Exercise prevents obesity by reducing gut-derived inflammatory signals to brown adipocytes in mice

in Journal of Endocrinology
Authors:
Daiana Araujo Santana-Oliveira Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil

Search for other papers by Daiana Araujo Santana-Oliveira in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2474-5846
,
Henrique Souza-Tavares Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil

Search for other papers by Henrique Souza-Tavares in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7931-4384
,
Aline Fernandes-da-Silva Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil

Search for other papers by Aline Fernandes-da-Silva in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6369-0235
,
Flavia Maria Silva-Veiga Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil

Search for other papers by Flavia Maria Silva-Veiga in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3320-5825
,
Gustavo Casimiro-Lopes Department of Gymnastics, Physical Education and Sports Institute, Laboratory of Exercise Pathophysiology (LAFE), Rio de Janeiro State University, Rio de Janeiro, Brazil

Search for other papers by Gustavo Casimiro-Lopes in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6329-3918
,
Patricia Cristina Lisboa Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Patricia Cristina Lisboa in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2477-4364
,
Carlos Alberto Mandarim-de-Lacerda Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil

Search for other papers by Carlos Alberto Mandarim-de-Lacerda in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4134-7978
, and
Vanessa Souza-Mello Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil

Search for other papers by Vanessa Souza-Mello in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2510-9569

Correspondence should be addressed to V Souza-Mello: vanessa.souza.mello@uerj.br
Restricted access
Rent on DeepDyve

Sign up for journal news

Gut dysbiosis impairs nonshivering thermogenesis (NST) in obesity. The antiobesogenic effects of exercise training might involve the modulation of gut microbiota and its inflammatory signals to the brown adipose tissue (BAT). This study evaluated whether high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) prevent overweight through reduced gut-derived inflammatory signals to BAT in high-fat-fed mice. Sixty male C57BL/6 mice (3 months old) comprised six experimental groups: control (C) diet group, C diet + HIIT (C-HIIT) group, C diet + MICT (C-MICT) group, high-fat (HF) diet group, HF diet + HIIT (HF-HIIT) group, and HF diet + MICT (HF-MICT) group. The protocols lasted for 10 weeks. HIIT and MICT restored body mass, mitigated glucose intolerance, and prevented hyperinsulinemia in HF-trained groups. A chronic HF diet caused dysbiosis, but HIIT and MICT prevented gut dysbiosis and preserved tight junction (TJ) gene expression. HF-HIIT and HF-MICT groups exhibited a similar pattern of goblet cell distribution, agreeing with the decreased plasma lipopolysaccharide concentrations and interscapular BAT (iBAT) Lbp-Cd14-Tlr4 expression. The lowered Nlrp3 and Il1β in the HF-HITT and HF-MICT groups complied with iBAT thermogenic capacity maintenance. This study shows reliable evidence that HIIT and MICT prevented overweight by restoring the diversity of the gut microbiota phyla and TJ gene expression, thereby reducing inflammatory signals to brown adipocytes with preserved thermogenic capacity. Both exercise modalities prevented overweight, but HIIT rescued Zo-1 and Jam-a gene expression, exerting more potent anti-inflammatory effects than MICT (reduced LPS concentrations), providing a sustained increase in thermogenesis with 78% less distance traveled.

 

  • Collapse
  • Expand
  • Arena R, Sagner M, Byrne NM, Williams AD, McNeil A, Street SJ & & Hills AP 2017 Novel approaches for the promotion of physical activity and exercise for prevention and management of type 2 diabetes. European Journal of Clinical Nutrition 71 858864. (https://doi.org/10.1038/ejcn.2017.53)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barbera MJ, Schluter A, Pedraza N, Iglesias R, Villarroya F & & Giralt M 2001 Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. Journal of Biological Chemistry 276 14861493. (https://doi.org/10.1074/jbc.M006246200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Benoit B, Laugerette F, Plaisancie P, Geloen A, Bodennec J, Estienne M, Pineau G, Bernalier-Donadille A, Vidal H & & Michalski MC 2015 Increasing fat content from 20 to 45 wt% in a complex diet induces lower endotoxemia in parallel with an increased number of intestinal goblet cells in mice. Nutrition Research 35 346356. (https://doi.org/10.1016/j.nutres.2015.01.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Binda C, Lopetuso LR, Rizzatti G, Gibiino G, Cennamo V & & Gasbarrini A 2018 Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Digestive and Liver Disease 50 421428. (https://doi.org/10.1016/j.dld.2018.02.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boisseau N, Barnich N & & Koechlin-Ramonatxo C 2022 The nutrition-microbiota-physical activity triad: an inspiring new concept for health and sports performance. Nutrients 14. (https://doi.org/10.3390/nu14050924)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM & & Burcelin R 2008 Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57 14701481. (https://doi.org/10.2337/db07-1403)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davisson MT 1994 Rules and guidelines for nomenclature of mouse genes. International committee on standardized genetic nomenclature for mice. Gene 147 157160. (https://doi.org/10.1016/0378-1119(9490060-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Matteis R, Lucertini F, Guescini M, Polidori E, Zeppa S, Stocchi V, Cinti S & & Cuppini R 2013 Exercise as a new physiological stimulus for brown adipose tissue activity. Nutrition, Metabolism, and Cardiovascular Diseases 23 582590. (https://doi.org/10.1016/j.numecd.2012.01.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Denou E, Marcinko K, Surette MG, Steinberg GR & & Schertzer JD 2016 High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. American Journal of Physiology. Endocrinology and Metabolism 310 E982E993. (https://doi.org/10.1152/ajpendo.00537.2015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Oliveira Sa G, Dos Santos Neves V, de Oliveira Fraga SR, Souza-Mello V & & Barbosa-da-Silva S 2017 High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets. Life Sciences 189 817. (https://doi.org/10.1016/j.lfs.2017.09.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fan S, Boerner K, Muraleedharan CK, Nusrat A, Quiros M & & Parkos CA 2022 Epithelial JAM-A is fundamental for intestinal wound repair in vivo. JCI Insight 7. (https://doi.org/10.1172/jci.insight.158934)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferreira JC, Rolim NP, Bartholomeu JB, Gobatto CA, Kokubun E & & Brum PC 2007 Maximal lactate steady state in running mice: effect of exercise training. Clinical and Experimental Pharmacology and Physiology 34 760765. (https://doi.org/10.1111/j.1440-1681.2007.04635.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB & & Flier JS 1995 Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nature Medicine 1 13111314. (https://doi.org/10.1038/nm1295-1311)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, Kojima T, Yamashita T & & Sawada N 2006 Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. Journal of Histochemistry and Cytochemistry 54 933944. (https://doi.org/10.1369/jhc.6A6944.2006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ghosh SS, Wang J, Yannie PJ & & Ghosh S 2020 Intestinal barrier dysfunction, LPS translocation, and disease development. Journal of the Endocrine Society 4 bvz039. (https://doi.org/10.1210/jendso/bvz039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goh Q, Song T, Petrany MJ, Cramer AA, Sun C, Sadayappan S, Lee SJ & & Millay DP 2019 Myonuclear accretion is a determinant of exercise-induced remodeling in skeletal muscle. eLife 8. (https://doi.org/10.7554/eLife.44876)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gustafson B, Hedjazifar S, Gogg S, Hammarstedt A & & Smith U 2015 Insulin resistance and impaired adipogenesis. Trends in Endocrinology and Metabolism 26 193200. (https://doi.org/10.1016/j.tem.2015.01.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Keirns BH, Koemel NA, Sciarrillo CM, Anderson KL & & Emerson SR 2020 Exercise and intestinal permeability: another form of exercise-induced hormesis? American Journal of Physiology. Gastrointestinal and Liver Physiology 319 G512G518. (https://doi.org/10.1152/ajpgi.00232.2020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Khalafi M, Mohebbi H, Symonds ME, Karimi P, Akbari A, Tabari E, Faridnia M & & Moghaddami K 2020 The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients 12. (https://doi.org/10.3390/nu12040925)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kieffer TJ & & Habener JF 2000 The adipoinsular axis: effects of leptin on pancreatic beta-cells. American Journal of Physiology. Endocrinology and Metabolism 278 E1E14. (https://doi.org/10.1152/ajpendo.2000.278.1.E1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuo CH & & Harris MB 2016 Abdominal fat reducing outcome of exercise training: fat burning or hydrocarbon source redistribution? Canadian Journal of Physiology and Pharmacology 94 695698. (https://doi.org/10.1139/cjpp-2015-0425)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuo WT, Zuo L, Odenwald MA, Madha S, Singh G, Gurniak CB, Abraham C & & Turner JR 2021 The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair. Gastroenterology 161 19241939. (https://doi.org/10.1053/j.gastro.2021.08.047)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lambert JE, Myslicki JP, Bomhof MR, Belke DD, Shearer J & & Reimer RA 2015 Exercise training modifies gut microbiota in normal and diabetic mice. Applied Physiology, Nutrition and Metabolism 40 749752. (https://doi.org/10.1139/apnm-2014-0452)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li X, Wei X, Sun Y, Du J, Li X, Xun Z & & Li YC 2019 High-fat diet promotes experimental colitis by inducing oxidative stress in the colon. American Journal of Physiology. Gastrointestinal and Liver Physiology 317 G453G462. (https://doi.org/10.1152/ajpgi.00103.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Y, Dong G, Zhao X, Huang Z, Li P & & Zhang H 2020 Post-exercise effects and long-term training adaptations of hormone sensitive lipase lipolysis induced by high-intensity interval training in adipose tissue of mice. Frontiers in Physiology 11 535722. (https://doi.org/10.3389/fphys.2020.535722)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Livak KJ & & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lueschow SR & & McElroy SJ 2020 The Paneth cell: the curator and defender of the immature small intestine. Frontiers in Immunology 11 587. (https://doi.org/10.3389/fimmu.2020.00587)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luissint AC, Williams HC, Kim W, Flemming S, Azcutia V, Hilgarth RS, Leary MNO, Denning TL, Nusrat A & & Parkos CA 2019 Macrophage-dependent neutrophil recruitment is impaired under conditions of increased intestinal permeability in JAM-A-deficient mice. Mucosal Immunology 12 668678. (https://doi.org/10.1038/s41385-019-0143-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lundsgaard AM, Fritzen AM & & Kiens B 2020 The importance of fatty acids as nutrients during post-exercise recovery. Nutrients 12. (https://doi.org/10.3390/nu12020280)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P & & Balamurugan R 2020 The Firmicutes/Bacteroidetes Ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12. (https://doi.org/10.3390/nu12051474)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maillard F, Pereira B & & Boisseau N 2018 Effect of high-intensity interval training on total, abdominal and visceral Fat Mass: a meta-analysis. Sports Medicine 48 269288. (https://doi.org/10.1007/s40279-017-0807-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maillard F, Vazeille E, Sauvanet P, Sirvent P, Combaret L, Sourdrille A, Chavanelle V, Bonnet R, Otero YF, Delcros G, et al.2019 High intensity interval training promotes total and visceral fat mass loss in obese Zucker rats without modulating gut microbiota. PLoS One 14 e0214660. (https://doi.org/10.1371/journal.pone.0214660)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martinez-Huenchullan SF, Maharjan BR, Williams PF, Tam CS, McLennan SV & & Twigg SM 2018a Differential metabolic effects of constant moderate versus high intensity interval training in high-fat fed mice: possible role of muscle adiponectin. Physiological Reports 6. (https://doi.org/10.14814/phy2.13599)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martinez-Huenchullan SF, Maharjan BR, Williams PF, Tam CS, McLennan SV & & Twigg SM 2018b Skeletal muscle adiponectin induction depends on diet, muscle type/activity, and exercise modality in C57BL/6 mice. Physiological Reports 6 e13848. (https://doi.org/10.14814/phy2.13848)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martins C, Kazakova I, Ludviksen M, Mehus I, Wisloff U, Kulseng B, Morgan L & & King N 2016 High-intensity interval training and isocaloric moderate-intensity continuous training result in similar improvements in body composition and fitness in obese individuals. International Journal of Sport Nutrition and Exercise Metabolism 26 197204. (https://doi.org/10.1123/ijsnem.2015-0078)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matsushita N, Osaka T, Haruta I, Ueshiba H, Yanagisawa N, Omori-Miyake M, Hashimoto E, Shibata N, Tokushige K, Saito K, et al.2016 Effect of lipopolysaccharide on the progression of non-alcoholic fatty liver disease in high caloric diet-fed mice. Scandinavian Journal of Immunology 83 109118. (https://doi.org/10.1111/sji.12397)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moreno-Navarrete JM & & Fernandez-Real JM 2019 The gut microbiota modulates both browning of white adipose tissue and the activity of brown adipose tissue. Reviews in Endocrine and Metabolic Disorders 20 387397. (https://doi.org/10.1007/s11154-019-09523-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Motta VF, Bargut TL, Aguila MB & & Mandarim-de-Lacerda CA 2017 Treating fructose-induced metabolic changes in mice with high-intensity interval training: insights in the liver, white adipose tissue, and skeletal muscle. Journal of Applied Physiology 123 699709. (https://doi.org/10.1152/japplphysiol.00154.2017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Motta VF, Bargut TL, Souza-Mello V, Aguila MB & & Mandarim-de-Lacerda CA 2019 Browning is activated in the subcutaneous white adipose tissue of mice metabolically challenged with a high-fructose diet submitted to high-intensity interval training. Journal of Nutritional Biochemistry 70 164173. (https://doi.org/10.1016/j.jnutbio.2019.05.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Okla M, Zaher W, Alfayez M & & Chung S 2018 Inhibitory effects of toll-like receptor 4, NLRP3 inflammasome, and interleukin-1β on white adipocyte browning. Inflammation 41 626642. (https://doi.org/10.1007/s10753-017-0718-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Otani T & & Furuse M 2020 Tight junction structure and function revisited: (trends in cell Biology 30, 805–817, 2020). Trends in Cell Biology 30 1014. (https://doi.org/10.1016/j.tcb.2020.10.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Petriz BA, Castro AP, Almeida JA, Gomes CP, Fernandes GR, Kruger RH, Pereira RW & & Franco OL 2014 Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics 15 511. (https://doi.org/10.1186/1471-2164-15-511)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Poekes L, Legry V, Schakman O, Detrembleur C, Bol A, Horsmans Y, Farrell GC & & Leclercq IA 2017 Defective adaptive thermogenesis contributes to metabolic syndrome and liver steatosis in obese mice. Clinical Science 131 285296. (https://doi.org/10.1042/CS20160469)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F & & Koltun WA 2007 Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. Journal of Surgical Research 140 1219. (https://doi.org/10.1016/j.jss.2006.07.050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rangel-Azevedo C, Santana-Oliveira DA, Miranda CS, Martins FF, Mandarim-de-Lacerda CA & & Souza-Mello V 2022 Progressive brown adipocyte dysfunction: whitening and impaired nonshivering thermogenesis as long-term obesity complications. Journal of Nutritional Biochemistry 105 109002. (https://doi.org/10.1016/j.jnutbio.2022.109002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reeves PG, Nielsen FH & & Fahey GC 1993 AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Journal of Nutrition 123 19391951. (https://doi.org/10.1093/jn/123.11.1939)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ricquier D 2017 UCP1, the mitochondrial uncoupling protein of brown adipocyte: a personal contribution and a historical perspective. Biochimie 134 38. (https://doi.org/10.1016/j.biochi.2016.10.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Riley CL & & Mills EM 2020 The role of UCP3 in brown adipose tissue mitochondrial bioenergetics is complementary to that of UCP1. bioRxiv. (https://doi.org/10.1101/2020.03.24.003442)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rizzatti G, Lopetuso LR, Gibiino G, Binda C & & Gasbarrini A 2017 Proteobacteria: a Common Factor in Human Diseases. BioMed Research International 2017 9351507. (https://doi.org/10.1155/2017/9351507)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rohr MW, Narasimhulu CA, Rudeski-Rohr TA & & Parthasarathy S 2020 Negative effects of a high-fat diet on intestinal permeability: a review. Advances in Nutrition 11 7791. (https://doi.org/10.1093/advances/nmz061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanchez-Delgado G, Martinez-Tellez B, Olza J, Aguilera CM, Gil Á & & Ruiz JR 2015 Role of exercise in the activation of brown adipose tissue. Annals of Nutrition and Metabolism 67 2132. (https://doi.org/10.1159/000437173)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Santana-Oliveira DA, Fernandes-da-Silva A, Miranda CS, Martins FF, Mandarim-de-Lacerda CA & & Souza-Mello V 2022 A PPAR-alpha agonist and DPP-4 inhibitor mitigate adipocyte dysfunction in obese mice. Journal of Molecular Endocrinology 68 225241. (https://doi.org/10.1530/JME-21-0084)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schoeler M & & Caesar R 2019 Dietary lipids, gut microbiota and lipid metabolism. Reviews in Endocrine and Metabolic Disorders 20 461472. (https://doi.org/10.1007/s11154-019-09512-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shimizu I, Aprahamian T, Kikuchi R, Shimizu A, Papanicolaou KN, MacLauchlan S, Maruyama S & & Walsh K 2014 Vascular rarefaction mediates whitening of brown fat in obesity. Journal of Clinical Investigation 124 20992112. (https://doi.org/10.1172/JCI71643)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spiegelman BM 2013 Banting Lecture 2012: regulation of adipogenesis: toward new therapeutics for metabolic disease. Diabetes 62 17741782. (https://doi.org/10.2337/db12-1665)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM & & Dixit VD 2011 The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature Medicine 17 179188. (https://doi.org/10.1038/nm.2279)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang N, Liu Y, Ma Y & & Wen D 2017 High-intensity interval versus moderate-intensity continuous training: superior metabolic benefits in diet-induced obesity mice. Life Sciences 191 122131. (https://doi.org/10.1016/j.lfs.2017.08.023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vazquez MJ, Morgan D, Csikasz RI, Gallego R, Rodriguez-Cuenca S, et al.2012 BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149 871885. (https://doi.org/10.1016/j.cell.2012.02.066)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu J, Cohen P & & Spiegelman BM 2013 Adaptive thermogenesis in adipocytes: is beige the new brown? Genes and Development 27 234250. (https://doi.org/10.1101/gad.211649.112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C, et al.2010 Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME Journal 4 232241. (https://doi.org/10.1038/ismej.2009.112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou X, Han D, Xu R, Li S, Wu H, Qu C, Wang F, Wang X & & Zhao Y 2014 A model of metabolic syndrome and related diseases with intestinal endotoxemia in rats fed a high fat and high sucrose diet. PLoS One 9 e115148. (https://doi.org/10.1371/journal.pone.0115148)

    • PubMed
    • Search Google Scholar
    • Export Citation