GPER1 deficiency causes sex-specific dysregulation of hippocampal plasticity and cognitive function

in Journal of Endocrinology
Authors:
Aune Koitmäe Institute of Neuroanatomy, University Medical Center Hamburg, Hamburg, Germany

Search for other papers by Aune Koitmäe in
Current site
Google Scholar
PubMed
Close
,
Yannik Karsten Institute of Neuroanatomy, University Medical Center Hamburg, Hamburg, Germany
Department of Genetics and Molecular Biology, Institute of Biology, University of Magdeburg, Magdeburg, Germany

Search for other papers by Yannik Karsten in
Current site
Google Scholar
PubMed
Close
,
Xiaoyu Li Institute of Neuroanatomy, University Medical Center Hamburg, Hamburg, Germany
Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Jiangsu, China

Search for other papers by Xiaoyu Li in
Current site
Google Scholar
PubMed
Close
,
Fabio Morellini Research Group Behavioral Biology, Center for Molecular Neurobiology, Hamburg, Germany

Search for other papers by Fabio Morellini in
Current site
Google Scholar
PubMed
Close
,
Gabriele M Rune Institute of Cell Biology and Neurobiology, Universitätsmedizin Charité Berlin, Berlin, Germany

Search for other papers by Gabriele M Rune in
Current site
Google Scholar
PubMed
Close
, and
Roland A Bender Institute of Neuroanatomy, University Medical Center Hamburg, Hamburg, Germany

Search for other papers by Roland A Bender in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1080-1584

Correspondence should be addressed to R A Bender: r.bender@uke.de

*(A Koitmäe and Y Karsten contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

Estrogens regulate synaptic properties and influence hippocampus-related learning and memory via estrogen receptors, which include the G-protein-coupled estrogen receptor 1 (GPER1). Studying mice, in which the GPER1 gene is dysfunctional (GPER1-KO), we here provide evidence for sex-specific roles of GPER1 in these processes. GPER1-KO males showed reduced anxiety in the elevated plus maze, whereas the fear response ('freezing') was specifically increased in GPER1-KO females in a contextual fear conditioning paradigm. In the Morris water maze, spatial learning and memory consolidation was impaired by GPER1 deficiency in both sexes. Notably, in the females, spatial learning deficits and the fear response were more pronounced if mice were in a stage of the estrous cycle, in which E2 serum levels are high (proestrus) or rising (diestrus). On the physiological level, excitability at Schaffer collateral synapses in CA1 increased in GPER1-deficient males and in proestrus/diestrus ('E2 high') females, concordant with an increased hippocampal expression of the AMPA-receptor subunit GluA1 in GPER1-KO males and females as compared to wildtype males. Further changes included an augmented early long-term potentiation (E-LTP) maintenance specifically in GPER1-KO females and an increased hippocampal expression of spinophilin in metestrus/estrus ('E2 low') GPER1-KO females. Our findings suggest modulatory and sex-specific functions of GPER1 in the hippocampal network, which reduce rather than increase neuronal excitability. Dysregulation of these functions may underlie sex-specific cognitive deficits or mood disorders.

 

  • Collapse
  • Expand
  • Akama KT, Thompson LI, Milner TA & & McEwen BS 2013 Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines. Journal of Biological Chemistry 288 64386450. (https://doi.org/10.1074/jbc.M112.412478)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Albo Z & & Gräff J 2018 The mysteries of remote memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 373 20170029. (https://doi.org/10.1098/rstb.2017.0029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alexander A, Irving AJ & & Harvey J 2017 Emerging roles for the novel estrogen-sensing receptor GPER1 in the CNS. Neuropharmacology 113 652660. (https://doi.org/10.1016/j.neuropharm.2016.07.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anchan D, Clark S, Pollard K & & Vasudevan N 2014 GPR30 activation decreases anxiety in the open field test but not in the elevated plus maze test in female mice. Brain and Behavior 4 5159. (https://doi.org/10.1002/brb3.197)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Babayan AH, Kramár EA, Barrett RM, Jafari M, Häettig J, Chen LY, Rex CS, Lauterborn JC, Wood MA, Gall CM, et al.2012 Integrin dynamics produce a delayed stage of long-term potentiation and memory consolidation. Journal of Neuroscience 32 1285412861. (https://doi.org/10.1523/JNEUROSCI.2024-12.2012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bagal AA, Kao JP, Tang CM & & Thompson SM 2005 Long-term potentiation of exogenous glutamate responses at single dendritic spines. Proceedings of the National Academy of Sciences of the United States of America 102 1443414439. (https://doi.org/10.1073/pnas.0501956102)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Becker MFP & & Tetzlaff C 2021 The biophysical basis underlying the maintenance of early phase long-term potentiation. PLOS Computational Biology 17 e1008813. (https://doi.org/10.1371/journal.pcbi.1008813)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bender RA, Zhou L, Vierk R, Brandt N, Keller A, Gee CE, Schafer MK & & Rune GM 2017 Sex-dependent regulation of aromatase-mediated synaptic plasticity in the basolateral amygdala. Journal of Neuroscience 37 15321545. (https://doi.org/10.1523/JNEUROSCI.1532-16.2016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berry B, McMahan R & & Gallagher M 1997 Spatial learning and memory at defined points of the estrous cycle: effects on performance of a hippocampal-dependent task. Behavioral Neuroscience 111 267274. (https://doi.org/10.1037//0735-7044.111.2.267)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bi R, Foy MR, Vouimba RM, Thompson RF & & Baudry M 2001 Cyclic changes in estradiol regulate synaptic plasticity through the MAP kinase pathway. Proceedings of the National Academy of Sciences of the United States of America 98 1339113395. (https://doi.org/10.1073/pnas.241507698)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bolles RC 1970 Species-specific defense reactions and avoidance learning. Psychological Review 77 32–48. (https://doi.org/10.1037/h0028589)

  • Bologa CG, Revankar CM, Young SM, Edwards BS, Arterburn JB, Kiselyov AS, Parker MA, Tkachenko SE, Savchuck NP, Sklar LA, et al.2006 Virtual and biomolecular screening converge on a selective agonist for GPR30. Nature Chemical Biology 2 207212. (https://doi.org/10.1038/nchembio775)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brailoiu E, Dun SL, Brailoiu GC, Mizuo K, Sklar LA, Oprea TI, Prossnitz ER & & Dun NJ 2007 Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. Journal of Endocrinology 193 311321. (https://doi.org/10.1677/JOE-07-0017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brandt N, Löffler T, Fester L & & Rune GM 2020 Sex-specific features of spine densities in the hippocampus. Scientific Reports 10 11405. (https://doi.org/10.1038/s41598-020-68371-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Briz V, Liu Y, Zhu G, Bi X & & Baudry M 2015 A novel form of synaptic plasticity in field CA3 of hippocampus requires GPER1 activation and BDNF release. Journal of Cell Biology 210 12251237. (https://doi.org/10.1083/jcb.201504092)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carmeci C, Thompson DA, Ring HZ, Francke U & & Weigel RJ 1997 Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics 45 607617. (https://doi.org/10.1006/geno.1997.4972)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dennis MK, Burai R, Ramesh C, Petrie WK, Alcon SN, Nayak TK, Bologa CG, Leitao A, Brailoiu E, Deliu E, et al.2009 In vivo effects of a GPR30 antagonist. Nature Chemical Biology 5 421427. (https://doi.org/10.1038/nchembio.168)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dennis MK, Field AS, Burai R, Ramesh C, Petrie WK, Bologa CG, Oprea TI, Yamaguchi Y, Hayashi S, Sklar LA, et al.2011 Identification of a GPER/GPR30 antagonist with improved estrogen receptor counterselectivity. Journal of Steroid Biochemistry and Molecular Biology 127 358366. (https://doi.org/10.1016/j.jsbmb.2011.07.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fellini L, Schachner M & & Morellini F 2006 Adult but not aged C57BL/6 male mice are capable of using geometry for orientation. Learning and Memory 13 473481. (https://doi.org/10.1101/lm.259206)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fester L, Zhou L, Butow A, Huber C, von Lossow R, Prange-Kiel J, Jarry H & & Rune GM 2009 Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus. Hippocampus 19 692705. (https://doi.org/10.1002/hipo.20548)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fester L & & Rune GM 2015 Sexual neurosteroids and synaptic plasticity in the hippocampus. Brain Research 1621 162169. (https://doi.org/10.1016/j.brainres.2014.10.033)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fester L, Brandt N, Windhorst S, Prols F, Blaute C & & Rune GM 2016 Control of aromatase in hippocampal neurons. Journal of Steroid Biochemistry and Molecular Biology 160 914. (https://doi.org/10.1016/j.jsbmb.2015.10.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foley K, McKee C, Nairn AC & & Xia H 2021 Regulation of synaptic transmission and plasticity by protein phosphatase 1. Journal of Neuroscience 41 30403050. (https://doi.org/10.1523/JNEUROSCI.2026-20.2021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frick KM & & Berger-Sweeney J 2001 Spatial reference memory and neocortical neurochemistry vary with the estrous cycle in C57BL/6 mice. Behavioral Neuroscience 115 229237. (https://doi.org/10.1037/0735-7044.115.1.229)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frick KM, Kim J, Tuscher JJ & & Fortress AM 2015 Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learning and Memory 22 472493. (https://doi.org/10.1101/lm.037267.114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fuenzalida M, Chiu CQ & & Chávez AE 2021 Muscarinic regulation of spike timing dependent synaptic plasticity in the hippocampus. Neuroscience 456 5059. (https://doi.org/10.1016/j.neuroscience.2020.08.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Funakoshi T, Yanai A, Shinoda K, Kawano MM & & Mizukami Y 2006 G Protein-coupled receptor 30 is an estrogen receptor in the plasma membrane. Biochemical and Biophysical Research Communications 346 904910. (https://doi.org/10.1016/j.bbrc.2006.05.191)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gabor C, Lymer J, Phan A & & Choleris E 2015 Rapid effects of the G-protein coupled oestrogen receptor (GPER) on learning and dorsal hippocampus dendritic spines in female mice. Physiology and Behavior 149 5360. (https://doi.org/10.1016/j.physbeh.2015.05.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gall CM, Le AA & & Lynch G 2021 Sex differences in synaptic plasticity underlying learning. Journal of Neuroscience Research 101 764782. (https://doi.org/10.1002/jnr.24844)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gibbs RB, Nelson D & & Hammond R 2014 Role of GPR30 in mediating estradiol effects on acetylcholine release in the hippocampus. Hormones and Behavior 66 339345. (https://doi.org/10.1016/j.yhbeh.2014.06.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haas E, Bhattacharya I, Brailoiu E, Damjanović M, Brailoiu GC, Gao X, Mueller-Guerre L, Marjon NA, Gut A, Minotti R, et al.2009 Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circulation Research 104 288291. (https://doi.org/10.1161/CIRCRESAHA.108.190892)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hadjimarkou MM & & Vasudevan N 2018 GPER1/GPR30 in the brain: crosstalk with classical estrogen receptors and implications for behavior. Journal of Steroid Biochemistry and Molecular Biology 176 5764. (https://doi.org/10.1016/j.jsbmb.2017.04.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hammond R, Nelson D, Kline E & & Gibbs RB 2012 Chronic treatment with a GPR30 antagonist impairs acquisition of a spatial learning task in young female rats. Hormones and Behavior 62 367374. (https://doi.org/10.1016/j.yhbeh.2012.07.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hart D, Nilges M, Pollard K, Lynn T, Patsos O, Shiel C, Clark SM & & Vasudevan N 2014 Activation of the G-protein coupled receptor 30 (GPR30) has different effects on anxiety in male and female mice. Steroids 81 4956. (https://doi.org/10.1016/j.steroids.2013.11.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hawley WR, Grissom EM, Moody NM, Dohanich GP & & Vasudevan N 2014 Activation of G-protein-coupled receptor 30 is sufficient to enhance spatial recognition memory in ovariectomized rats. Behavioural Brain Research 262 6873. (https://doi.org/10.1016/j.bbr.2014.01.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hazell GG, Yao ST, Roper JA, Prossnitz ER, O'Carroll AM & & Lolait SJ 2009 Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. Journal of Endocrinology 202 223236. (https://doi.org/10.1677/JOE-09-0066)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hojo Y, Murakami G, Mukai H, Higo S, Hatanaka Y, Ogiue-Ikeda M, Ishii H, Kimoto T & & Kawato S 2008 Estrogen synthesis in the brain--role in synaptic plasticity and memory. Molecular and Cellular Endocrinology 290 3143. (https://doi.org/10.1016/j.mce.2008.04.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Izquierdo I, Furini CR & & Myskiw JC 2016 Fear memory. Physiological Reviews 96 695750. (https://doi.org/10.1152/physrev.00018.2015)

  • Kastenberger I, Lutsch C & & Schwarzer C 2012 Activation of the G-protein-coupled receptor GPR30 induces anxiogenic effects in mice, similar to oestradiol. Psychopharmacology 221 527535. (https://doi.org/10.1007/s00213-011-2599-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kastenberger I & & Schwarzer C 2014 GPER1 (GPR30) knockout mice display reduced anxiety and altered stress response in a sex and paradigm dependent manner. Hormones and Behavior 66 628636. (https://doi.org/10.1016/j.yhbeh.2014.09.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim J, Schalk JC, Koss WA, Gremminger RL, Taxier LR, Gross KS & & Frick KM 2019 Dorsal hippocampal actin polymerization is necessary for activation of G-protein-coupled estrogen receptor (GPER) to increase CA1 dendritic spine density and enhance memory consolidation. Journal of Neuroscience 39 95989610. (https://doi.org/10.1523/JNEUROSCI.2687-18.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim J, Szinte JS, Boulware MI & & Frick KM 2016 17β-estradiol and agonism of G-protein-coupled estrogen receptor enhance hippocampal memory via different cell-signaling mechanisms. Journal of Neuroscience 36 33093321. (https://doi.org/10.1523/JNEUROSCI.0257-15.2016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kramár EA, Chen LY, Brandon NJ, Rex CS, Liu F, Gall CM & & Lynch G 2009 Cytoskeletal changes underlie estrogen's acute effects on synaptic transmission and plasticity. Journal of Neuroscience 29 1298212993. (https://doi.org/10.1523/JNEUROSCI.3059-09.2009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kumar A, Bean LA, Rani A, Jackson T & & Foster TC 2015 Contribution of estrogen receptor subtypes, ERα, ERβ, and GPER1 in rapid estradiol-mediated enhancement of hippocampal synaptic transmission in mice. Hippocampus 25 15561566. (https://doi.org/10.1002/hipo.22475)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kurogi M, Nagatomo K, Kubo Y & & Saitoh O 2009 Effects of spinophilin on the function of RGS8 regulating signals from M2 and M3-mAChRs. NeuroReport 20 11341139. (https://doi.org/10.1097/WNR.0b013e32832fd93e)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lebesgue D, Chevaleyre V, Zukin RS & & Etgen AM 2009 Estradiol rescues neurons from global ischemia-induced cell death: multiple cellular pathways of neuroprotection. Steroids 74 555561. (https://doi.org/10.1016/j.steroids.2009.01.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li C, Brake WG, Romeo RD, Dunlop JC, Gordon M, Buzescu R, Magarinos AM, Allen PB, Greengard P, Luine V, et al.2004 Estrogen alters hippocampal dendritic spine shape and enhances synaptic protein immunoreactivity and spatial memory in female mice. Proceedings of the National Academy of Sciences of the United States of America 101 21852190. (https://doi.org/10.1073/pnas.0307313101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li X, Johann S, Rune GM & & Bender RA 2021 Sex-specific regulation of spine density and synaptic proteins by G-protein-coupled estrogen receptor (GPER)1 in developing hippocampus. Neuroscience 472 3550. (https://doi.org/10.1016/j.neuroscience.2021.07.035)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Llorente R, Marraudino M, Carrillo B, Bonaldo B, Simon-Areces J, Abellanas-Pérez P, Rivero-Aguilar M, Fernandez-Garcia JM, Pinos H, Garcia-Segura LM, et al.2020 G-protein-coupled estrogen receptor immunoreactivity fluctuates during the estrous cycle and shows sex differences in the amygdala and dorsal hippocampus. Frontiers in Endocrinology (Lausanne) 11 537. (https://doi.org/10.3389/fendo.2020.00537)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lund TD, Rovis T, Chung WC & & Handa RJ 2005 Novel actions of estrogen receptor-beta on anxiety-related behaviors. Endocrinology 146 797807. (https://doi.org/10.1210/en.2004-1158)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lymer J, Robinson A, Winters BD & & Choleris E 2017 Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice. Psychoneuroendocrinology 77 131140. (https://doi.org/10.1016/j.psyneuen.2016.11.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin SJ & & Clark RE 2007 The rodent hippocampus and spatial memory: from synapses to systems. Cellular and Molecular Life Sciences 64 401431. (https://doi.org/10.1007/s00018-007-6336-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matsuda K, Sakamoto H, Mori H, Hosokawa K, Kawamura A, Itose M, Nishi M, Prossnitz ER & & Kawata M 2008 Expression and intracellular distribution of the G-protein-coupled receptor 30 in rat hippocampal formation. Neuroscience Letters 441 9499. (https://doi.org/10.1016/j.neulet.2008.05.108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McLean AC, Valenzuela N, Fai S & & Bennett SA 2012 Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. Journal of Visualized Experiments 67 e4389. (https://doi.org/10.3791/4389)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meseke M, Neumüller F, Brunne B, Li X, Anstötz M, Pohlkamp T, Rogalla MM, Herz J, Rune GM & & Bender RA 2018 Distal dendritic enrichment of HCN1 channels in hippocampal CA1 is promoted by estrogen, but does not require reelin. eNeuro 5 . (https://doi.org/10.1523/ENEURO.0258-18.2018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moult PR, Gladding CM, Sanderson TM, Fitzjohn SM, Bashir ZI, Molnar E & & Collingridge GL 2006 Tyrosine phosphatases regulate AMPA receptor trafficking during metabotropic glutamate receptor-mediated long-term depression. Journal of Neuroscience 26 25442554. (https://doi.org/10.1523/JNEUROSCI.4322-05.2006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Murakami G, Hojo Y, Ogiue-Ikeda M, Mukai H, Chambon P, Nakajima K, Ooishi Y, Kimoto T & & Kawato S 2015 Estrogen receptor KO mice study on rapid modulation of spines and long-term depression in the hippocampus. Brain Research 1621 133146. (https://doi.org/10.1016/j.brainres.2014.12.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nilsson ME, Vandenput L, Tivesten Å, Norlén AK, Lagerquist MK, Windahl SH, Börjesson AE, Farman HH, Poutanen M, Benrick A, et al.2015 Measurement of a comprehensive sex steroid profile in rodent serum by high-sensitive gas chromatography-tandem mass spectrometry. Endocrinology 156 24922502. (https://doi.org/10.1210/en.2014-1890)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Otto C, Fuchs I, Kauselmann G, Kern H, Zevnik B, Andreasen P, Schwarz G, Altmann H, Klewer M, Schoor M, et al.2009 GPR30 does not mediate estrogenic responses in reproductive organs in mice. Biology of Reproduction 80 3441. (https://doi.org/10.1095/biolreprod.108.071175)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pechenino AS & & Frick KM 2009 The effects of acute 17beta-estradiol treatment on gene expression in the young female mouse hippocampus. Neurobiology of Learning and Memory 91 315322. (https://doi.org/10.1016/j.nlm.2008.09.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pompili A, Tomaz C, Arnone B, Tavares MC & & Gasbarri A 2010 Working and reference memory across the estrous cycle of rat: a long-term study in gonadally intact females. Behavioural Brain Research 213 1018. (https://doi.org/10.1016/j.bbr.2010.04.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prange-Kiel J, Jarry H, Schoen M, Kohlmann P, Lohse C, Zhou L & & Rune GM 2008 Gonadotropin-releasing hormone regulates spine density via its regulatory role in hippocampal estrogen synthesis. Journal of Cell Biology 180 417426. (https://doi.org/10.1083/jcb.200707043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ruiz de Azua I, Nakajima K, Rossi M, Cui Y, Jou W, Gavrilova O & & Wess J 2012 Spinophilin as a novel regulator of M3 muscarinic receptor-mediated insulin release in vitro and in vivo. FASEB Journal 26 42754286. (https://doi.org/10.1096/fj.12-204644)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sheppard PAS, Choleris E & & Galea LAM 2019 Structural plasticity of the hippocampus in response to estrogens in female rodents. Molecular Brain 12 22. (https://doi.org/10.1186/s13041-019-0442-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smejkalova T & & Woolley CS 2010 Estradiol acutely potentiates hippocampal excitatory synaptic transmission through a presynaptic mechanism. Journal of Neuroscience 30 1613716148. (https://doi.org/10.1523/JNEUROSCI.4161-10.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith CC & & McMahon LL 2005 Estrogen-induced increase in the magnitude of long-term potentiation occurs only when the ratio of NMDA transmission to AMPA transmission is increased. Journal of Neuroscience 25 77807791. (https://doi.org/10.1523/JNEUROSCI.0762-05.2005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Srivastava DP & & Evans PD 2013 G-protein oestrogen receptor 1: trials and tribulations of a membrane oestrogen receptor. Journal of Neuroendocrinology 25 12191230. (https://doi.org/10.1111/jne.12071)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Srivastava DP, Woolfrey KM, Jones KA, Shum CY, Lash LL, Swanson GT & & Penzes P 2008 Rapid enhancement of two-step wiring plasticity by estrogen and NMDA receptor activity. Proceedings of the National Academy of Sciences of the United States of America 105 1465014655. (https://doi.org/10.1073/pnas.0801581105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stackman RW, Blasberg ME, Langan CJ & & Clark AS 1997 Stability of spatial working memory across the estrous cycle of Long-Evans rats. Neurobiology of Learning and Memory 67 167171. (https://doi.org/10.1006/nlme.1996.3753)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tabatadze N, Huang G, May RM, Jain A & & Woolley CS 2015 Sex differences in molecular signaling at inhibitory synapses in the hippocampus. Journal of Neuroscience 35 1125211265. (https://doi.org/10.1523/JNEUROSCI.1067-15.2015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taxier LR, Gross KS & & Frick KM 2020 Oestradiol as a neuromodulator of learning and memory. Nature Reviews. Neuroscience 21 535550. (https://doi.org/10.1038/s41583-020-0362-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tetel MJ & & Pfaff DW 2010 Contributions of estrogen receptor-α and estrogen receptor-ß to the regulation of behavior. Biochimica et Biophysica Acta 1800 10841089. (https://doi.org/10.1016/j.bbagen.2010.01.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tian Z, Wang Y, Zhang N, Guo YY, Feng B, Liu SB & & Zhao MG 2013 Estrogen receptor GPR30 exerts anxiolytic effects by maintaining the balance between GABAergic and glutamatergic transmission in the basolateral amygdala of ovariectomized mice after stress. Psychoneuroendocrinology 38 22182233. (https://doi.org/10.1016/j.psyneuen.2013.04.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Toufexis DJ, Myers KM & & Davis M 2006 The effect of gonadal hormones and gender on anxiety and emotional learning. Hormones and Behavior 50 539549. (https://doi.org/10.1016/j.yhbeh.2006.06.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tozzi A, Durante V, Manca P, Di Mauro M, Blasi J, Grassi S, Calabresi P, Kawato S & & Pettorossi VE 2019 Bidirectional synaptic plasticity is driven by sex neurosteroids targeting estrogen and androgen receptors in hippocampal CA1 pyramidal neurons. Frontiers in Cellular Neuroscience 13 534. (https://doi.org/10.3389/fncel.2019.00534)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vallejo D, Codocedo JF & & Inestrosa NC 2017 Posttranslational modifications regulate the postsynaptic localization of PSD-95. Molecular Neurobiology 54 17591776. (https://doi.org/10.1007/s12035-016-9745-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vierk R, Glassmeier G, Zhou L, Brandt N, Fester L, Dudzinski D, Wilkars W, Bender RA, Lewerenz M, Gloger S, et al.2012 Aromatase inhibition abolishes LTP generation in female but not in male mice. Journal of Neuroscience 32 81168126. (https://doi.org/10.1523/JNEUROSCI.5319-11.2012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang C, Dehghani B, Magrisso IJ, Rick EA, Bonhomme E, Cody DB, Elenich LA, Subramanian S, Murphy SJ, Kelly MJ, et al.2008 GPR30 contributes to estrogen-induced thymic atrophy. Molecular Endocrinology 22 636648. (https://doi.org/10.1210/me.2007-0359)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang W, Le AA, Hou B, Lauterborn JC, Cox CD, Levin ER, Lynch G & & Gall CM 2018 Memory-related synaptic plasticity is sexually dimorphic in rodent hippocampus. Journal of Neuroscience 38 79357951. (https://doi.org/10.1523/JNEUROSCI.0801-18.2018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Warren SG, Humphreys AG, Juraska JM & & Greenough WT 1995 LTP varies across the estrous cycle: enhanced synaptic plasticity in proestrus rats. Brain Research 703 2630. (https://doi.org/10.1016/0006-8993(9501059-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Warren SG & & Juraska JM 1997 Spatial and nonspatial learning across the rat estrous cycle. Behavioral Neuroscience 111 259266. (https://doi.org/10.1037//0735-7044.111.2.259)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Waters EM, Thompson LI, Patel P, Gonzales AD, Ye HZ, Filardo EJ, Clegg DJ, Gorecka J, Akama KT, McEwen BS, et al.2015 G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus. Journal of Neuroscience 35 23842397. (https://doi.org/10.1523/JNEUROSCI.1298-14.2015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Woolley CS, Gould E, Frankfurt M & & McEwen BS 1990 Naturally-occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. Journal of Neuroscience 10 40354039. (https://doi.org/10.1523/JNEUROSCI.10-12-04035.1990)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu W, Cao J, Zhou Y, Wang L & & Zhu G 2018 GPR30 activation improves memory and facilitates DHPG-induced LTD in the hippocampal CA3 of middle-aged mice. Neurobiology of Learning and Memory 149 1019. (https://doi.org/10.1016/j.nlm.2018.02.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K & & Fukata M 2016 Identification of PSD-95 depalmitoylating enzymes. Journal of Neuroscience 36 64316444. (https://doi.org/10.1523/JNEUROSCI.0419-16.2016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zheng Y, Wu M, Gao T, Meng L, Ding X, Meng Y, Jiao Y, Luo P, He Z, Sun T, et al.2020 GPER-deficient rats exhibit lower serum corticosterone level and increased anxiety-like behavior. Neural Plasticity 2020 8866187. (https://doi.org/10.1155/2020/8866187/1155)

    • PubMed
    • Search Google Scholar
    • Export Citation