Higher weight in partially leptin-resistant db/+ mice is associated with positive effects on bone

in Journal of Endocrinology
Authors:
Russell T Turner Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Russell T Turner in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3031-0398
,
Kenneth A Philbrick Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Kenneth A Philbrick in
Current site
Google Scholar
PubMed
Close
,
Carmen P Wong Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Carmen P Wong in
Current site
Google Scholar
PubMed
Close
,
Adam J Branscum Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Adam J Branscum in
Current site
Google Scholar
PubMed
Close
, and
Urszula T Iwaniec Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Urszula T Iwaniec in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6203-0932

Correspondence should be addressed to U T Iwaniec: urszula.iwaniec@oregonstate.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Absence of leptin confers metabolic dysfunction resulting in morbid obesity. Bone growth and maturation are also impaired. Partial leptin resistance is more common than leptin deficiency and, when induced by feeding mice a high fat diet, often has a negative effect on bone. Here, we used a genetic model to investigate the skeletal effects of partial and total leptin resistance in mice. This was accomplished by comparing the skeletal phenotypes of 17-week-old female C57Bl6/J wild-type (WT) mice, partial leptin receptor-deficient (db/+) mice and leptin receptor-deficient (db/db) mice (n = 7–8/group), all fed a standard diet. Compared to WT mice, db/db mice were dramatically heavier and hyperleptinemic. These mice were also hypogonadal, hyperglycemic, osteopenic and had lower serum levels of bone turnover markers, osteocalcin and C-terminal telopeptide of type I collagen (CTX). Compared to WT mice, db/+ mice were 14% heavier, had 149% more abdominal white adipose tissue, and were mildly hyperglycemic. db/+ mice did not differ from WT mice in uterine weight or serum levels of markers of bone turnover, although there was a trend for lower osteocalcin. At the bone microarchitectural level, db/+ mice differed from WT mice in having more massive femurs and a trend (P = 0.072) for larger vertebrae. These findings suggest that db/+ mice fed a normal mouse diet compensate for partial leptin resistance by increasing white adipose tissue mass which results in higher leptin levels. Our findings suggest that db/+ mice are a useful diet-independent model for studying the effects of partial leptin resistance on the skeleton.

 

  • Collapse
  • Expand
  • Al-Sultan AI & & Al-Elq AH 2006 Leptin levels in normal weight and obese saudi adults. Journal of Family and Community Medicine 13 97102. (https://doi.org/10.4103/2230-8229.97535)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Banks WA, Kastin AJ, Huang W, Jaspan JB & & Maness LM 1996 Leptin enters the brain by a saturable system independent of insulin. Peptides 17 305311. (https://doi.org/10.1016/0196-9781(9600025-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Benjamini Y & & Hochberg Y 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 57 289300. (https://doi.org/10.1111/j.2517-6161.1995.tb02031.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ & & Muller R 2010 Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of Bone and Mineral Research 25 14681486. (https://doi.org/10.1002/jbmr.141)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Choi HM, Kim HR, Kim EK, Byun YS, Won YS, Yoon WK, Kim HC, Kang JG & & Nam KH 2015 An age-dependent alteration of the respiratory exchange ratio in the db/db mouse. Laboratory Animal Research 31 16. (https://doi.org/10.5625/lar.2015.31.1.1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garris DR, Burkemper KM & & Garris BL 2007 Influences of diabetes (db/db), obese (ob/ob) and dystrophic (dy/dy) genotype mutations on hind limb bone maturation: a morphometric, radiological and cytochemical indices analysis. Diabetes, Obesity and Metabolism 9 311322. (https://doi.org/10.1111/j.1463-1326.2006.00603.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gat-Yablonski G & & Phillip M 2008 Leptin and regulation of linear growth. Current Opinion in Clinical Nutrition and Metabolic Care 11 303308. (https://doi.org/10.1097/MCO.0b013e3282f795cf)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hammes SR & & Mendelson CR 2011 Mechanisms of hormone action. In Textbook of Endocrine Physiology. Eds. Kovacs WJ, & Ojeda SR. Oxford:Oxford University Press. (https://doi.org/10.1093/oso/9780199744121.003.0006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hintze KJ, Benninghoff AD, Cho CE & & Ward RE 2018 Modeling the western diet for preclinical investigations. Advances in Nutrition 9 263271. (https://doi.org/10.1093/advances/nmy002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang L, You YK, Zhu TY, Zheng LZ, Huang XR, Chen HY, Yao D, Lan HY & & Qin L 2016 Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis. Scientific Reports 6 27745. (https://doi.org/10.1038/srep27745)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ishizuka T, Klepcyk P, Liu S, Panko L, Liu S, Gibbs EM & & Friedman JE 1999 Effects of overexpression of human GLUT4 gene on maternal diabetes and fetal growth in spontaneous gestational diabetic C57BLKS/J Lepr(db/+) mice. Diabetes 48 10611069. (https://doi.org/10.2337/diabetes.48.5.1061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iwaniec UT, Philbrick KA, Wong CP, Gordon JL, Kahler-Quesada AM, Olson DA, Branscum AJ, Sargent JL, DeMambro VE, Rosen CJ, et al.2016 Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss. Osteoporosis International 27 30913101. (https://doi.org/10.1007/s00198-016-3634-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iwaniec UT & & Turner RT 2016 Influence of body weight on bone mass, architecture and turnover. Journal of Endocrinology 230 R115R130. (https://doi.org/10.1530/JOE-16-0089)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jing D, Luo E, Cai J, Tong S, Zhai M, Shen G, Wang X & & Luo Z 2016 Mechanical vibration mitigates the decrease of bone quantity and bone quality of leptin receptor-deficient db/db mice by promoting bone formation and inhibiting bone resorption. Journal of Bone and Mineral Research 31 17131724. (https://doi.org/10.1002/jbmr.2837)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaufmann RC, Amankwah KS, Dunaway G, Maroun L, Arbuthnot J & & Roddick JW 1981 An animal model of gestational diabetes. American Journal of Obstetrics and Gynecology 141 479482. (https://doi.org/10.1016/s0002-9378(1533263-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li J, Zeng Z, Zhao Y, Jing D, Tang C, Ding Y & & Feng X 2017 Effects of low-intensity pulsed electromagnetic fields on bone microarchitecture, mechanical strength and bone turnover in type 2 diabetic db/db mice. Scientific Reports 7 10834. (https://doi.org/10.1038/s41598-017-11090-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li X, Liu X, Wang Y, Cao F, Chen Z, Hu Z, Yu B, Feng H, Ba Z, Liu T, et al.2020 Intervertebral disc degeneration in mice with type II diabetes induced by leptin receptor deficiency. BMC Musculoskeletal Disorders 21 77. (https://doi.org/10.1186/s12891-020-3091-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lorden JF 1979 Differential effects on body weight of central 6-hydroxydopamine lesions in obese (ob/ob) and diabetes (db/db) mice. Journal of Comparative and Physiological Psychology 93 10851096. (https://doi.org/10.1037/h0077636)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lorentzon R, Alehagen U & & Boquist L 1986 Osteopenia in mice with genetic diabetes. Diabetes Research and Clinical Practice 2 157163. (https://doi.org/10.1016/s0168-8227(8680017-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maccarrone M, Di Rienzo M, Finazzi-Agro A & & Rossi A 2003 Leptin activates the anandamide hydrolase promoter in human T lymphocytes through STAT3. Journal of Biological Chemistry 278 1331813324. (https://doi.org/10.1074/jbc.M211248200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maccarrone M, Gasperi V, Fezza F, Finazzi-Agro A & & Rossi A 2004 Differential regulation of fatty acid amide hydrolase promoter in human immune cells and neuronal cells by leptin and progesterone. European Journal of Biochemistry 271 46664676. (https://doi.org/10.1111/j.1432-1033.2004.04427.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maffei M, Fei H, Lee GH, Dani C, Leroy P, Zhang Y, Proenca R, Negrel R, Ailhaud G & & Friedman JM 1995 Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proceedings of the National Academy of Sciences of the United States of America 92 69576960. (https://doi.org/10.1073/pnas.92.15.6957)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mansur SA, Mieczkowska A, Flatt PR, Bouvard B, Chappard D, Irwin N & & Mabilleau G 2016 A new stable GIP-oxyntomodulin hybrid peptide improved bone strength both at the organ and tissue levels in genetically-inherited type 2 diabetes mellitus. Bone 87 102113. (https://doi.org/10.1016/j.bone.2016.04.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCabe IC, Fedorko A, Myers MG Jr, Leinninger G, Scheller E & & McCabe LR 2019 Novel leptin receptor signaling mutants identify location and sex-dependent modulation of bone density, adiposity, and growth. Journal of Cellular Biochemistry 120 43984408. (https://doi.org/10.1002/jcb.27726)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Myers MG Jr, Leibel RL, Seeley RJ & & Schwartz MW 2010 Obesity and leptin resistance: distinguishing cause from effect. Trends in Endocrinology and Metabolism 21 643651. (https://doi.org/10.1016/j.tem.2010.08.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Philbrick KA, Turner RT, Branscum AJ, Wong CP & & Iwaniec UT 2015 Paradoxical effects of partial leptin deficiency on bone in growing female mice. Anatomical Record 298 20182029. (https://doi.org/10.1002/ar.23267)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Philbrick KA, Wong CP, Branscum AJ, Turner RT & & Iwaniec UT 2017 Leptin stimulates bone formation in ob/ob mice at doses having minimal impact on energy metabolism. Journal of Endocrinology 232 461474. (https://doi.org/10.1530/JOE-16-0484)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Philbrick KA, Martin SA, Colagiovanni AR, Branscum AJ, Turner RT & & Iwaniec UT 2018 Effects of hypothalamic leptin gene therapy on osteopetrosis in leptin-deficient mice. Journal of Endocrinology 236 5768. (https://doi.org/10.1530/JOE-17-0524)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Plows JF, Yu X, Broadhurst R, Vickers MH, Tong C, Zhang H, Qi H, Stanley JL & & Baker PN 2017 Absence of a gestational diabetes phenotype in the LepRdb/+ mouse is independent of control strain, diet, misty allele, or parity. Scientific Reports 7 45130. (https://doi.org/10.1038/srep45130)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Salmon P 2020 Application of bone morphometry and densitometry by X-ray micro-CT to bone disease models and phenotypes. In Micro-computed Tomography (Micro-CT) in Medicine and Engineering. Ed. Orhan K. Cham: Springer International Publishing, pp. 4975. (https://doi.org/10.1007/978-3-030-16641-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor SI, Accili D, Haft CR, Hone J, Imai Y, Levy-Toledano R, Quon MJ, Suzuki Y & & Wertheimer E 1994 Mechanisms of hormone resistance: lessons from insulin-resistant patients. Acta Paediatrica 399 95104. (https://doi.org/10.1111/j.1651-2227.1994.tb13300.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Till A, Fries C & & Fenske WK 2022 Brain-to-BAT - and back?: crosstalk between the central nervous system and thermogenic adipose tissue in development and therapy of obesity. Brain Sciences 12. (https://doi.org/10.3390/brainsci12121646)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner RT & & Iwaniec UT 2010 Moderate weight gain does not influence bone metabolism in skeletally mature female rats. Bone 47 631635. (https://doi.org/10.1016/j.bone.2010.06.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner RT & & Iwaniec UT 2011 Low dose parathyroid hormone maintains normal bone formation in adult male rats during rapid weight loss. Bone 48 726732. (https://doi.org/10.1016/j.bone.2010.12.034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S & & Iwaniec UT 2013 Peripheral leptin regulates bone formation. Journal of Bone and Mineral Research 28 2234. (https://doi.org/10.1002/jbmr.1734)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner RT, Philbrick KA, Kuah AF, Branscum AJ & & Iwaniec UT 2017 Role of estrogen receptor signaling in skeletal response to leptin in female ob/ob mice. Journal of Endocrinology 233 357367. (https://doi.org/10.1530/JOE-17-0103)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner RT, Wong CP, Fosse KM, Branscum AJ & & Iwaniec UT 2021 Caloric restriction and hypothalamic leptin gene therapy have differential effects on energy partitioning in adult female rats. International Journal of Molecular Sciences 22. (https://doi.org/10.3390/ijms22136789)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner RT, Nesser KL, Philbrick KA, Wong CP, Olson DA, Branscum AJ & & Iwaniec UT 2022 Leptin and environmental temperature as determinants of bone marrow adiposity in female mice. Frontiers in Endocrinology (Lausanne) 13 959743. (https://doi.org/10.3389/fendo.2022.959743)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Verkerke H, Naylor C, Zabeau L, Tavernier J, Petri WA Jr & & Marie C 2014 Kinetics of leptin binding to the Q223R leptin receptor. PLoS One 9 e94843. (https://doi.org/10.1371/journal.pone.0094843)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wildner M, Peters A, Raghuvanshi VS, Hohnloser J & & Siebert U 2003 Superiority of age and weight as variables in predicting osteoporosis in postmenopausal white women. Osteoporosis International 14 950956. (https://doi.org/10.1007/s00198-003-1487-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Williams GA, Callon KE, Watson M, Costa JL, Ding Y, Dickinson M, Wang Y, Naot D, Reid IR & & Cornish J 2011 Skeletal phenotype of the leptin receptor-deficient db/db mouse. Journal of Bone and Mineral Research 26 16981709. (https://doi.org/10.1002/jbmr.367)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamashita H, Shao J, Ishizuka T, Klepcyk PJ, Muhlenkamp P, Qiao L, Hoggard N & & Friedman JE 2001 Leptin administration prevents spontaneous gestational diabetes in heterozygous Lepr(db/+) mice: effects on placental leptin and fetal growth. Endocrinology 142 28882897. (https://doi.org/10.1210/endo.142.7.8227)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yoo DE, Lee MJ, Oh HJ, Kim SJ, Shin DH, Yoo TH, Kang SW, Choi KH, Han DS & & Han SH 2012 Low circulating adiponectin levels are associated with insulin resistance in non-obese peritoneal dialysis patients. Endocrine Journal 59 685695. (https://doi.org/10.1507/endocrj.ej12-0032)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L & Friedman JM 1994 Positional cloning of the mouse obese gene and its human homologue. Nature 372 425–432. (https://doi.org/10.1038/372425a0). Erratum: Nature1995 374 479. (https://doi.org/10.1038/374479a0)

    • PubMed
    • Search Google Scholar
    • Export Citation