetologia 56 10681077. (https://doi.org/10.1007/s00125-013-2851-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chabi B, Fouret G, Lecomte J, Cortade F, Pessemesse L, Baati N, Coudray C, Lin L, Tong Q, Wrutniak-Cabello C, et al.2018 Skeletal muscle overexpression of short isoform Sirt3 altered mitochondrial cardiolipin content and fatty acid composition. Journal of Bioenergetics and Biomembranes 50 131142. (https://doi.org/10.1007/s10863-018-9752-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen CJ, Fu YC, Yu W & & Wang W 2013 SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-kappaB. Biochemical and Biophysical Research Communications 430 798803. (https://doi.org/10.1016/j.bbrc.2012.11.066)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dai SH, Chen T, Wang YH, Zhu J, Luo P, Rao W, Yang YF, Fei Z & & Jiang XF 2014 Sirt3 protects cortical neurons against oxidative stress via regulating mitochondrial Ca2+ and mitochondrial biogenesis. International Journal of Molecular Sciences 15 1459114609. (https://doi.org/10.3390/ijms150814591)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dhillon RS, Qin YA, van Ginkel PR, Fu VX, Vann JM, Lawton AJ, Green CL, Manchado-Gobatto FB, Gobatto CA, Lamming DW, et al.2022 SIRT3 deficiency decreases oxidative metabolism capacity but increases lifespan in male mice under caloric restriction. Aging Cell 21 e13721. (https://doi.org/10.1111/acel.13721)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dittenhafer-Reed KE, Richards AL, Fan J, Smallegan MJ, Fotuhi Siahpirani A, Kemmerer ZA, Prolla TA, Roy S, Coon JJ & & Denu JM 2015 SIRT3 mediates multi-tissue coupling for metabolic fuel switching. Cell Metabolism 21 637646. (https://doi.org/10.1016/j.cmet.2015.03.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fernandez-Marcos PJ, Jeninga EH, Canto C, Harach T, de Boer VC, Andreux P, Moullan N, Pirinen E, Yamamoto H, Houten SM, et al.2012 Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Scientific Reports 2 425. (https://doi.org/10.1038/srep00425)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Finley LW, Haas W, Desquiret-Dumas V, Wallace DC, Procaccio V, Gygi SP & & Haigis MC 2011a Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 6 e23295. (https://doi.org/10.1371/journal.pone.0023295)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB, et al.2011b SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 19 416428. (https://doi.org/10.1016/j.ccr.2011.02.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hallows WC, Yu W, Smith BC, Devries MK, Ellinger JJ, Someya S, Shortreed MR, Prolla T, Markley JL, Smith LM, et al.2011 Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Molecular Cell 41 139149. (https://doi.org/10.1016/j.molcel.2011.01.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR, et al.2010 SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464 121125. (https://doi.org/10.1038/nature08778)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B, Stancakova A, Goetzman E, Lam MM, Schwer B, et al.2011 SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Molecular Cell 44 177190. (https://doi.org/10.1016/j.molcel.2011.07.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hokari F, Kawasaki E, Sakai A, Koshinaka K, Sakuma K & & Kawanaka K 2010 Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. Journal of Applied Physiology 109 332340. (https://doi.org/10.1152/japplphysiol.00335.2009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Howlett RA & & Willis WT 1998 Fiber-type-related differences in the enzymes of a proposed substrate cycle. Biochimica et Biophysica Acta 1363 224230. (https://doi.org/10.1016/s0005-2728(9800002-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jing E, O'Neill BT, Rardin MJ, Kleinridders A, Ilkeyeva OR, Ussar S, Bain JR, Lee KY, Verdin EM, Newgard CB, et al.2013 Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62 34043417. (https://doi.org/10.2337/db12-1650)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Joseph AM, Adhihetty PJ, Buford TW, Wohlgemuth SE, Lees HA, Nguyen LM, Aranda JM, Sandesara BD, Pahor M, Manini TM, et al.2012 The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high- and low-functioning elderly individuals. Aging Cell 11 801809. (https://doi.org/10.1111/j.1474-9726.2012.00844.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, et al.2010 SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17 4152. (https://doi.org/10.1016/j.ccr.2009.11.023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koltai E, Bori Z, Osvath P, Ihasz F, Peter S, Toth G, Degens H, Rittweger J, Boldogh I & & Radak Z 2018 Master athletes have higher miR-7, SIRT3 and SOD2 expression in skeletal muscle than age-matched sedentary controls. Redox Biology 19 4651. (https://doi.org/10.1016/j.redox.2018.07.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lantier L, Williams AS, Williams IM, Yang KK, Bracy DP, Goelzer M, James FD, Gius D & & Wasserman DH 2015 SIRT3 is crucial for maintaining skeletal muscle insulin action and protects against severe insulin resistance in high-fat-fed mice. Diabetes 64 30813092. (https://doi.org/10.2337/db14-1810)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin L, Chen K, Khalek WA, Ward JL 3rd, Yang H, Chabi B, Wrutniak-Cabello C & & Tong Q 2014 Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3. PLoS One 9 e85636. (https://doi.org/10.1371/journal.pone.0085636)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Metcalfe LK, Smith GC & & Turner N 2018 Defining lipid mediators of insulin resistance - controversies and challenges. Journal of Molecular Endocrinology 62 R65R82. (https://doi.org/10.1530/JME-18-0023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Montgomery MK & & Turner N 2015 Mitochondrial dysfunction and insulin resistance: an update. Endocrine Connections 4 R1R15. (https://doi.org/10.1530/EC-14-0092)

  • Montgomery MK, Osborne B, Brandon AE, O'Reilly L, Fiveash CE, Brown SHJ, Wilkins BP, Samsudeen A, Yu J, Devanapalli B, et al.2019 Regulation of mitochondrial metabolism in murine skeletal muscle by the medium-chain fatty acid receptor Gpr84. FASEB Journal 33 1226412276. (https://doi.org/10.1096/fj.201900234R)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Muoio DM, Noland RC, Kovalik JP, Seiler SE, Davies MN, DeBalsi KL, Ilkayeva OR, Stevens RD, Kheterpal I, Zhang J, et al.2012 Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metabolism 15 764777. (https://doi.org/10.1016/j.cmet.2012.04.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • North BJ, Marshall BL, Borra MT, Denu JM & & Verdin E 2003 The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Molecular Cell 11 437444. (https://doi.org/10.1016/s1097-2765(0300038-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oldfield CJ, Moffatt TL, O'Hara KA, Xiang B, Dolinsky VW & & Duhamel TA 2021 Muscle-specific sirtuin 3 overexpression does not attenuate the pathological effects of high-fat/high-sucrose feeding but does enhance cardiac SERCA2a activity. Physiological Reports 9 e14961. (https://doi.org/10.14814/phy2.14961)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Osborne B, Bentley NL, Montgomery MK & & Turner N 2016 The role of mitochondrial sirtuins in health and disease. Free Radical Biology and Medicine 100 164174. (https://doi.org/10.1016/j.freeradbiomed.2016.04.197)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Osborne B, Reznick J, Wright LE, Sinclair DA, Cooney GJ & & Turner N 2022 Liver-specific overexpression of SIRT3 enhances oxidative metabolism, but does not impact metabolic defects induced by high fat feeding in mice. Biochemical and Biophysical Research Communications 607 131137. (https://doi.org/10.1016/j.bbrc.2022.03.088)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ozden O, Park SH, Wagner BA, Song HY, Zhu Y, Vassilopoulos A, Jung B, Buettner GR & & Gius D 2014 SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radical Biology and Medicine 76 163172. (https://doi.org/10.1016/j.freeradbiomed.2014.08.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward JL 3rd, Goodyear LJ & & Tong Q 2009 Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY) 1 771783. (https://doi.org/10.18632/aging.100075)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pataky MW, Arias EB & & Cartee GD 2019 Measuring both glucose uptake and myosin heavy chain isoform expression in single rat skeletal muscle fibers. Methods in Molecular Biology 1889 283300. (https://doi.org/10.1007/978-1-4939-8897-6_17)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qiu X, Brown K, Hirschey MD, Verdin E & & Chen D 2010 Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metabolism 12 662667. (https://doi.org/10.1016/j.cmet.2010.11.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, et al.2013 Label Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America 110 66016606. (https://doi.org/10.1073/pnas.1302961110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Salamon A, Maszlag-Török R, Veres G, Boros FA, Vágvölgyi-Sümegi E, Somogyi A, Vécsei L, Klivényi P & & Zádori D 2020 Cerebellar predominant increase in mRNA expression levels of Sirt1 and Sirt3 isoforms in a transgenic mouse model of Huntington's disease. Neurochemical Research 45 20722081. (https://doi.org/10.1007/s11064-020-03069-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shi T, Wang F, Stieren E & & Tong Q 2005 SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. Journal of Biological Chemistry 280 1356013567. (https://doi.org/10.1074/jbc.M414670200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, Li Y, Bunkenborg J, Alt FW, Denu JM, et al.2010 SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metabolism 12 654661. (https://doi.org/10.1016/j.cmet.2010.11.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Small L, Brandon AE, Quek LE, Krycer JR, James DE, Turner N & & Cooney GJ 2018 Acute activation of pyruvate dehydrogenase increases glucose oxidation in muscle without changing glucose uptake. American Journal of Physiology. Endocrinology and Metabolism 315 E258E266. (https://doi.org/10.1152/ajpendo.00386.2017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Small L, Brandon AE, Parker BL, Deshpande V, Samsudeen AF, Kowalski GM, Reznick J, Wilks DL, Preston E, Bruce CR, et al.2019 Reduced insulin action in muscle of high fat diet rats over the diurnal cycle is not associated with defective insulin signaling. Molecular Metabolism 25 107118. (https://doi.org/10.1016/j.molmet.2019.04.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM & & Prolla TA 2010 Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143 802812. (https://doi.org/10.1016/j.cell.2010.10.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sultani G, Samsudeen AF, Osborne B & & Turner N 2017 NAD+ : a key metabolic regulator with great therapeutic potential. Journal of Neuroendocrinology 29 e12508. (https://doi.org/10.1111/jne.12508)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner N, Hariharan K, TidAng J, Frangioudakis G, Beale SM, Wright LE, Zeng XY, Leslie SJ, Li JY, Kraegen EW, et al.2009 Enhancement of muscle mitochondrial oxidative capacity and alterations in insulin action are lipid species dependent: potent tissue-specific effects of medium-chain fatty acids. Diabetes 58 25472554. (https://doi.org/10.2337/db09-0784)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner N, Lim XY, Toop HD, Osborne B, Brandon AE, Taylor EN, Fiveash CE, Govindaraju H, Teo JD, McEwen HP, et al.2018 A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism. Nature Communications 9 3165. (https://doi.org/10.1038/s41467-018-05613-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vargas-Ortiz K, Perez-Vazquez V, Figueroa A, Diaz FJ, Montano-Ascencio PG & & Macias-Cervantes MH 2018 Aerobic training but no resistance training increases SIRT3 in skeletal muscle of sedentary obese male adolescents. European Journal of Sport Science 18 226234. (https://doi.org/10.1080/17461391.2017.1406007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wright LE, Brandon AE, Hoy AJ, Forsberg GB, Lelliott CJ, Reznick J, Löfgren L, Oscarsson J, Strömstedt M, Cooney GJ, et al.2011 Amelioration of lipid-induced insulin resistance in rat skeletal muscle by overexpression of Pgc-1β involves reductions in long-chain acyl-CoA levels and oxidative stress. Diabetologia 54 14171426. (https://doi.org/10.1007/s00125-011-2068-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang Y, Hubbard BP, Sinclair DA & & Tong Q 2010 Characterization of murine SIRT3 transcript variants and corresponding protein products. Journal of Cellular Biochemistry 111 10511058. (https://doi.org/10.1002/jcb.22795)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu W, Dittenhafer-Reed KE & & Denu JM 2012 SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. Journal of Biological Chemistry 287 1407814086. (https://doi.org/10.1074/jbc.M112.355206)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zoremba N, Homola A, Rossaint R & & Syková E 2014 Interstitial lactate, lactate/pyruvate and glucose in rat muscle before, during and in the recovery from global hypoxia. Acta Veterinaria Scandinavica 56 72. (https://doi.org/10.1186/s13028-014-0072-0)

    • PubMed
    • Search Google Scholar
    • Export Citation