Pro-resolving role of glucagon in lipopolysaccharide-induced mice lung neutrophilia

in Journal of Endocrinology
Authors:
Daniella Bianchi Reis Insuela Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil

Search for other papers by Daniella Bianchi Reis Insuela in
Current site
Google Scholar
PubMed
Close
,
Maximiliano Ruben Ferrero Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil

Search for other papers by Maximiliano Ruben Ferrero in
Current site
Google Scholar
PubMed
Close
,
Amanda da Silva Chaves Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil

Search for other papers by Amanda da Silva Chaves in
Current site
Google Scholar
PubMed
Close
,
Diego de Sá Coutinho Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil

Search for other papers by Diego de Sá Coutinho in
Current site
Google Scholar
PubMed
Close
,
Nathalia dos Santos Magalhães Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil

Search for other papers by Nathalia dos Santos Magalhães in
Current site
Google Scholar
PubMed
Close
,
Ana Carolina Santos de Arantes Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil

Search for other papers by Ana Carolina Santos de Arantes in
Current site
Google Scholar
PubMed
Close
,
Adriana Ribeiro Silva Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil

Search for other papers by Adriana Ribeiro Silva in
Current site
Google Scholar
PubMed
Close
,
Patrícia Machado Rodrigues e Silva Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil

Search for other papers by Patrícia Machado Rodrigues e Silva in
Current site
Google Scholar
PubMed
Close
,
Marco Aurélio Martins Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil

Search for other papers by Marco Aurélio Martins in
Current site
Google Scholar
PubMed
Close
, and
Vinicius Frias Carvalho Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil

Search for other papers by Vinicius Frias Carvalho in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2136-8958

Correspondence should be addressed to V F Carvalho: vfrias@ioc.fiocruz.br
Restricted access
Rent on DeepDyve

Sign up for journal news

Prior research demonstrated that glucagon has protective roles against inflammation, but its effect on the resolution of inflammation remains elusive. Using in vitro and in vivo approaches, this study aimed to investigate the pro-resolving potential of glucagon on pulmonary neutrophilic inflammation caused by lipopolysaccharide. Lipopolysaccharide induced an increase in the proportions of neutrophils positives to glucagon receptor (GcgR) in vitro. In addition, lipopolysaccharide induced an increase in the neutrophil accumulation and expression of GcgR by the inflammatory cells in the lungs, however, without altering glucagon levels. Intranasal treatment with glucagon, at the peak of neutrophilic inflammation, reduced the neutrophil number in the bronchoalveolar lavage (BAL), and lung tissue within 24 h. The reduction of neutrophilic inflammation provoked by glucagon was accompanied by neutrophilia in the blood, an increase in the apoptosis rate of neutrophils in the BAL, enhance in the pro-apoptotic Bax protein expression, and decrease in the anti-apoptotic Bcl-2 protein levels in the lung. Glucagon also induced a rise in the cleavage of caspase-3 in the lungs; however, it was not significant. Glucagon inhibited the levels of IL-1β and TNF-α while increasing the content of pro-resolving mediators transforming growth factor (TGF-β1) and PGE2 in the BAL and lung. Finally, glucagon inhibited lipopolysaccharide-induced airway hyper-reactivity, as evidenced by the reduction in lung elastance values in response to methacholine. In conclusion, glucagon-induced resolution of neutrophilic inflammation by promoting cessation of neutrophil migration and a rise of neutrophil apoptosis and the levels of pro-resolving mediators TGF-β1 and PGE2.

 

  • Collapse
  • Expand
  • Alm AS, Li K, Chen H, Wang D, Andersson R & & Wang X 2010 Variation of lipopolysaccharide-induced acute lung injury in eight strains of mice. Respiratory Physiology and Neurobiology 171 157164. (https://doi.org/10.1016/j.resp.2010.02.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Andina N, Conus S, Schneider EM, Fey MF & & Simon HU 2009 Induction of Bim limits cytokine-mediated prolonged survival of neutrophils. Cell Death and Differentiation 16 12481255. (https://doi.org/10.1038/cdd.2009.50)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bandeira-Melo C, Singh Y, Cordeiro RS, Silva PM & & Martins MA 1996 Involvement of prostaglandins in the down-regulation of allergic plasma leakage observed in rats undergoing pleural eosinophilia. British Journal of Pharmacology 118 21922198. (https://doi.org/10.1111/j.1476-5381.1996.tb15662.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bandeira-Melo C, Serra MF, Diaz BL, Cordeiro RS, Silva PM, Lenzi HL, Bakhle YS, Serhan CN & & Martins MA 2000 Cyclooxygenase-2-derived prostaglandin E2 and lipoxin A4 accelerate resolution of allergic edema in Angiostrongylus costaricensis-infected rats: relationship with concurrent eosinophilia. Journal of Immunology 164 10291036. (https://doi.org/10.4049/jimmunol.164.2.1029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boxio R, Bossenmeyer-Pourie C, Steinckwich N, Dournon C & & Nusse O 2004 Mouse bone marrow contains large numbers of functionally competent neutrophils. Journal of Leukocyte Biology 75 604611. (https://doi.org/10.1189/jlb.0703340)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cartwright JA, Lucas CD & & Rossi AG 2019 Inflammation resolution and the induction of granulocyte apoptosis by cyclin-dependent kinase inhibitor drugs. Frontiers in Pharmacology 10 55. (https://doi.org/10.3389/fphar.2019.00055)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coutinho DS, Anjos-Valotta EA, Do Nascimento C, Pires ALA, Napimoga MH, Carvalho VF, Torres RC, PMR, ES & & Martins MA 2017 15-deoxy-Delta-12,14-prostaglandin J(2) inhibits lung inflammation and remodeling in distinct murine models of asthma. Frontiers in Immunology 8 740. (https://doi.org/10.3389/fimmu.2017.00740)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • D'Almeida APL, Pacheco De Oliveira MT, De Souza ÉT, De Sa Coutinho D, Ciambarella BT, Gomes CR, Terroso T, Guterres SS, Pohlmann AR, Silva PM, et al.2017 alpha-bisabolol-loaded lipid-core nanocapsules reduce lipopolysaccharide-induced pulmonary inflammation in mice. International Journal of Nanomedicine 12 44794491. (https://doi.org/10.2147/IJN.S130798)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Espinasse MA, Hajage D, Montravers P, Piednoir P, Dufour G, Tubach F, Granger V, De Chaisemartin L, Noel B, Pallardy M, et al.2016a Neutrophil expression of glucocorticoid-induced leucine zipper (GILZ) anti-inflammatory protein is associated with acute respiratory distress syndrome severity. Annals of Intensive Care 6 105. (https://doi.org/10.1186/s13613-016-0210-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Espinasse MA, Pepin A, Virault-Rocroy P, Szely N, Chollet-Martin S, Pallardy M & & Biola-Vidamment A 2016b Glucocorticoid-induced leucine zipper is expressed in human neutrophils and promotes apoptosis through Mcl-1 down-regulation. Journal of Innate Immunity 8 8196. (https://doi.org/10.1159/000439052)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferrero MR, Garcia CC, Dutra De Almeida M, Torres Braz Da Silva J, Bianchi Reis Insuela D, Teixeira Ferreira TP, De Sa Coutinho D, Trindade De Azevedo C, Machado Rodrigues E Silva P & & Martins MA 2021 CCR5 antagonist maraviroc inhibits acute exacerbation of lung inflammation triggered by influenza virus in cigarette smoke-exposed mice. Pharmaceuticals (Basel) 14. (https://doi.org/10.3390/ph14070620)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galvao I, Queiroz-Junior CM, De Oliveira VLS, Pinho V, Hirsch E & & Teixeira MM 2018 The inhibition of Phosphoinositide-3 kinases induce resolution of inflammation in a gout model. Frontiers in Pharmacology 9 1505. (https://doi.org/10.3389/fphar.2018.01505)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ganeshan K, Johnston LK & & Bryce PJ 2013 TGF-beta1 limits the onset of innate lung inflammation by promoting mast cell-derived IL-6. Journal of Immunology 190 57315738. (https://doi.org/10.4049/jimmunol.1203362)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goldberg EL, Asher JL, Molony RD, Shaw AC, Zeiss CJ, Wang C, Morozova-Roche LA, Herzog RI, Iwasaki A & & Dixit VD 2017 beta-hydroxybutyrate Deactivates neutrophil NLRP3 inflammasome to Relieve Gout Flares. Cell Reports 18 20772087. (https://doi.org/10.1016/j.celrep.2017.02.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang JY, Zhou QL, Huang CH, Song Y, Sharma AG, Liao Z, Zhu K, Massidda MW, Jamieson RR, Zhang JY, et al.2017 Neutrophil elastase regulates emergency myelopoiesis preceding systemic inflammation in diet-induced obesity. Journal of Biological Chemistry 292 47704776. (https://doi.org/10.1074/jbc.C116.758748)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Insuela DB, Daleprane JB, Coelho LP, Silva AR, Silva E, PM, Martins MA & & Carvalho VF 2015 Glucagon induces airway smooth muscle relaxation by nitric oxide and prostaglandin E₂. Journal of Endocrinology 225 205217. (https://doi.org/10.1530/JOE-14-0648)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Insuela DBR & & Carvalho VF 2017 Glucagon and glucagon-like peptide-1 as novel anti-inflammatory and immunomodulatory compounds. European Journal of Pharmacology 812 6472. (https://doi.org/10.1016/j.ejphar.2017.07.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Insuela DBR, Azevedo CT, Coutinho DS, Magalhaes NS, Ferrero MR, Ferreira TPT, Cascabulho CM, Henriques-Pons A, Olsen PC, Diaz BL, et al.2019 Glucagon reduces airway hyperreactivity, inflammation, and remodeling induced by ovalbumin. Scientific Reports 9 6478. (https://doi.org/10.1038/s41598-019-42981-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Insuela DBR, Ferrero MR, Coutinho DS, Martins MA & & Carvalho VF 2020 Could arachidonic acid-derived pro-resolving mediators be a new therapeutic strategy for asthma therapy? Frontiers in Immunology 11 580598. (https://doi.org/10.3389/fimmu.2020.580598)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Insuela DBR, Ferrero MR, Goncalves-De-Albuquerque CF, Chaves ADS, Da Silva AYO, Castro-Faria-Neto HC, Simoes RL, Barja-Fidalgo TC, Silva PMRE, Martins MA, et al.2021 Glucagon reduces neutrophil migration and increases susceptibility to sepsis in diabetic mice. Frontiers in Immunology 12 633540. (https://doi.org/10.3389/fimmu.2021.633540)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Janah L, Kjeldsen S, Galsgaard KD, Winther-Sorensen M, Stojanovska E, Pedersen J, Knop FK, Holst JJ & & Wewer Albrechtsen NJ 2019 Glucagon receptor signaling and glucagon resistance. International Journal of Molecular Sciences 20. (https://doi.org/10.3390/ijms20133314)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jo S, Xu G, Jing G, Chen J & & Shalev A 2021 Human glucagon expression is under the control of miR-320a. Endocrinology 162. (https://doi.org/10.1210/endocr/bqaa238)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim RY, Pinkerton JW, Essilfie AT, Robertson AAB, Baines KJ, Brown AC, Mayall JR, Ali MK, Starkey MR, Hansbro NG, et al.2017 Role for NLRP3 inflammasome-mediated, IL-1beta-dependent responses in severe, steroid-resistant asthma. American Journal of Respiratory and Critical Care Medicine 196 283297. (https://doi.org/10.1164/rccm.201609-1830OC)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krakstad C, Christensen AE & & Doskeland SO 2004 cAMP protects neutrophils against TNF-alpha-induced apoptosis by activation of cAMP-dependent protein kinase, independently of exchange protein directly activated by cAMP (Epac). Journal of Leukocyte Biology 76 641647. (https://doi.org/10.1189/jlb.0104005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Levy BD, Clish CB, Schmidt B, Gronert K & & Serhan CN 2001 Lipid mediator class switching during acute inflammation: signals in resolution. Nature Immunology 2 612619. (https://doi.org/10.1038/89759)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li J, Qin Y, Chen Y, Zhao P, Liu X, Dong H, Zheng W, Feng S, Mao X & & Li C 2020 Mechanisms of the lipopolysaccharide-induced inflammatory response in alveolar epithelial cell/macrophage co-culture. Experimental and Therapeutic Medicine 20 76. (https://doi.org/10.3892/etm.2020.9204)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu S, , Su X, , Pan P, , Zhang L, , Hu Y, , Tan H, , Wu D, , Liu B, , Li H, , Li H, et al.2016 Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Scientific Reports 6 37252. (https://doi.org/10.1038/srep37252)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu YY, Shi Y, Liu Y, Pan XH & & Zhang KX 2018 Telomere shortening activates TGF-beta/Smads signaling in lungs and enhances both lipopolysaccharide and bleomycin-induced pulmonary fibrosis. Acta Pharmacologica Sinica 39 17351745. (https://doi.org/10.1038/s41401-018-0007-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Loynes CA, Lee JA, Robertson AL, Steel MJ, Ellett F, Feng Y, Levy BD, Whyte MKB & & Renshaw SA 2018 PGE2 production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. Science Advances 4 eaar8320. (https://doi.org/10.1126/sciadv.aar8320)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin MC, Dransfield I, Haslett C & & Rossi AG 2001 Cyclic AMP regulation of neutrophil apoptosis occurs via a novel protein kinase A-independent signaling pathway. Journal of Biological Chemistry 276 4504145050. (https://doi.org/10.1074/jbc.M105197200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Minguet S, Huber M, Rosenkranz L, Schamel WW, Reth M & & Brummer T 2005 Adenosine and cAMP are potent inhibitors of the NF-kappa B pathway downstream of immunoreceptors. European Journal of Immunology 35 3141. (https://doi.org/10.1002/eji.200425524)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Modrzynska J, Klein CF, Iversen K, Bundgaard H, Hartmann B, Mose M, Rittig N, Moller N, Holst JJ & & Wewer Albrechtsen NJ 2021 Plasma levels of glucagon but not GLP-1 are elevated in response to inflammation in humans. Endocrine Connections 10 205213. (https://doi.org/10.1530/EC-20-0590)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mu E, Ding R, An X, Li X, Chen S & & Ma X 2012 Heparin attenuates lipopolysaccharide-induced acute lung injury by inhibiting nitric oxide synthase and TGF-beta/Smad signaling pathway. Thrombosis Research 129 479485. (https://doi.org/10.1016/j.thromres.2011.10.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peiseler M & & Kubes P 2019 More friend than foe: the emerging role of neutrophils in tissue repair. Journal of Clinical Investigation 129 26292639. (https://doi.org/10.1172/JCI124616)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pulli B, Ali M, Forghani R, Schob S, Hsieh KL, Wojtkiewicz G, Linnoila JJ & & Chen JW 2013 Measuring myeloperoxidase activity in biological samples. PLoS One 8 e67976. (https://doi.org/10.1371/journal.pone.0067976)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pyrillou K, Burzynski LC & & Clarke MCH 2020 Alternative pathways of IL-1 activation, and its role in health and disease. Frontiers in Immunology 11 613170. (https://doi.org/10.3389/fimmu.2020.613170)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanjabi S, Oh SA & & Li MO 2017 Regulation of the immune response by TGF-beta: from conception to autoimmunity and infection. Cold Spring Harbor Perspectives in Biology 9. (https://doi.org/10.1101/cshperspect.a022236)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saperstein S, Huyck H, Kimball E, Johnston C, Finkelstein J & & Pryhuber G 2009 The effects of interleukin-1beta in tumor necrosis factor-alpha-induced acute pulmonary inflammation in mice. Mediators of Inflammation 2009 958658. (https://doi.org/10.1155/2009/958658)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Song C, Li H, Mao Z, Peng L, Liu B, Lin F, Li Y, Dai M, Cui Y, Zhao Y, et al.2022 Delayed neutrophil apoptosis may enhance NET formation in ARDS. Respiratory Research 23 155. (https://doi.org/10.1186/s12931-022-02065-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sousa LP, Lopes F, Silva DM, Tavares LP, Vieira AT, Rezende BM, Carmo AF, Russo RC, Garcia CC, Bonjardim CA, et al.2010 PDE4 inhibition drives resolution of neutrophilic inflammation by inducing apoptosis in a PKA-PI3K/Akt-dependent and NF-kappaB-independent manner. Journal of Leukocyte Biology 87 895904. (https://doi.org/10.1189/jlb.0809540)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sugimoto MA, Sousa LP, Pinho V, Perretti M & & Teixeira MM 2016 Resolution of inflammation: what controls its onset? Frontiers in Immunology 7 160. (https://doi.org/10.3389/fimmu.2016.00160)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun E, Motolani A, Campos L & & Lu T 2022 The pivotal role of NF-kB in the pathogenesis and therapeutics of Alzheimer's disease. International Journal of Molecular Sciences 23. (https://doi.org/10.3390/ijms23168972)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Szondy Z, Sarang Z, Kiss B, Garabuczi É & & Koroskenyi K 2017 Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance. Frontiers in Immunology 8 909. (https://doi.org/10.3389/fimmu.2017.00909)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takahashi N, Tetsuka T, Uranishi H & & Okamoto T 2002 Inhibition of the NF-kappaB transcriptional activity by protein kinase A. European Journal of Biochemistry 269 45594565. (https://doi.org/10.1046/j.1432-1033.2002.03157.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vago JP, Tavares LP, Garcia CC, Lima KM, Perucci LO, Vieira ÉL, Nogueira CR, Soriani FM, Martins JO, Silva PM, et al.2015 The role and effects of glucocorticoid-induced leucine zipper in the context of inflammation resolution. Journal of Immunology 194 49404950. (https://doi.org/10.4049/jimmunol.1401722)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vermeren S, Karmakar U & & Rossi AG 2018 Immune complex-induced neutrophil functions: a focus on cell death. European Journal of Clinical Investigation 48(Supplement 2) e12948. (https://doi.org/10.1111/eci.12948)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wilson RH, Whitehead GS, Nakano H, Free ME, Kolls JK & & Cook DN 2009 Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. American Journal of Respiratory and Critical Care Medicine 180 720730. (https://doi.org/10.1164/rccm.200904-0573OC)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu Y, Wang S, Farooq SM, Castelvetere MP, Hou Y, Gao JL, Navarro JV, Oupicky D, Sun F & & Li C 2012 A chemokine receptor CXCR2 macromolecular complex regulates neutrophil functions in inflammatory diseases. Journal of Biological Chemistry 287 57445755. (https://doi.org/10.1074/jbc.M111.315762)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu F, Wang J, Cao Z, Song M, Fu Y, Zhu Y & & Li Y 2016 cAMP/PKA signaling pathway induces apoptosis by inhibited NF-κB in aluminum chloride-treated lymphocytes in vitro. Biological Trace Element Research 170 424431. (https://doi.org/10.1007/s12011-015-0461-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu J, Wei G, Wang J, Zhu J, Yu M, Zeng X, Wang H, Xie W & & Kong H 2019 Glucagon-like peptide-1 receptor activation alleviates lipopolysaccharide-induced acute lung injury in mice via maintenance of endothelial barrier function. Laboratory Investigation 99 577587. (https://doi.org/10.1038/s41374-018-0170-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang KY, Arcaroli J, Kupfner J, Pitts TM, Park JS, Strasshiem D, Perng RP & & Abraham E 2003 Involvement of phosphatidylinositol 3-kinase gamma in neutrophil apoptosis. Cellular Signalling 15 225233. (https://doi.org/10.1016/s0898-6568(0200063-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou W, Shao W, Zhang Y, Liu D, Liu M & & Jin T 2020 Glucagon-like peptide-1 receptor mediates the beneficial effect of liraglutide in an acute lung injury mouse model involving the thioredoxin-interacting protein. American Journal of Physiology. Endocrinology and Metabolism 319 E568E578. (https://doi.org/10.1152/ajpendo.00292.2020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zwain IH & & Amato P 2001 cAMP-induced apoptosis in granulosa cells is associated with up-regulation of P53 and bax and down-regulation of clusterin. Endocrine Research 27 233249. (https://doi.org/10.1081/erc-100107184)

    • PubMed
    • Search Google Scholar
    • Export Citation