This paper forms part of a special collection marking 100 Years Since the Discovery of Glucagon. The guest editors for this section were James Cantley, Rebecca Hull and Vincent Poitout.
Long lagging behind insulin, glucagon research has caught up in large part, thanks to technological breakthroughs. Here we review how the field was propelled by the development of novel techniques and approaches. The glucagon radioimmunoassay and islet isolation are methods that now seem trivial, but for decades they were crucial in defining the biology of the pancreatic alpha cell and the role of glucagon in glucose homeostasis. More recently, mouse models have become the main workhorse of this research effort, if not of biomedical research in general. The mouse model allowed detailed mechanistic studies that are revealing alpha cell functions beyond its canonical glucoregulatory role. A recent profusion of gene expression and transcription regulation studies is providing new vistas into what constitutes alpha cell identity. In particular, the combination of transcriptomic techniques with functional recordings promises to move molecular guesswork into real-time physiology. The challenge right now is not to get enamored with these powerful techniques and to make sure that the research continues to be transformative and paradigm shifting. We should imagine a future in which the biology of the alpha cell will be studied at single-cell resolution, non-invasively, and in real time in the human body.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 245 | 245 | 8 |
PDF Downloads | 341 | 341 | 8 |
Aguilar-Parada E, Eisentraut AM & & Unger RH 1969 Pancreatic glucagon secretion in normal and diabetic subjects. American Journal of the Medical Sciences 257 415–419. (https://doi.org/10.1097/00000441-196906000-00008)
Ahren B & & Lundquist I 1982 Glucagon immunoreactivity in plasma from normal and dystrophic mice. Diabetologia 22 258–263. (https://doi.org/10.1007/BF00281302)
Almaca J, Molina J, Menegaz D, Pronin AN, Tamayo A, Slepak V, Berggren PO & & Caicedo A 2016 Human beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Reports 17 3281–3291. (https://doi.org/10.1016/j.celrep.2016.11.072)
Ambery P, Parker VE, Stumvoll M, Posch MG, Heise T, Plum-Moerschel L, Tsai LF, Robertson D, Jain M, Petrone M, et al.2018 MEDI0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: a randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet 391 2607–2618. (https://doi.org/10.1016/S0140-6736(1830726-8)
Arieff AJ, Crawford J, Adams J & & Smith D 1960 Glucagon in insulin coma therapy: its use in a small psychiatric unit of a general hospital. Quarterly Bulletin. Northwestern University 34 7–10.
Asada N, Shibuya I, Iwanaga T, Niwa K & & Kanno T 1998 Identification of alpha- and beta-cells in intact isolated islets of Langerhans by their characteristic cytoplasmic Ca2+ concentration dynamics and immunocytochemical staining. Diabetes 47 751–757. (https://doi.org/10.2337/diabetes.47.5.751)
Asplin CM, Paquette TL & & Palmer JP 1981 In vivo inhibition of glucagon secretion by paracrine beta cell activity in man. Journal of Clinical Investigation 68 314–318. (https://doi.org/10.1172/jci110251)
Asplin C, Raghu P, Dornan T & & Palmer JP 1983 Glucose regulation of glucagon secretion independent of B cell activity. Metabolism: Clinical and Experimental 32 292–295. (https://doi.org/10.1016/0026-0495(8390195-6)
Attwell D & & Laughlin SB 2001 An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism 21 1133–1145. (https://doi.org/10.1097/00004647-200110000-00001)
Bagger JI, Knop FK, Holst JJ & & Vilsboll T 2011 Glucagon antagonism as a potential therapeutic target in type 2 diabetes. Diabetes, Obesity and Metabolism 13 965–971. (https://doi.org/10.1111/j.1463-1326.2011.01427.x)
Banarer S, Mcgregor VP & & Cryer PE 2002 Intraislet hyperinsulinemia prevents the glucagon response to hypoglycemia despite an intact autonomic response. Diabetes 51 958–965. (https://doi.org/10.2337/diabetes.51.4.958)
Banting FG, Best CH, Collip JB, Campbell WR & & Fletcher AA 1922 Pancreatic extracts in the treatment of diabetes mellitus. Canadian Medical Association Journal 12 141–146. (https://doi.org/10.2337/diab.5.1.69)
Baron AD, Schaeffer L, Shragg P & & Kolterman OG 1987 Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 36 274–283. (https://doi.org/10.2337/diab.36.3.274)
Bertrand G, Gross R, Puech R, Loubatieres-Mariani MM & & Bockaert J 1993 Glutamate stimulates glucagon secretion via an excitatory amino acid receptor of the AMPA subtype in rat pancreas. European Journal of Pharmacology 237 45–50. (https://doi.org/10.1016/0014-2999(9390091-u)
Biggers DW, Myers SR, Neal D, Stinson R, Cooper NB, Jaspan JB, Williams PE, Cherrington AD & & Frizzell RT 1989 Role of brain in counterregulation of insulin-induced hypoglycemia in dogs. Diabetes 38 7–16. (https://doi.org/10.2337/diab.38.1.7)
Bolli GB, Dimitriadis GD, Pehling GB, Baker BA, Haymond MW, Cryer PE & & Gerich JE 1984 Abnormal glucose counterregulation after subcutaneous insulin in insulin-dependent diabetes mellitus. New England Journal of Medicine 310 1706–1711. (https://doi.org/10.1056/NEJM198406283102605)
Bozadjieva Kramer N, Lubaczeuski C, Blandino-Rosano M, Barker G, Gittes GK, Caicedo A & & Bernal-Mizrachi E 2021 Glucagon resistance and decreased susceptibility to diabetes in a model of chronic hyperglucagonemia. Diabetes 70 477–491. (https://doi.org/10.2337/db20-0440)
Brand CL, Rolin B, Jorgensen PN, Svendsen I, Kristensen JS & & Holst JJ 1994 Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats. Diabetologia 37 985–993. (https://doi.org/10.1007/BF00400461)
Brand CL, Jorgensen PN, Svendsen I & & Holst JJ 1996 Evidence for a major role for glucagon in regulation of plasma glucose in conscious, nondiabetic, and alloxan-induced diabetic rabbits. Diabetes 45 1076–1083. (https://doi.org/10.2337/diab.45.8.1076)
Burgus R, Ling N, Butcher M & & Guillemin R 1973 Primary structure of somatostatin, a hypothalamic peptide that inhibits the secretion of pituitary growth hormone. PNAS 70 684–688. (https://doi.org/10.1073/pnas.70.3.684)
Cabrera O, Jacques-Silva MC, Speier S, Yang SN, Kohler M, Fachado A, Vieira E, Zierath JR, Kibbey R, Berman DM, et al.2008 Glutamate is a positive autocrine signal for glucagon release. Cell Metabolism 7 545–554. (https://doi.org/10.1016/j.cmet.2008.03.004)
Campbell JE & & Drucker DJ 2015 Islet alpha cells and glucagon--critical regulators of energy homeostasis. Nature Reviews. Endocrinology 11 329–338. (https://doi.org/10.1038/nrendo.2015.51)
Campbell SA, Golec DP, Hubert M, Johnson J, Salamon N, Barr A, Macdonald PE, Philippaert K & & Light PE 2020 Human islets contain a subpopulation of glucagon-like peptide-1 secreting alpha cells that is increased in type 2 diabetes. Molecular Metabolism 39 101014. (https://doi.org/10.1016/j.molmet.2020.101014)
Canniff KM, Smith MS, Lacy DB, Williams PE & & Moore MC 2006 Glucagon secretion and autonomic signaling during hypoglycemia in late pregnancy. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 291 R788–R795. (https://doi.org/10.1152/ajpregu.00125.2006)
Capozzi ME, Svendsen B, Encisco SE, Lewandowski SL, Martin MD, Lin H, Jaffe JL, Coch RW, Haldeman JM, Macdonald PE, et al.2019a beta Cell tone is defined by proglucagon peptides through cAMP signaling. JCI Insight 4 e126742. (https://doi.org/10.1172/jci.insight.126742)
Capozzi ME, Wait JB, Koech J, Gordon AN, Coch RW, Svendsen B, Finan B, D'alessio DA & & Campbell JE 2019b Glucagon lowers glycemia when beta-cells are active. JCI Insight 5 e129954 . (https://doi.org/10.1172/jci.insight.129954)
Cejvan K, Coy DH & & Efendic S 2003 Intra-islet somatostatin regulates glucagon release via type 2 somatostatin receptors in rats. Diabetes 52 1176–1181. (https://doi.org/10.2337/diabetes.52.5.1176)
Cherrington AD, Chiasson JL, Liljenquist JE, Jennings AS, Keller U & & Lacy WW 1976 The role of insulin and glucagon in the regulation of basal glucose production in the postabsorptive dog. Journal of Clinical Investigation 58 1407–1418. (https://doi.org/10.1172/JCI108596)
Cherrington AD 1999 Banting lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes 48 1198–1214. (https://doi.org/10.2337/diabetes.48.5.1198)
Chiou J, Zeng C, Cheng Z, Han JY, Schlichting M, Miller M, Mendez R, Huang S, Wang J, Sui Y, et al.2021 Single-cell chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory programs of diabetes risk. Nature Genetics 53 455–466. (https://doi.org/10.1038/s41588-021-00823-0)
Collip JB 1923 Delayed manifestation of the physiological effects of insulin following the administration of certain pancreatic extracts. American Journal of Physiology 63 391–392.
Cryer PE 1999 Hypoglycemia is the limiting factor in the management of diabetes. Diabetes/Metabolism Research and Reviews 15 42–46. (https://doi.org/10.1002/(sici)1520-7560(199901/02)15:1<42::aid-dmrr1>3.0.co;2-b)
Cryer PE 2002 Hypoglycaemia: the limiting factor in the glycaemic management of Type I and Type II diabetes. Diabetologia 45 937–948. (https://doi.org/10.1007/s00125-002-0822-9)
Dai XQ, Camunas-Soler J, Briant LJB, Dos Santos T, Spigelman AF, Walker EM, Arrojo E Drigo R, Bautista A, Jones RC, Avrahami D, et al.2022 Heterogenous impairment of alpha cell function in type 2 diabetes is linked to cell maturation state. Cell Metabolism 34 256–268.e5. (https://doi.org/10.1016/j.cmet.2021.12.021)
Dean ED 2020 A primary role for alpha-cells as amino acid sensors. Diabetes 69 542–549. (https://doi.org/10.2337/dbi19-0021)
Dickerson MT, Dadi PK, Altman MK, Verlage KR, Thorson AS, Jordan KL, Vierra NC, Amarnath G & & Jacobson DA 2019 Glucose-mediated inhibition of calcium-activated potassium channels limits alpha-cell calcium influx and glucagon secretion. American Journal of Physiology. Endocrinology and Metabolism 316 E646–E659. (https://doi.org/10.1152/ajpendo.00342.2018)
Dishinger JF, Reid KR & & Kennedy RT 2009 Quantitative monitoring of insulin secretion from single islets of Langerhans in parallel on a microfluidic chip. Analytical Chemistry 81 3119–3127. (https://doi.org/10.1021/ac900109t)
Dunning BE & & Gerich JE 2007 The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocrine Reviews 28 253–283. (https://doi.org/10.1210/er.2006-0026)
El K, Gray SM, Capozzi ME, Knuth ER, Jin E, Svendsen B, Clifford A, Brown JL, Encisco SE, Chazotte BM, et al.2021 GIP mediates the incretin effect and glucose tolerance by dual actions on alpha cells and beta cells. Science Advances 7 eabf1948. (https://doi.org/10.1126/sciadv.abf1948)
Elmelund E, Galsgaard KD, Johansen CD, Trammell SAJ, Bomholt AB, Winther-Sorensen M, Hunt JE, Sorensen CM, Kruse T, Lau JF, et al.2022 Opposing effects of chronic glucagon receptor agonism and antagonism on amino acids, hepatic gene expression, and alpha cells. iScience 25 105296. (https://doi.org/10.1016/j.isci.2022.105296)
Erecińska M, Bryła J, Michalik M, Meglasson MD & & Nelson D 1992 Energy metabolism in islets of Langerhans. Biochimica et Biophysica Acta 1101 273–295. (https://doi.org/10.1016/0005-2728(9290084-f)
Esquibel AJ, Kurland AA & & Mendelsohn D 1958 The use of glucagon in terminating insulin coma. Diseases of the Nervous System 19 485–486.
Finan B, Capozzi ME & & Campbell JE 2020 Repositioning glucagon action in the physiology and pharmacology of diabetes. Diabetes 69 532–541. (https://doi.org/10.2337/dbi19-0004)
Fitzpatrick GF, Meguid MM, Gitilitz PH & & Brennan MF 1977 Glucagon infusion in normal man: effects on 3-methylhistidine excretion and plasma amino acids. Metabolism: Clinical and Experimental 26 477–485. (https://doi.org/10.1016/0026-0495(7790091-9)
Franklin I, Gromada J, Gjinovci A, Theander S & & Wollheim CB 2005 Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54 1808–1815. (https://doi.org/10.2337/diabetes.54.6.1808)
Galvin SG, Kay RG, Foreman R, Larraufie P, Meek CL, Biggs E, Ravn P, Jermutus L, Reimann F & & Gribble FM 2021 The human and mouse islet peptidome: effects of obesity and Type 2 diabetes, and assessment of intraislet production of glucagon-like Peptide-1. Journal of Proteome Research 20 4507–4517. (https://doi.org/10.1021/acs.jproteome.1c00463)
Gastaldelli A, Baldi S, Pettiti M, Toschi E, Camastra S, Natali A, Landau BR & & Ferrannini E 2000 Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes 49 1367–1373. (https://doi.org/10.2337/diabetes.49.8.1367)
Gelling RW, Du XQ, Dichmann DS, Romer J, Huang H, Cui L, Obici S, Tang B, Holst JJ, Fledelius C, et al.2003 Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. PNAS 100 1438–1443. (https://doi.org/10.1073/pnas.0237106100)
Gerich JE, Langlois M, Noacco C, Karam JH & & Forsham PH 1973 Lack of glucagon response to hypoglycemia in diabetes: evidence for an intrinsic pancreatic alpha cell defect. Science 182 171–173. (https://doi.org/10.1126/science.182.4108.171)
Gerich JE, Lorenzi M, Schneider V, Karam JH, Rivier J, Guillemin R & & Forsham PH 1974 Effects of somatostatin on plasma glucose and glucagon levels in human diabetes mellitus. Pathophysiologic and therapeutic implications. New England Journal of Medicine 291 544–547. (https://doi.org/10.1056/NEJM197409122911102)
Gerich JE, Lorenzi M, Bier DM, Schneider V, Tsalikian E, Karam JH & & Forsham PH 1975 Prevention of human diabetic ketoacidosis by somatostatin. Evidence for an essential role of glucagon. New England Journal of Medicine 292 985–989. (https://doi.org/10.1056/NEJM197505082921901)
Ghazvini Zadeh EH, Huang Z, Xia J, Li D, Davidson HW & & Li WH 2020 ZIGIR, a Granule-Specific Zn(2+) Indicator, Reveals Human Islet alpha Cell Heterogeneity. Cell Reports 32 107904. (https://doi.org/10.1016/j.celrep.2020.107904)
Gilon P 2020 The role of alpha-cells in islet function and glucose homeostasis in health and Type 2 diabetes. Journal of Molecular Biology 432 1367–1394. (https://doi.org/10.1016/j.jmb.2020.01.004)
Goodner CJ, Walike BC, Koerker DJ, Ensinck JW, Brown AC, Chideckel EW, Palmer J & & Kalnasy L 1977 Insulin, glucagon, and glucose exhibit synchronous, sustained oscillations in fasting monkeys. Science 195 177–179. (https://doi.org/10.1126/science.401543)
Goodner CJ, Koerker DJ, Stagner JI & & Samols E 1991 In vitro pancreatic hormonal pulses are less regular and more frequent than in vivo. American Journal of Physiology 260 E422–E429. (https://doi.org/10.1152/ajpendo.1991.260.3.E422)
Gromada J, Bokvist K, Ding WG, Barg S, Buschard K, Renstrom E & & Rorsman P 1997 Adrenaline stimulates glucagon secretion in pancreatic A-cells by increasing the Ca2+ current and the number of granules close to the L-type Ca2+ channels. Journal of General Physiology 110 217–228. (https://doi.org/10.1085/jgp.110.3.217)
Guzman CB, Zhang XM, Liu R, Regev A, Shankar S, Garhyan P, Pillai SG, Kazda C, Chalasani N & & Hardy TA 2017 Treatment with LY2409021, a glucagon receptor antagonist, increases liver fat in patients with type 2 diabetes. Diabetes, Obesity and Metabolism 19 1521–1528. (https://doi.org/10.1111/dom.12958)
Hellerstroem C 1964 A method for the microdissection of intact pancreatic islets of mammals. Acta Endocrinologica 45 122–132. (https://doi.org/10.1530/acta.0.0450122)
Hellman B, Salehi A, Gylfe E, Dansk H & & Grapengiesser E 2009 Glucose generates coincident insulin and somatostatin pulses and antisynchronous glucagon pulses from human pancreatic islets. Endocrinology 150 5334–5340. (https://doi.org/10.1210/en.2009-0600)
Henquin JC 2009 Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52 739–751. (https://doi.org/10.1007/s00125-009-1314-y)
Henquin JC, Dufrane D, Kerr-Conte J & & Nenquin M 2015 Dynamics of glucose-induced insulin secretion in normal human islets. American Journal of Physiology. Endocrinology and Metabolism 309 E640–E650. (https://doi.org/10.1152/ajpendo.00251.2015)
Hoffman EG, Jahangiriesmaili M, Mandel ER, Greenberg C, Aiken J, D'souza NC, Pasieka A, Teich T, Chan O, Liggins R, et al.2021 Somatostatin receptor antagonism reverses glucagon counterregulatory failure in recurrently hypoglycemic male rats. Endocrinology 162 bqab189. (https://doi.org/10.1210/endocr/bqab189)
Hollingdal M, Juhl CB, Pincus SM, Sturis J, Veldhuis JD, Polonsky KS, Porksen N & & Schmitz O 2000 Failure of physiological plasma glucose excursions to entrain high-frequency pulsatile insulin secretion in type 2 diabetes. Diabetes 49 1334–1340. (https://doi.org/10.2337/diabetes.49.8.1334)
Hope KM, Tran PO, Zhou H, Oseid E, Leroy E & & Robertson RP 2004 Regulation of alpha-cell function by the beta-cell in isolated human and rat islets deprived of glucose: the "switch-off" hypothesis. Diabetes 53 1488–1495. (https://doi.org/10.2337/diabetes.53.6.1488)
Jaspan JB, Lever E, Polonsky KS & & Van Cauter E 1986 In vivo pulsatility of pancreatic islet peptides. American Journal of Physiology 251 E215–E226. (https://doi.org/10.1152/ajpendo.1986.251.2.E215)
Karimian N, Qin T, Liang T, Osundiji M, Huang Y, Teich T, Riddell MC, Cattral MS, Coy DH, Vranic M, et al.2013 Somatostatin receptor type 2 antagonism improves glucagon counterregulation in biobreeding diabetic rats. Diabetes 62 2968–2977. (https://doi.org/10.2337/db13-0164)
Kazda CM, Ding Y, Kelly RP, Garhyan P, Shi C, Lim CN, Fu H, Watson DE, Lewin AJ, Landschulz WH, et al.2017a Erratum. Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with Type 2 diabetes: 12- and 24-week Phase 2 studies. Diabetes Care 2016;39:1241–1249. Diabetes Care 40 808. (https://doi.org/10.2337/dc17-er06)
Kazda CM, Frias J, Foga I, Cui X, Guzman CB, Garhyan P, Heilmann C, Yang JA & & Hardy TA 2017b Treatment with the glucagon receptor antagonist LY2409021 increases ambulatory blood pressure in patients with type 2 diabetes. Diabetes, Obesity and Metabolism 19 1071–1077. (https://doi.org/10.1111/dom.12904)
Kendall DM, Teuscher AU & & Robertson RP 1997 Defective glucagon secretion during sustained hypoglycemia following successful islet allo- and autotransplantation in humans. Diabetes 46 23–27. (https://doi.org/10.2337/diab.46.1.23)
Kimball CP & & Murlin JR 1923 Aqueous extracts of pancreas. III. Journal of Biological Chemistry 58 337–346. (https://doi.org/10.1016/S0021-9258(1885474-6)
Koerker DJ, Ruch W, Chideckel E, Palmer J, Goodner CJ, Ensinck J & & Gale CC 1974 Somatostatin: hypothalamic inhibitor of the endocrine pancreas. Science 184 482–484. (https://doi.org/10.1126/science.184.4135.482)
Kumar U, Sasi R, Suresh S, Patel A, Thangaraju M, Metrakos P, Patel SC & & Patel YC 1999 Subtype-selective expression of the five somatostatin receptors (hSSTR1-5) in human pancreatic islet cells: a quantitative double-label immunohistochemical analysis. Diabetes 48 77–85. (https://doi.org/10.2337/diabetes.48.1.77)
Lacy PE & & Kostianovsky M 1967 Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16 35–39. (https://doi.org/10.2337/diab.16.1.35)
Lang DA, Matthews DR, Burnett M & & Turner RC 1981 Brief, irregular oscillations of basal plasma insulin and glucose concentrations in diabetic man. Diabetes 30 435–439. (https://doi.org/10.2337/diab.30.5.435)
Lang DA, Matthews DR, Burnett M, Ward GM & & Turner RC 1982 Pulsatile, synchronous basal insulin and glucagon secretion in man. Diabetes 31 22–26. (https://doi.org/10.2337/diab.31.1.22)
Le Marchand SJ & & Piston DW 2010 Glucose suppression of glucagon secretion: metabolic and calcium responses from alpha-cells in intact mouse pancreatic islets. Journal of Biological Chemistry 285 14389–14398. (https://doi.org/10.1074/jbc.M109.069195)
Le Marchand SJ & & Piston DW 2012 Glucose decouples intracellular Ca2+ activity from glucagon secretion in mouse pancreatic islet alpha-cells. PLoS One 7 e47084. (https://doi.org/10.1371/journal.pone.0047084)
Lee Y, Wang MY, Du XQ, Charron MJ & & Unger RH 2011 Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 60 391–397. (https://doi.org/10.2337/db10-0426)
Liljenquist JE, Mueller GL, Cherrington AD, Keller U, Chiasson JL, Perry JM, Lacy WW & & Rabinowitz D 1977 Evidence for an important role of glucagon in the regulation of hepatic glucose production in normal man. Journal of Clinical Investigation 59 369–374. (https://doi.org/10.1172/JCI108649)
Lomasney AR, Yi L & & Roper MG 2013 Simultaneous monitoring of insulin and islet amyloid polypeptide secretion from islets of Langerhans on a microfluidic device. Analytical Chemistry 85 7919–7925. (https://doi.org/10.1021/ac401625g)
MacCuish AC, Munro JF & & Duncan LJ 1970 Treatment of hypoglycaemic coma with glucagon, intravenous dextrose, and mannitol infusion in a hundred diabetics. Lancet 2 946–949. (https://doi.org/10.1016/s0140-6736(7092126-4)
MacDonald PE, De Marinis YZ, Ramracheya R, Salehi A, Ma X, Johnson PR, Cox R, Eliasson L & & Rorsman P 2007 A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biology 5 e143. (https://doi.org/10.1371/journal.pbio.0050143)
Martin A, Mick GJ, Choat HM, Lunsford AA, Tse HM, McGwin GG & & McCormick KL 2022 A randomized trial of oral gamma aminobutyric acid (GABA) or the combination of GABA with glutamic acid decarboxylase (GAD) on pancreatic islet endocrine function in children with newly diagnosed type 1 diabetes. Nature Communications 13 7928. (https://doi.org/10.1038/s41467-022-35544-3)
Maruyama H, Hisatomi A, Orci L, Grodsky GM & & Unger RH 1984 Insulin within islets is a physiologic glucagon release inhibitor. Journal of Clinical Investigation 74 2296–2299. (https://doi.org/10.1172/JCI111658)
Mayer ML & & Armstrong N 2004 Structure and function of glutamate receptor ion channels. Annual Review of Physiology 66 161–181. (https://doi.org/10.1146/annurev.physiol.66.050802.084104)
Muller WA, Faloona GR, Aguilar-Parada E & & Unger RH 1970 Abnormal alpha-cell function in diabetes. Response to carbohydrate and protein ingestion. New England Journal of Medicine 283 109–115. (https://doi.org/10.1056/NEJM197007162830301)
Muller TD, Finan B, Clemmensen C, Dimarchi RD & & Tschop MH 2017 The new biology and pharmacology of glucagon. Physiological Reviews 97 721–766. (https://doi.org/10.1152/physrev.00025.2016)
Munoz A, Hu M, Hussain K, Bryan J, Aguilar-Bryan L & & Rajan AS 2005 Regulation of glucagon secretion at low glucose concentrations: evidence for adenosine triphosphate-sensitive potassium channel involvement. Endocrinology 146 5514–5521. (https://doi.org/10.1210/en.2005-0637)
Olsen HL, Theander S, Bokvist K, Buschard K, Wollheim CB & & Gromada J 2005 Glucose stimulates glucagon release in single rat alpha-cells by mechanisms that mirror the stimulus-secretion coupling in beta-cells. Endocrinology 146 4861–4870. (https://doi.org/10.1210/en.2005-0800)
Orci L, Baetens D, Rufener C, Amherdt M, Ravazzola M, Studer P, Malaisse-Lagae F & & Unger RH 1976 Hypertrophy and hyperplasia of somatostatin-containing D-cells in diabetes. PNAS 73 1338–1342. (https://doi.org/10.1073/pnas.73.4.1338)
Panzer JK & & Caicedo A 2021 Targeting the pancreatic alpha-cell to prevent hypoglycemia in Type 1 diabetes. Diabetes 70 2721–2732. (https://doi.org/10.2337/dbi20-0048)
Panzer JK, Tamayo A & & Caicedo A 2022 Restoring glutamate receptor signaling in pancreatic alpha cells rescues glucagon responses in type 1 diabetes. Cell Reports 41 111792. (https://doi.org/10.1016/j.celrep.2022.111792)
Parker JC, Andrews KM, Allen MR, Stock JL & & Mcneish JD 2002 Glycemic control in mice with targeted disruption of the glucagon receptor gene. Biochemical and Biophysical Research Communications 290 839–843. (https://doi.org/10.1006/bbrc.2001.6265)
Pedersen C, Bouman SD, Porsgaard T, Rosenkilde MM & & Roed NK 2018a Dual treatment with a fixed ratio of glucagon and insulin increases the therapeutic window of insulin in diabetic rats. Physiological Reports 6 e13657. (https://doi.org/10.14814/phy2.13657)
Pedersen C, Porsgaard T, Thomsen M, Rosenkilde MM & & Roed NK 2018b Sustained effect of glucagon on body weight and blood glucose: assessed by continuous glucose monitoring in diabetic rats. PLoS One 13 e0194468. (https://doi.org/10.1371/journal.pone.0194468)
Pettus J, Boeder SC, Christiansen MP, Denham DS, Bailey TS, Akturk HK, Klaff LJ, Rosenstock J, Cheng MHM, Bode BW, et al.2022 Glucagon receptor antagonist volagidemab in type 1 diabetes: a 12-week, randomized, double-blind, phase 2 trial. Nature Medicine 28 2092–2099. (https://doi.org/10.1038/s41591-022-02011-x)
Quesada I, Todorova MG, Alonso-Magdalena P, Beltra M, Carneiro EM, Martin F, Nadal A & & Soria B 2006 Glucose induces opposite intracellular Ca2+ concentration oscillatory patterns in identified alpha- and beta-cells within intact human islets of Langerhans. Diabetes 55 2463–2469. (https://doi.org/10.2337/db06-0272)
Quoix N, Cheng-Xue R, Mattart L, Zeinoun Z, Guiot Y, Beauvois MC, Henquin JC & & Gilon P 2009 Glucose and pharmacological modulators of ATP-sensitive K+ channels control [Ca2+]c by different mechanisms in isolated mouse alpha-cells. Diabetes 58 412–421. (https://doi.org/10.2337/db07-1298)
Ramracheya R, Ward C, Shigeto M, Walker JN, Amisten S, Zhang Q, Johnson PR, Rorsman P & & Braun M 2010 Membrane potential-dependent inactivation of voltage-gated ion channels in alpha-cells inhibits glucagon secretion from human islets. Diabetes 59 2198–2208. (https://doi.org/10.2337/db09-1505)
Rastogi KS, Lickley L, Jokay M, Efendic S & & Vranic M 1990 Paradoxical reduction in pancreatic glucagon with normalization of somatostatin and decrease in insulin in normoglycemic alloxan-diabetic dogs: a putative mechanism of glucagon irresponsiveness to hypoglycemia. Endocrinology 126 1096–1104. (https://doi.org/10.1210/endo-126-2-1096)
Ren H, Li Y, Han C, Yu Y, Shi B, Peng X, Zhang T, Wu S, Yang X, Kim S, et al.2022 Pancreatic alpha and beta cells are globally phase-locked. Nature Communications 13 3721. (https://doi.org/10.1038/s41467-022-31373-6)
Robertson RP, Raymond RH, Lee DS, Calle RA, Ghosh A, Savage PJ, Shankar SS, Vassileva MT, Weir GC, Fryburg DA, et al.2014 Arginine is preferred to glucagon for stimulation testing of β-cell function. American Journal of Physiology. Endocrinology and Metabolism 307 E720–E727. (https://doi.org/10.1152/ajpendo.00149.2014)
Rocha DM, Faloona GR & & Unger RH 1972 Glucagon-stimulating activity of 20 amino acids in dogs. Journal of Clinical Investigation 51 2346–2351. (https://doi.org/10.1172/JCI107046)
Rodriguez-Diaz, R, Dando, R, Jacques-Silva, MC, Fachado, A, Molina, J, Abdulreda, MH, Ricordi, C, Roper, SD, Berggren, PO, & Caicedo & A 2011. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nature Medicine 17 888–92. (https://doi.org/10.1038/nm.2371)
Rodriguez-Diaz R, Molano RD, Weitz JR, Abdulreda MH, Berman DM, Leibiger B, Leibiger IB, Kenyon NS, Ricordi C, Pileggi A, et al.2018 Paracrine interactions within the pancreatic islet determine the glycemic set point. Cell Metabolism 27 549–558.e4. (https://doi.org/10.1016/j.cmet.2018.01.015)
Rohrer S, Menge BA, Gruber L, Deacon CF, Schmidt WE, Veldhuis JD, Holst JJ & & Meier JJ 2012 Impaired crosstalk between pulsatile insulin and glucagon secretion in prediabetic individuals. Journal of Clinical Endocrinology and Metabolism 97 E791–E795. (https://doi.org/10.1210/jc.2011-3439)
Rorsman P & & Hellman B 1988 Voltage-activated currents in guinea pig pancreatic alpha 2 cells. Evidence for Ca2+-dependent action potentials. Journal of General Physiology 91 223–242. (https://doi.org/10.1085/jgp.91.2.223)
Rorsman P & & Ashcroft FM 2018 Pancreatic beta-cell electrical activity and insulin secretion: of mice and men. Physiological Reviews 98 117–214. (https://doi.org/10.1152/physrev.00008.2017)
Rorsman P, Berggren PO, Bokvist K, Ericson H, Mohler H, Ostenson CG & & Smith PA 1989 Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341 233–236. (https://doi.org/10.1038/341233a0)
Samols E, Marri G & & Marks V 1966 Interrelationship of glucagon, insulin and glucose. The insulinogenic effect of glucagon. Diabetes 15 855–866. (https://doi.org/10.2337/diab.15.12.855)
Santiago JV, Clarke WL, Shah SD & & Cryer PE 1980 Epinephrine, norepinephrine, glucagon, and growth hormone release in association with physiological decrements in the plasma glucose concentration in normal and diabetic man. Journal of Clinical Endocrinology and Metabolism 51 877–883. (https://doi.org/10.1210/jcem-51-4-877)
Schade DS, Woodside W & & Eaton RP 1979 The role of glucagon in the regulation of plasma lipids. Metabolism: Clinical and Experimental 28 874–886. (https://doi.org/10.1016/0026-0495(7990215-4)
Scheen AJ, Paquot N & & Lefebvre PJ 2017 Investigational glucagon receptor antagonists in Phase I and II clinical trials for diabetes. Expert Opinion on Investigational Drugs 26 1373–1389. (https://doi.org/10.1080/13543784.2017.1395020)
Scherer PE & & Newgard CB 2020. A tribute to Roger H. Unger (1924-2020). Journal of Clinical Investigation 130 6191–6193. (https://doi.org/10.1172/JCI145796)
Scratcherd T & & Case RM 1973 Perfusion of the pancreas. Gut 14 592–598. (https://doi.org/10.1136/gut.14.7.592)
Sengupta B, Laughlin SB & & Niven JE 2014 Consequences of converting graded to action potentials upon neural information coding and energy efficiency. PLoS Computational Biology 10 e1003439. (https://doi.org/10.1371/journal.pcbi.1003439)
Shackman JG, Reid KR & Dugan CE 2012 Dynamic monitoring of glucagon secretion from living cells on a microfluidic chip. Analytical and Bioanalytical Chemistry 402 2797–2803. (https://doi.org/10.1007/s00216-012-5755-7)
Staub A, Sinn L & & Behrens OK 1953 Purification and crystallization of hyperglycemic glycogenolytic factor (HGF). Science 117 628–629. (https://doi.org/10.1126/science.117.3049.628)
Strowski MZ, Parmar RM, Blake AD & & Schaeffer JM 2000 Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology 141 111–117. (https://doi.org/10.1210/endo.141.1.7263)
Sutherland EW & & De Duve C 1948 Origin and distribution of the hyperglycemic-glycogenolytic factor of the pancreas. Journal of Biological Chemistry 175 663–674. (https://doi.org/10.1016/S0021-9258(1857183-0)
Svendsen B, Larsen O, Gabe MBN, Christiansen CB, Rosenkilde MM, Drucker DJ & & Holst JJ 2018 Insulin secretion depends on intra-islet glucagon signaling. Cell Reports 25 1127–1134.e2. (https://doi.org/10.1016/j.celrep.2018.10.018)
Tuduri E, Glavas MM, Asadi A, Baker RK, Ellis CE, Soukhatcheva G, Philit M, Huynh FK, Johnson JD, Bruce Verchere C, et al.2019 AAV GCG-EGFP, a new tool to identify glucagon-secreting alpha-cells. Scientific Reports 9 10829. (https://doi.org/10.1038/s41598-019-46735-2)
Turner DS & & McIntyre N 1966 Stimulation by glucagon of insulin release from rabbit pancreas in vitro. Lancet 1 351–352. (https://doi.org/10.1016/s0140-6736(6691327-4)
Unger RH & & Orci L 1975 The essential role of glucagon in the pathogenesis of diabetes mellitus. Lancet 1 14–16. (https://doi.org/10.1016/s0140-6736(7592375-2)
Unger RH, Eisentraut AM, McCall MS, Keller S, Lanz HC & & Madison LL 1959 Glucagon antibodies and their use for immunoassay for glucagon. PSEBM 102 621–623. (https://doi.org/10.3181/00379727-102-25338)
Unger RH, Ketterer H, Dupre J & & Eisentraut AM 1967 The effects of secretin, pancreozymin, and gastrin on insulin and glucagon secretion in anesthetized dogs. Journal of Clinical Investigation 46 630–645. (https://doi.org/10.1172/JCI105565)
Unger RH, Ohneda A, Aguilar-Parada E & & Eisentraut AM 1969 The role of aminogenic glucagon secretion in blood glucose homeostasis. Journal of Clinical Investigation 48 810–822. (https://doi.org/10.1172/JCI106039)
Vieira E, Salehi A & & Gylfe E 2007 Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells. Diabetologia 50 370–379. (https://doi.org/10.1007/s00125-006-0511-1)
von Mering J & & Minkowski O 1889 Diabetes mellitus nach Pankreasextirpation. Archiv für Experimentalle Pathologie und Pharmakologie 26 371–378. (https://doi.org/10.1007/BF01831214)
Wendt A, Birnir B, Buschard K, Gromada J, Salehi A, Sewing S, Rorsman P & & Braun M 2004 Glucose inhibition of glucagon secretion from rat alpha-cells is mediated by GABA released from neighboring beta-cells. Diabetes 53 1038–1045. (https://doi.org/10.2337/diabetes.53.4.1038)
Yoon JS, Sasaki S, Velghe J, Lee MYY, Winata H, Nian C & & Lynn FC 2022 Calcium-dependent transcriptional changes in human pancreatic islet cells reveal functional diversity in islet cell subtypes. Diabetologia 65 1519–1533. (https://doi.org/10.1007/s00125-022-05718-1)
Yu Q, Shuai H, Ahooghalandari P, Gylfe E & & Tengholm A 2019 Glucose controls glucagon secretion by directly modulating cAMP in alpha cells. Diabetologia 62 1212–1224. (https://doi.org/10.1007/s00125-019-4857-6)
Yue JT, Burdett E, Coy DH, Giacca A, Efendic S & & Vranic M 2012 Somatostatin receptor type 2 antagonism improves glucagon and corticosterone counterregulatory responses to hypoglycemia in streptozotocin-induced diabetic rats. Diabetes 61 197–207. (https://doi.org/10.2337/db11-0690)
Yue JT, Riddell MC, Burdett E, Coy DH, Efendic S & & Vranic M 2013 Amelioration of hypoglycemia via somatostatin receptor type 2 antagonism in recurrently hypoglycemic diabetic rats. Diabetes 62 2215–2222. (https://doi.org/10.2337/db12-1523)
Zaborska KE, Dadi PK, Dickerson MT, Nakhe AY, Thorson AS, Schaub CM, Graff SM, Stanley JE, Kondapavuluru RS, Denton JS, et al.2020 Lactate activation of alpha-cell K(ATP) channels inhibits glucagon secretion by hyperpolarizing the membrane potential and reducing Ca(2+) entry. Molecular Metabolism 42 101056. (https://doi.org/10.1016/j.molmet.2020.101056)
Zhang Q, Ramracheya R, Lahmann C, Tarasov A, Bengtsson M, Braha O, Braun M, Brereton M, Collins S, Galvanovskis J, et al.2013 Role of KATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes. Cell Metabolism 18 871–882. (https://doi.org/10.1016/j.cmet.2013.10.014)
Zhou H, Tran PO, Yang S, Zhang T, Leroy E, Oseid E & & Robertson RP 2004 Regulation of alpha-cell function by the beta-cell during hypoglycemia in Wistar rats: the “switch-off” hypothesis. Diabetes 53 1482–1487. (https://doi.org/10.2337/diabetes.53.6.1482)
Zhu L, Dattaroy D, Pham J, Wang L, Barella LF, Cui Y, Wilkins KJ, Roth BL, Hochgeschwender U, Matschinsky FM, et al.2019 Intra-islet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight 5. (https://doi.org/10.1172/jci.insight.127994)
Online ISSN: 1479-6805
Print ISSN: 0022-0795
CONTACT US
Bioscientifica Ltd | Starling House | 1600 Bristol Parkway North | Bristol BS34 8YU | UK
Bioscientifica Ltd | Registered in England no 3190519