Loss of Trim28 in muscle alters mitochondrial signalling but not systemic metabolism

in Journal of Endocrinology
Authors:
Emily J King Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
Central Clinical School, Monash University, Melbourne, Victoria, Australia

Search for other papers by Emily J King in
Current site
Google Scholar
PubMed
Close
,
Simon T Bond Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
Central Clinical School, Monash University, Melbourne, Victoria, Australia
Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Australia

Search for other papers by Simon T Bond in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1551-8614
,
Christine Yang Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia

Search for other papers by Christine Yang in
Current site
Google Scholar
PubMed
Close
,
Yingying Liu Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia

Search for other papers by Yingying Liu in
Current site
Google Scholar
PubMed
Close
,
Anna C Calkin Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
Central Clinical School, Monash University, Melbourne, Victoria, Australia
Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Australia

Search for other papers by Anna C Calkin in
Current site
Google Scholar
PubMed
Close
,
Darren C Henstridge Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia

Search for other papers by Darren C Henstridge in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4988-767X
, and
Brian G Drew Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
Central Clinical School, Monash University, Melbourne, Victoria, Australia
Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Australia

Search for other papers by Brian G Drew in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7839-9467

Correspondence should be addressed to D Henstridge or B G Drew: darren.henstridge@utas.edu.au or brian.drew@baker.edu.au
Restricted access
Rent on DeepDyve

Sign up for journal news

Type 2 diabetes mellitus (T2DM), a condition characterised by insulin resistance (IR) and skeletal muscle mitochondrial abnormalities, is a leading cause of death in developed societies. Much work has postulated that improving pathways linked to mitochondrial health, including autophagy, may be a potential avenue to prevent or treat T2DM. Given the recent data indicating a role for tripartite motif-containing 28 (TRIM28) in autophagy and mitochondrial pathways, we investigated whether muscle-specific deletion of TRIM28 might impact on obesity, glucose tolerance, and IR in mice. We studied two different muscle-specific (MCK-cre and ACTA1-cre-ERT2) TRIM28 knockout models, which were phenotyped during and after being fed a chow or high-fat diet (HFD). Whilst muscle-specific deletion of TRIM28 in both models demonstrated alterations in markers of mitochondrial activity and autophagy in skeletal muscle, we did not observe major impacts on the majority of metabolic measures in these mice. Specifically, we demonstrate that deletion of TRIM28 in skeletal muscle of mice during (MCK-cre) or post-development (ACTA1-cre-ERT2) does not prevent HFD-induced obesity or glucose intolerance. These findings are consistent with those reported previously in relation to autophagy and mitochondria in other cell types, and thus warrant further study into the biological role TRIM28 has in relation to mitochondrial function.

 

  • Collapse
  • Expand
  • Alwan A 2011 Global Status Report on Noncommunicable Diseases 2010. Geneva, Switzerland: World Health Organization.

  • Barde I, Rauwel B, Marin-Florez RM, Corsinotti A, Laurenti E, Verp S, Offner S, Marquis J, Kapopoulou A, Vanicek J, et al.2013 A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy. Science (New York, NY) 340 350353. (https://doi.org/10.1126/science.1232398)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Benton CR, Holloway GP, Han XX, Yoshida Y, Snook LA, Lally J, Glatz JF, Luiken JJ, Chabowski A & & Bonen A 2010 Increased levels of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1alpha) improve lipid utilisation, insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats. Diabetologia 53 20082019. (https://doi.org/10.1007/s00125-010-1773-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bond ST, King EJ, Henstridge DC, Tran A, Moody SC, Yang C, Liu Y, Mellett NA, Nath AP, Inouye M, et al.2021a Deletion of Trim28 in committed adipocytes promotes obesity but preserves glucose tolerance. Nature Communications 12 74. (https://doi.org/10.1038/s41467-020-20434-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bond ST, Zhuang A, Yang C, Gould EAM, Sikora T, Liu Y, Fu Y, Watt KI, Tan Y, Kiriazis H, et al.2021b Tissue-specific expression of Cas9 has no impact on whole-body metabolism in four transgenic mouse lines. Molecular Metabolism 53 101292. (https://doi.org/10.1016/j.molmet.2021.101292)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chad RH, Dong-Ho H, May C, Shin T, Toshihiro Y, David CW & & John OH 2008 High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proceedings of the National Academy of Sciences of the United States of America 105 78157820. (https://doi.org/10.1073/pnas.0802057105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Choi CS, Befroy DE, Codella R, Kim S, Reznick RM, Hwang YJ, Liu ZX, Lee HY, Distefano A, Samuel VT, et al.2008 Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America 105 1992619931. (https://doi.org/10.1073/pnas.0810339105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chomentowski P, Coen PM, Radikova Z, Goodpaster BH & & Toledo FGS 2011 Skeletal muscle mitochondria in insulin resistance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility. Journal of Clinical Endocrinology and Metabolism 96 494503. (https://doi.org/10.1210/jc.2010-0822)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dalgaard K, Landgraf K, Heyne S, Lempradl A, Longinotto J, Gossens K, Ruf M, Orthofer M, Strogantsev R, Selvaraj M, et al.2016 Trim28 haploinsufficiency triggers bi-stable epigenetic obesity. Cell 164 353364. (https://doi.org/10.1016/j.cell.2015.12.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Wilde J, Mohren R, van den Berg S, Boekschoten M, Dijk KW, de Groot P, Muller M, Mariman E & & Smit E 2008 Short-term high fat-feeding results in morphological and metabolic adaptations in the skeletal muscle of C57BL/6J mice. Physiological Genomics 32 360369. (https://doi.org/10.1152/physiolgenomics.00219.2007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Di Meo S, Iossa S & & Venditti P 2017 Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. Journal of Endocrinology 233 R15R42. (https://doi.org/10.1530/JOE-16-0598)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Di Rienzo M, Romagnoli A, Antonioli M, Piacentini M & & Fimia GM 2020 TRIM proteins in autophagy: selective sensors in cell damage and innate immune responses. Cell Death and Differentiation 27 887902. (https://doi.org/10.1038/s41418-020-0495-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Genders AJ, Holloway GP & & Bishop DJ 2020 Are alterations in skeletal muscle mitochondria a cause or consequence of insulin resistance? International Journal of Molecular Sciences 21 6948. (https://doi.org/10.3390/ijms21186948)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grassi DA, Jönsson ME, Brattås PL & & Jakobsson J 2019 TRIM28 and the control of transposable elements in the brain. Brain Research 1705 4347. (https://doi.org/10.1016/j.brainres.2018.02.043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heilbronn LK, Gan SK, Turner N, Campbell LV & & Chisholm DJ 2007 Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. Journal of Clinical Endocrinology and Metabolism 92 14671473. (https://doi.org/10.1210/jc.2006-2210)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kelley DE, He J, Menshikova EV & & Ritov VB 2002 Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51 29442950. (https://doi.org/10.2337/diabetes.51.10.2944)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, Ryall KA, Fisher CC, Zhang M, Saucerman JJ, Goodyear LJ, et al.2017 AMPK phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nature Communications 8 548. (https://doi.org/10.1038/s41467-017-00520-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laker RC, Xu P, Ryall KA, Sujkowski A, Kenwood BM, Chain KH, Zhang M, Royal MA, Hoehn KL, Driscoll M, et al.2014 A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. Journal of Biological Chemistry 289 1200512015. (https://doi.org/10.1074/jbc.M113.530527)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lancaster GI & & Henstridge DC 2018 Body composition and metabolic caging analysis in high fat fed mice. Journal of Visualized Experiments 135 57280. (https://doi.org/10.3791/57280)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lyons GE, Muhlebach S, Moser A, Masood R, Paterson BM, Buckingham ME & & Perriard JC 1991 Developmental regulation of creatine kinase gene expression by myogenic factors in embryonic mouse and chick skeletal muscle. Development 113 10171029. (https://doi.org/10.1242/dev.113.3.1017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mandell MA, Saha B & & Thompson TA 2020 The tripartite nexus: autophagy, cancer, and tripartite motif-containing protein family members. Frontiers in Pharmacology 11 308. (https://doi.org/10.3389/fphar.2020.00308)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miura S, Kai Y, Ono M & & Ezaki O 2003 Overexpression of peroxisome proliferator-activated receptor gamma coactivator-1alpha down-regulates GLUT4 mRNA in skeletal muscles. Journal of Biological Chemistry 278 3138531390. (https://doi.org/10.1074/jbc.M304312200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, et al.2003 PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics 34 267273. (https://doi.org/10.1038/ng1180)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, et al.2005 Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. Journal of Clinical Investigation 115 35873593. (https://doi.org/10.1172/JCI25151)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mukherjee S & & Ghosh A 2020 Molecular mechanism of mitochondrial respiratory chain assembly and its relation to mitochondrial diseases. Mitochondrion 53 120. (https://doi.org/10.1016/j.mito.2020.04.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, et al.2003 Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proceedings of the National Academy of Sciences of the United States of America 100 84668471. (https://doi.org/10.1073/pnas.1032913100)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pesta D & & Gnaiger E 2012 High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. In Mitochondrial Bioenergetics Methods and Protocols. Eds. Palmeira CM, & Moreno AJ. Totowa, NJ, USA: Humana Press. (https://doi.org/10.1007/978-1-61779-382-0_3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pineda CT & & Potts PR 2015 Oncogenic MAGEA-TRIM28 ubiquitin ligase downregulates autophagy by ubiquitinating and degrading AMPK in cancer. Autophagy 11 844846. (https://doi.org/10.1080/15548627.2015.1034420)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pineda CT, Ramanathan S, Fon Tacer K, Weon JL, Potts MB, Ou YH, White MA & & Potts PR 2015 Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160 715728. (https://doi.org/10.1016/j.cell.2015.01.034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A & & Hollander JM 2019 Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. American Journal of Physiology-Endocrinology and Metabolism 316 E268E285. (https://doi.org/10.1152/ajpendo.00314.2018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH & & Kelley DE 2005 Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54 814. (https://doi.org/10.2337/diabetes.54.1.8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sangwung P, Petersen KF, Shulman GI & & Knowles JW 2020 Mitochondrial dysfunction, insulin resistance, and potential genetic implications. Endocrinology 161. (https://doi.org/10.1210/endocr/bqaa017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP & & Harper JW 2013 Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496 372376. (https://doi.org/10.1038/nature12043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sczelecki S, Besse-Patin A, Abboud A, Kleiner S, Laznik-Bogoslavski D, Wrann CD, Ruas JL, Haibe-Kains B & & Estall JL 2014 Loss of Pgc-1α expression in aging mouse muscle potentiates glucose intolerance and systemic inflammation. American Journal of Physiology. Endocrinology and Metabolism 306 E157E167. (https://doi.org/10.1152/ajpendo.00578.2013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sergi D, Naumovski N, Heilbronn LK, Abeywardena M, O'Callaghan N, Lionetti L & & Luscombe-Marsh N 2019 Mitochondrial (Dys)function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Frontiers in Physiology 10 532. (https://doi.org/10.3389/fphys.2019.00532)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shukla SA, Bachireddy P, Schilling B, Galonska C, Zhan Q, Bango C, Langer R, Lee PC, Gusenleitner D, Keskin DB, et al.2018 Cancer-germline antigen expression discriminates clinical outcome to CTLA-4 blockade. Cell 173 624633.e8. (https://doi.org/10.1016/j.cell.2018.03.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA & & Shulman RG 1990 Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. New England Journal of Medicine 322 223228. (https://doi.org/10.1056/NEJM199001253220403)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simoneau JA, Veerkamp JH, Turcotte LP & & Kelley DE 1999 Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB Journal 13 20512060. (https://doi.org/10.1096/fasebj.13.14.2051)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Singh K, Cassano M, Planet E, Sebastian S, Jang SM, Sohi G, Faralli H, Choi J, Youn HD, Dilworth FJ, et al.2015 A KAP1 phosphorylation switch controls MyoD function during skeletal muscle differentiation. Genes and Development 29 513525. (https://doi.org/10.1101/gad.254532.114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sligar J, DeBruin DA, Saner NJ, Philp AM & & Philp A 2022 The importance of mitochondrial quality control for maintaining skeletal muscle function across health span. American Journal of Physiology-Cell Physiology 322 C461C467. (https://doi.org/10.1152/ajpcell.00388.2021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Srinivasan S, Guha M, Kashina A & & Avadhani NG 2017 Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. Biochimica et Biophysica Acta. Bioenergetics 1858 602614. (https://doi.org/10.1016/j.bbabio.2017.01.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Steinert ND, Lin K-H, Hermanson JB & & Hornberger TA 2022 Mechanistic insights into the role of TRIM28 in the regulation of skeletal muscle size. FASEB Journal 36. (https://doi.org/10.1096/fasebj.2022.36.S1.R5893)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Steinert ND, Potts GK, Wilson GM, Klamen AM, Lin KH, Hermanson JB, McNally RM, Coon JJ & & Hornberger TA 2021 Mapping of the contraction-induced phosphoproteome identifies TRIM28 as a significant regulator of skeletal muscle size and function. Cell Reports 34 108796. (https://doi.org/10.1016/j.celrep.2021.108796)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ukropcova B, Sereda O, de Jonge L, Bogacka I, Nguyen T, Xie H, Bray GA & & Smith SR 2007 Family history of diabetes links impaired substrate switching and reduced mitochondrial content in skeletal muscle. Diabetes 56 720727. (https://doi.org/10.2337/db06-0521)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whitelaw NC, Chong S, Morgan DK, Nestor C, Bruxner TJ, Ashe A, Lambley E, Meehan R & & Whitelaw E 2010 Reduced levels of two modifiers of epigenetic gene silencing, Dnmt3a and Trim28, cause increased phenotypic noise. Genome Biology 11 R111. (https://doi.org/10.1186/gb-2010-11-11-r111)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang Y, Fiskus W, Yong B, Atadja P, Takahashi Y, Pandita TK, Wang HG & & Bhalla KN 2013 Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. Proceedings of the National Academy of Sciences of the United States of America 110 68416846. (https://doi.org/10.1073/pnas.1217692110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang S, Loro E, Wada S, Kim B, Tseng WJ, Li K, Khurana TS & & Arany Z 2020 Functional effects of muscle PGC-1alpha in aged animals. Skeletal Muscle 10 14. (https://doi.org/10.1186/s13395-020-00231-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang J, Hua C, Zhang Y, Wei P, Tu Y & & Wei T 2020 KAP1-associated transcriptional inhibitory complex regulates C2C12 myoblasts differentiation and mitochondrial biogenesis via miR-133a repression. Cell Death and Disease 11 732. (https://doi.org/10.1038/s41419-020-02937-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhuang A, Yang C, Liu Y, Tan Y, Bond ST, Walker S, Sikora T, Laskowski A, Sharma A, de Haan JB, et al.2021 SOD2 in skeletal muscle: new insights from an inducible deletion model. Redox Biology 47 102135. (https://doi.org/10.1016/j.redox.2021.102135)

    • PubMed
    • Search Google Scholar
    • Export Citation