Blocking FGF23 signaling improves the growth plate of mice with X-linked hypophosphatemia

in Journal of Endocrinology
Authors:
Rocío Fuente Institute of Physiology, University of Zurich, and National Center of Competence in Research NNCR Kidney, Zurich, CH, Switzerland
Division of Pediatrics, University of Oviedo, Oviedo, Spain
Department of Pediatrics, Hospital Universitario Central, Oviedo, Spain

Search for other papers by Rocío Fuente in
Current site
Google Scholar
PubMed
Close
,
Eva-Maria Pastor-Arroyo Institute of Physiology, University of Zurich, and National Center of Competence in Research NNCR Kidney, Zurich, CH, Switzerland

Search for other papers by Eva-Maria Pastor-Arroyo in
Current site
Google Scholar
PubMed
Close
,
Nicole Gehring Institute of Physiology, University of Zurich, and National Center of Competence in Research NNCR Kidney, Zurich, CH, Switzerland

Search for other papers by Nicole Gehring in
Current site
Google Scholar
PubMed
Close
,
Patricia Oro Carbajosa Division of Pediatrics, University of Oviedo, Oviedo, Spain

Search for other papers by Patricia Oro Carbajosa in
Current site
Google Scholar
PubMed
Close
,
Laura Alonso-Durán Division of Pediatrics, University of Oviedo, Oviedo, Spain

Search for other papers by Laura Alonso-Durán in
Current site
Google Scholar
PubMed
Close
,
Ivan Zderic AO Research Institute Davos, AO Foundation, Clavadelerstrasse, Davos Platz, Switzerland

Search for other papers by Ivan Zderic in
Current site
Google Scholar
PubMed
Close
,
James Tapia-Dean Department of Pediatrics, Hospital Universitario Central, Oviedo, Spain

Search for other papers by James Tapia-Dean in
Current site
Google Scholar
PubMed
Close
,
Ahmad Kamal Hamid Institute of Physiology, University of Zurich, and National Center of Competence in Research NNCR Kidney, Zurich, CH, Switzerland

Search for other papers by Ahmad Kamal Hamid in
Current site
Google Scholar
PubMed
Close
,
Carla Bettoni Institute of Physiology, University of Zurich, and National Center of Competence in Research NNCR Kidney, Zurich, CH, Switzerland

Search for other papers by Carla Bettoni in
Current site
Google Scholar
PubMed
Close
,
Fernando Santos Division of Pediatrics, University of Oviedo, Oviedo, Spain
Department of Pediatrics, Hospital Universitario Central, Oviedo, Spain

Search for other papers by Fernando Santos in
Current site
Google Scholar
PubMed
Close
,
Carsten A Wagner Institute of Physiology, University of Zurich, and National Center of Competence in Research NNCR Kidney, Zurich, CH, Switzerland

Search for other papers by Carsten A Wagner in
Current site
Google Scholar
PubMed
Close
, and
Isabel Rubio-Aliaga Institute of Physiology, University of Zurich, and National Center of Competence in Research NNCR Kidney, Zurich, CH, Switzerland

Search for other papers by Isabel Rubio-Aliaga in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1051-9511

Correspondence should be addressed to C Wagner or I Rubio-Aliaga: carsten.wagner@physiol.uzh.ch or isabel.rubioaliaga@uzh.ch
Restricted access
Rent on DeepDyve

Sign up for journal news

Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone. X-linked hypophosphatemia (XLH) is the most prevalent inherited phosphate wasting disorder due to mutations in the PHEX gene, which cause elevated circulating FGF23 levels. Clinically, it is characterized by growth impairment and defective mineralization of bones and teeth. Treatment of XLH is challenging. Since 2018, neutralizing antibodies against FGF23 have dramatically improved the therapy of XLH patients, although not all patients fully respond to the treatment, and it is very costly. C-terminal fragments of FGF23 have recently emerged as blockers of intact FGF23 signaling. Here, we analyzed the effect on growth and bone of a short 26 residues long C-terminal FGF23 (cFGF23) fragment and two N-acetylated and C-amidated cFGF23 peptides using young XLH mice (Phex C733RMhda mice). Although no major changes in blood parameters were observed after 7 days of treatment with these peptides, bone length and growth plate structure improved. The modified peptides accelerated the growth rate probably by improving growth plate structure and dynamics. The processes of chondrocyte proliferation, death, hypertrophy, and the cartilaginous composition in the growth plate were partially improved in young treated XLH mice. In conclusion, these findings contribute to understand the role of FGF23 signaling in growth plate metabolism and show that this may occur despite continuous hypophosphatemia.

Supplementary Materials

 

  • Collapse
  • Expand
  • Agoro R, Park MY, Le Henaff C, Jankauskas S, Gaias A, Chen G, Mohammadi M & & Sitara D 2021 C-FGF23 peptide alleviates hypoferremia during acute inflammation. Haematologica 106 391403. (https://doi.org/10.3324/haematol.2019.237040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Agrawal A, Ni P, Agoro R, White KE & & DiMarchi RD 2021 Identification of a second klotho interaction site in the C terminus of FGF23. Cell Reports 34 108665. (https://doi.org/10.1016/j.celrep.2020.108665)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, Fujita T, Wada M, Yamashita T, Fukumoto S, et al.2009 Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. Journal of Bone and Mineral Research 24 18791888. (https://doi.org/10.1359/jbmr.090509)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beck-Nielsen SS, Mughal Z, Haffner D, Nilsson O, Levtchenko E, Ariceta G, de Lucas Collantes C, Schnabel D, Jandhyala R & & Makitie O 2019 FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet Journal of Rare Diseases 14 58. (https://doi.org/10.1186/s13023-019-1014-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bianchi A, Guibert M, Cailotto F, Gasser A, Presle N, Mainard D, Netter P, Kempf H, Jouzeau JY & & Reboul P 2016 Fibroblast growth factor 23 drives MMP13 expression in human osteoarthritic chondrocytes in a klotho-independent manner. Osteoarthritis and Cartilage 24 19611969. (https://doi.org/10.1016/j.joca.2016.06.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ & & Muller R 2010 Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of Bone and Mineral Research 25 14681486. (https://doi.org/10.1002/jbmr.141)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carpenter TO, Imel EA, Ruppe MD, Weber TJ, Klausner MA, Wooddell MM, Kawakami T, Ito T, Zhang X, Humphrey J, et al.2014 Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. Journal of Clinical Investigation 124 15871597. (https://doi.org/10.1172/JCI72829)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cooper KL, Oh S, Sung Y, Dasari RR, Kirschner MW & & Tabin CJ 2013 Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495 375378. (https://doi.org/10.1038/nature11940)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eicher EM, Southard JL, Scriver CR & & Glorieux FH 1976 Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proceedings of the National Academy of Sciences of the United States of America 73 46674671. (https://doi.org/10.1073/pnas.73.12.4667)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Filisetti D, Ostermann G, von Bredow M, Strom T, Filler G, Ehrich J, Pannetier S, Garnier JM, Rowe P, Francis F, et al.1999 Non-random distribution of mutations in the PHEX gene, and under-detected missense mutations at non-conserved residues. European Journal of Human Genetics 7 615619. (https://doi.org/10.1038/sj.ejhg.5200341)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Florenzano P, Cipriani C, Roszko KL, Fukumoto S, Collins MT, Minisola S & & Pepe J 2020 Approach to patients with hypophosphataemia. Lancet. Diabetes and Endocrinology 8 163174. (https://doi.org/10.1016/S2213-8587(1930426-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Francis F, Hennig S, Korn B, Reinhardt R, de Jong P, Poustka A, Lehrach H, Rowe PSN, Goulding JN, Summerfield T, et al.1995 A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP consortium. Nature Genetics 11 130136. (https://doi.org/10.1038/ng1095-130)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fuente R, Garcia-Bengoa M, Fernandez-Iglesias Á, Gil-Pena H, Santos F & & Lopez JM 2022 Cellular and molecular alterations underlying abnormal bone growth in X-linked hypophosphatemia. International Journal of Molecular Sciences 23. (https://doi.org/10.3390/ijms23020934)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fuente R, Gil-Pena H, Claramunt-Taberner D, Hernandez-Frias O, Fernandez-Iglesias Á, Hermida-Prado F, Anes-Gonzalez G, Rubio-Aliaga I, Lopez JM & & Santos F 2018 Marked alterations in the structure, dynamics and maturation of growth plate likely explain growth retardation and bone deformities of young Hyp mice. Bone 116 187195. (https://doi.org/10.1016/j.bone.2018.08.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goetz R, Nakada Y, Hu MC, Kurosu H, Wang L, Nakatani T, Shi M, Eliseenkova AV, Razzaque MS, Moe OW, et al.2010 Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-klotho complex formation. Proceedings of the National Academy of Sciences of the United States of America 107 407412. (https://doi.org/10.1073/pnas.0902006107)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabel D, Wicart P, Bockenhauer D, Santos F, Levtchenko E, et al.2019 Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nature Reviews. Nephrology 15 435455. (https://doi.org/10.1038/s41581-019-0152-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoac B, Ostergaard M, Wittig NK, Boukpessi T, Buss DJ, Chaussain C, Birkedal H, Murshed M & & McKee MD 2020 Genetic ablation of osteopontin in osteomalacic Hyp mice partially rescues the deficient mineralization without correcting hypophosphatemia. Journal of Bone and Mineral Research 35 20322048. (https://doi.org/10.1002/jbmr.4101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu MC, Shiizaki K, Kuro-o M & & Moe OW 2013 Fibroblast growth factor 23 and klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annual Review of Physiology 75 503533. (https://doi.org/10.1146/annurev-physiol-030212-183727)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Imel EA, Glorieux FH, Whyte MP, Munns CF, Ward LM, Nilsson O, Simmons JH, Padidela R, Namba N, Cheong HI, et al.2019 Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet 393 24162427. (https://doi.org/10.1016/S0140-6736(1930654-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Johnson K, Levine K, Sergi J, Chamoun J, Roach R, Vekich J, Favis M, Horn M, Cao X, Miller B, et al.2017 Therapeutic Effects of FGF23 c-tail Fc in a Murine Preclinical Model of X-linked hypophosphatemia via the Selective Modulation of Phosphate Reabsorption. Journal of Bone and Mineral Research 32 20622073. (https://doi.org/10.1002/jbmr.3197)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kawai M, Kinoshita S, Kimoto A, Hasegawa Y, Miyagawa K, Yamazaki M, Ohata Y, Ozono K & & Michigami T 2013 FGF23 suppresses chondrocyte proliferation in the presence of soluble alpha-klotho both in vitro and in vivo. Journal of Biological Chemistry 288 24142427. (https://doi.org/10.1074/jbc.M112.410043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kronenberg HM 2003 Developmental regulation of the growth plate. Nature 423 332336. (https://doi.org/10.1038/nature01657)

  • Kung CJ, Haykir B, Schnitzbauer U, Egli-Spichtig D, Hernando N & & Wagner CA 2021 Fibroblast growth factor 23 leads to endolysosomal routing of the renal phosphate cotransporters NaPi-IIa and NaPi-IIc in vivo. American Journal of Physiology. Renal Physiology 321 F785F798. (https://doi.org/10.1152/ajprenal.00250.2021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, et al.2006 Regulation of fibroblast growth factor-23 signaling by klotho. Journal of Biological Chemistry 281 61206123. (https://doi.org/10.1074/jbc.C500457200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Levi M, Gratton E, Forster IC, Hernando N, Wagner CA, Biber J, Sorribas V & & Murer H 2019 Mechanisms of phosphate transport. Nature Reviews. Nephrology 15 482500. (https://doi.org/10.1038/s41581-019-0159-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Y, Trivedi V, Truong TV, Koos DS, Lansford R, Chuong CM, Warburton D, Moats RA & & Fraser SE 2015 Dynamic imaging of the growth plate cartilage reveals multiple contributors to skeletal morphogenesis. Nature Communications 6 6798. (https://doi.org/10.1038/ncomms7798)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Linglart A, Imel EA, Whyte MP, Portale AA, Hogler W, Boot AM, Padidela R, Van't Hoff W, Gottesman GS, Chen A, et al.2022 Sustained efficacy and safety of burosumab, a monoclonal antibody to FGF23, in children with X-linked hypophosphatemia. Journal of Clinical Endocrinology and Metabolism 107 813824. (https://doi.org/10.1210/clinem/dgab729)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu ES, Martins JS, Raimann A, Chae BT, Brooks DJ, Jorgetti V, Bouxsein ML & & Demay MB 2016 1,25-dihydroxyvitamin D Alone improves skeletal growth, microarchitecture, and strength in a murine model of XLH, despite enhanced FGF23 expression. Journal of Bone and Mineral Research 31 929939. (https://doi.org/10.1002/jbmr.2783)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lyseng-Williamson KA 2018 Burosumab in X-linked hypophosphatemia: a profile of its use in the USA. Drugs and Therapy Perspectives 34 497506. (https://doi.org/10.1007/s40267-018-0560-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Molinos I, Santos F, Carbajo-Perez E, Garcia E, Rodriguez J, Garcia-Alvarez O, Gil H, Ordonez FA, Loredo V & & Mallada L 2006 Catch-up growth follows an abnormal pattern in experimental renal insufficiency and growth hormone treatment normalizes it. Kidney International 70 19551961. (https://doi.org/10.1038/sj.ki.5001949)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Murali SK, Andrukhova O, Clinkenbeard EL, White KE & & Erben RG 2016 Excessive osteocytic FGF23 secretion contributes to pyrophosphate accumulation and mineralization defect in Hyp mice. PLOS Biology 14 e1002427. (https://doi.org/10.1371/journal.pbio.1002427)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pastor-Arroyo EM, Gehring N, Krudewig C, Costantino S, Bettoni C, Knopfel T, Sabrautzki S, Lorenz-Depiereux B, Pastor J, Strom TM, et al.2018 The elevation of circulating fibroblast growth factor 23 without kidney disease does not increase cardiovascular disease risk. Kidney International 94 4959. (https://doi.org/10.1016/j.kint.2018.02.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Portale AA, Carpenter TO, Brandi ML, Briot K, Cheong HI, Cohen-Solal M, Crowley R, Jan De Beur S, Eastell R, Imanishi Y, et al.2019 Continued beneficial effects of burosumab in adults with X-linked hypophosphatemia: results from a 24-week treatment continuation period after a 24-week double-blind placebo-controlled period. Calcified Tissue International 105 271284. (https://doi.org/10.1007/s00223-019-00568-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richter B & & Faul C 2018 FGF23 actions on target tissues-with and without klotho. Frontiers in Endocrinology (Lausanne) 9 189. (https://doi.org/10.3389/fendo.2018.00189)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roberts MS, Burbelo PD, Egli-Spichtig D, Perwad F, Romero CJ, Ichikawa S, Farrow E, Econs MJ, Guthrie LC, Collins MT, et al.2018 Autoimmune hyperphosphatemic tumoral calcinosis in a patient with FGF23 autoantibodies. Journal of Clinical Investigation 128 53685373. (https://doi.org/10.1172/JCI122004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sabbagh Y, Carpenter TO & & Demay MB 2005 Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proceedings of the National Academy of Sciences of the United States of America 102 96379642. (https://doi.org/10.1073/pnas.0502249102)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sabrautzki S, Rubio-Aliaga I, Hans W, Fuchs H, Rathkolb B, Calzada-Wack J, Cohrs CM, Klaften M, Seedorf H, Eck S, et al.2012 New mouse models for metabolic bone diseases generated by genome-wide ENU mutagenesis. Mammalian Genome 23 416430. (https://doi.org/10.1007/s00335-012-9397-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Serna J & & Bergwitz C 2020 Importance of dietary phosphorus for bone metabolism and healthy aging. Nutrients 12. (https://doi.org/10.3390/nu12103001)

  • Sharma S, Katz R, Ginsberg C, Bullen A, Vallon V, Thomson S, Moe OW, Hoofnagle AN, de Leeuw PW, Kroon AA, et al.2022 Renal clearance of fibroblast growth Factor-23 (FGF23) and its fragments in humans. Journal of Bone and Mineral Research 37 11701178. (https://doi.org/10.1002/jbmr.4553)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stokes IA, Clark KC, Farnum CE & & Aronsson DD 2007 Alterations in the growth plate associated with growth modulation by sustained compression or distraction. Bone 41 197205. (https://doi.org/10.1016/j.bone.2007.04.180)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tyynismaa H, Kaitila I, Nanto-Salonen K, Ala-Houhala M & & Alitalo T 2000 Identification of fifteen novel PHEX gene mutations in Finnish patients with hypophosphatemic rickets. Human Mutation 15 383384. (https://doi.org/10.1002/(SICI)1098-1004(200004)15:4<383::AID-HUMU18>3.0.CO;2-#)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S & & Yamashita T 2006 Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444 770774. (https://doi.org/10.1038/nature05315)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhukouskaya VV, Jauze L, Charles S, Leborgne C, Hilliquin S, Sadoine J, Slimani L, Baroukh B, van Wittenberghe L, Daniele N, et al.2021 A novel therapeutic strategy for skeletal disorders: proof of concept of gene therapy for X-linked hypophosphatemia. Science Advances 7 eabj5018. (https://doi.org/10.1126/sciadv.abj5018)

    • PubMed
    • Search Google Scholar
    • Export Citation