Downregulation of PGRMC1 accelerates differentiation and fusion of a human trophoblast cell line

in Journal of Endocrinology
Authors:
Atsuya Tsuru Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

Search for other papers by Atsuya Tsuru in
Current site
Google Scholar
PubMed
Close
,
Mikihiro Yoshie Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

Search for other papers by Mikihiro Yoshie in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5898-7950
,
Mei Suzuki Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

Search for other papers by Mei Suzuki in
Current site
Google Scholar
PubMed
Close
,
Hiroki Mochizuki Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

Search for other papers by Hiroki Mochizuki in
Current site
Google Scholar
PubMed
Close
,
Satoshi Kametaka Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Aichi, Japan

Search for other papers by Satoshi Kametaka in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0659-6426
,
Takako Ohmaru-Nakanishi Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

Search for other papers by Takako Ohmaru-Nakanishi in
Current site
Google Scholar
PubMed
Close
,
Mana Azumi Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

Search for other papers by Mana Azumi in
Current site
Google Scholar
PubMed
Close
,
Kazuya Kusama Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

Search for other papers by Kazuya Kusama in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9120-0475
,
Kiyoko Kato Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

Search for other papers by Kiyoko Kato in
Current site
Google Scholar
PubMed
Close
, and
Kazuhiro Tamura Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

Search for other papers by Kazuhiro Tamura in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3351-895X

Correspondence should be addressed to M Yoshie: yoshie@toyaku.ac.jp
Restricted access
Rent on DeepDyve

Sign up for journal news

Mononuclear cytotrophoblasts (CTs) differentiate and fuse to form multinuclear syncytiotrophoblasts (STs), which produce human chorionic gonadotropin (hCG) and progesterone to maintain pregnancy. Impaired differentiation and fusion of CTs to form STs are associated with hypertensive disorders of pregnancy and fetal growth restriction. Progesterone receptor membrane component 1 (PGRMC1) is a multifunctional single transmembrane heme-binding protein. We previously demonstrated that downregulation of PGRMC1 promotes endometrial stromal cell differentiation (decidualization). Here, we explored the role of PGRMC1 in trophoblast differentiation and fusion. PGRMC1 expression was lower in STs than in CTs of first-trimester placental tissues. PGRMC1 expression in BeWo cells (a trophoblast-derived choriocarcinoma cell line) decreased upon dibutyryl-cAMP (db-cAMP)-induced differentiation. Both inhibition and knockdown of PGRMC1 stimulated hCG production in the presence of db-cAMP. Furthermore, a quantitative cell fusion assay we developed revealed that inhibition and knockdown of PGRMC1 enhanced db-cAMP-stimulated cell fusion. Peroxisome proliferator-activated receptor γ (PPARγ) agonists decreased PGRMC1 expression and stimulated the cell fusion in BeWo cells. These findings suggest that downregulation of PGRMC1 expression in part through activation of PPARγ during trophoblast differentiation promotes hCG production and cell fusion for formation and maintenance of placental villi during pregnancy.

 

  • Collapse
  • Expand
  • Allen TK, Feng L, Grotegut CA & & Murtha AP 2014 Progesterone receptor membrane component 1 as the mediator of the inhibitory effect of progestins on cytokine-induced matrix metalloproteinase 9 activity in vitro. Reproductive Sciences 21 260268. (https://doi.org/10.1177/1933719113493514)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bai Y, Ludescher M, Poschmann G, Stühler K, Wyrich M, Oles J, Franken A, Rivandi M, Abramova A, Reinhardt F, et al.2021 PGRMC1 promotes progestin-dependent proliferation of breast cancer cells by binding prohibitins resulting in activation of ERα signaling. Cancers 13. (https://doi.org/10.3390/cancers13225635)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bischof P & & Irminger-Finger I 2005 The human cytotrophoblastic cell, a mononuclear chameleon. International Journal of Biochemistry and Cell Biology 37 116. (https://doi.org/10.1016/j.biocel.2004.05.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blaise S, de Parseval N, Bénit L & & Heidmann T 2003 Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. PNAS 100 1301313018. (https://doi.org/10.1073/pnas.2132646100)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Block TS, Murphy TI, Munster PN, Nguyen DP & & Lynch FJ 2017 Glucocorticoid receptor expression in 20 solid tumor types using immunohistochemistry assay. Cancer Management and Research 9 6572. (https://doi.org/10.2147/CMAR.S124475)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chang CW, Chang GD & & Chen H 2011 A novel cyclic AMP/Epac1/CaMKI signaling cascade promotes GCM1 desumoylation and placental cell fusion. Molecular and Cellular Biology 31 38203831. (https://doi.org/10.1128/MCB.05582-11)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen CP, Chen LF, Yang SR, Chen CY, Ko CC, Chang GD & & Chen H 2008 Functional characterization of the human placental fusogenic membrane protein syncytin 21. Biology of Reproduction 79 815823. (https://doi.org/10.1095/biolreprod.108.069765)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Delidaki M, Gu M, Hein A, Vatish M & & Grammatopoulos DK 2011 Interplay of cAMP and MAPK pathways in hCG secretion and fusogenic gene expression in a trophoblast cell line. Molecular and Cellular Endocrinology 332 213220. (https://doi.org/10.1016/j.mce.2010.10.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • England CG, Ehlerding EB & & Cai W 2016 NanoLuc: a small luciferase is brightening up the field of bioluminescence. Bioconjugate Chemistry 27 11751187. (https://doi.org/10.1021/acs.bioconjchem.6b00112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feng L, Allen TK, Marinello WP & & Murtha AP 2019 Roles of progesterone receptor membrane Component 1 in oxidative stress-induced aging in chorion cells. Reproductive Sciences 26 394403. (https://doi.org/10.1177/1933719118776790)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gauster M, Moser G, Orendi K & & Huppertz B 2009 Factors involved in regulating trophoblast fusion: potential role in the development of preeclampsia. Placenta 30(Supplement A) S49S54. (https://doi.org/10.1016/j.placenta.2008.10.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ge YC, Li JN, Ni XT, Guo CM, Wang WS, Duan T & & Sun K 2011 Cross talk between cAMP and p38 MAPK pathways in the induction of leptin by hCG in human placental syncytiotrophoblasts. Reproduction 142 369375. (https://doi.org/10.1530/REP-11-0053)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Handschuh K, Guibourdenche J, Tsatsaris V, Guesnon M, Laurendeau I, Evain-Brion D & & Fournier T 2007 Human chorionic gonadotropin produced by the invasive trophoblast but not the villous trophoblast promotes cell invasion and is down-regulated by peroxisome proliferator-activated receptor-gamma. Endocrinology 148 50115019. (https://doi.org/10.1210/en.2007-0286)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoshina M, Boime I & & Mochizuki M 1984 Cytological localization of hPL, hCG, and mRNA in chorionic tissue using in situ hybridization. Nihon Sanka Fujinka Gakkai Zasshi 36 397404.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Isobe M, Suzuki Y, Sugiura H, Shibata M, Ohsaki Y & & Kametaka S 2022 Novel cell-based system to assay cell-cell fusion during myotube formation. Biomedical Research 43 107114. (https://doi.org/10.2220/biomedres.43.107)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Izzo NJ, Xu J, Zeng C, Kirk MJ, Mozzoni K, Silky C, Rehak C, Yurko R, Look G, Rishton G, et al.2014 Alzheimer's therapeutics targeting amyloid beta 1–42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity. PLoS One 9 e111899. (https://doi.org/10.1371/journal.pone.0111899)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, Sugase K, Shimamura T, Ohmura M, Muraoka K, et al.2016 Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nature Communications 7 11030. (https://doi.org/10.1038/ncomms11030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Knerr I, Schubert SW, Wich C, Amann K, Aigner T, Vogler T, Jung R, Dötsch J, Rascher W & & Hashemolhosseini S 2005 Stimulation of GCMa and syncytin via cAMP mediated PKA signaling in human trophoblastic cells under normoxic and hypoxic conditions. FEBS Letters 579 39913998. (https://doi.org/10.1016/j.febslet.2005.06.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB & & James J 2019 Human placenta and trophoblast development: key molecular mechanisms and model systems. Cellular and Molecular Life Sciences 76 34793496. (https://doi.org/10.1007/s00018-019-03104-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kojima J, Ono M, Kuji N & & Nishi H 2022 Human chorionic villous differentiation and placental development. International Journal of Molecular Sciences 23. (https://doi.org/10.3390/ijms23148003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kudo Y, Boyd CA, Kimura H, Cook PR, Redman CW & & Sargent IL 2003 Quantifying the syncytialisation of human placental trophoblast BeWo cells grown in vitro. Biochimica et Biophysica Acta 1640 2531. (https://doi.org/10.1016/s0167-4889(0300004-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lambot N, Lebrun P, Delporte C, De Vriese C, Delogne-Desnoeck J, Vanbellinghen AM, Graff G & & Meuris S 2005 Effect of IPs, cAMP, and cGMP on the hPL and hCG secretion from human term placenta. Molecular and Cellular Endocrinology 243 8085. (https://doi.org/10.1016/j.mce.2005.09.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lavillette D, Marin M, Ruggieri A, Mallet F, Cosset FL & & Kabat D 2002 The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. Journal of Virology 76 64426452. (https://doi.org/10.1128/jvi.76.13.6442-6452.2002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCallum ML, Pru CA, Niikura Y, Yee SP, Lydon JP, Peluso JJ & & Pru JK 2016 Conditional ablation of progesterone receptor membrane Component 1 results in subfertility in the female and development of endometrial cysts. Endocrinology 157 33093319. (https://doi.org/10.1210/en.2016-1081)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meyer C, Schmid R, Scriba PC & & Wehling M 1996 Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes. European Journal of Biochemistry 239 726731. (https://doi.org/10.1111/j.1432-1033.1996.0726u.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P, Howes S, et al.2000 Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403 785789. (https://doi.org/10.1038/35001608)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moffett A & & Loke C 2006 Immunology of placentation in eutherian mammals. Nature Reviews. Immunology 6 584594. (https://doi.org/10.1038/nri1897)

  • Nulsen JC, Woolkalis MJ, Kopf GS, & Strauss JF & 3rd 1988 Adenylate cyclase in human cytotrophoblasts: characterization and its role in modulating human chorionic gonadotropin secretion. Journal of Clinical Endocrinology and Metabolism 66 258265. (https://doi.org/10.1210/jcem-66-2-258)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Omata W, WE Ackerman, Vandre DD & & Robinson JM 2013 Trophoblast cell fusion and differentiation are mediated by both the protein kinase C and a pathways. PLoS One 8 e81003. (https://doi.org/10.1371/journal.pone.0081003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pedroza DA, Subramani R, Tiula K, Do A, Rashiraj N, Galvez A, Chatterjee A, Bencomo A, Rivera S & & Lakshmanaswamy R 2021 Crosstalk between progesterone receptor membrane component 1 and estrogen receptor α promotes breast cancer cell proliferation. Laboratory Investigation; a Journal of Technical Methods and Pathology 101 733744. (https://doi.org/10.1038/s41374-021-00594-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peluso JJ, Liu X, Gawkowska A & & Johnston-MacAnanny E 2009 Progesterone activates a progesterone receptor membrane component 1-dependent mechanism that promotes human granulosa/luteal cell survival but not progesterone secretion. Journal of Clinical Endocrinology and Metabolism 94 26442649. (https://doi.org/10.1210/jc.2009-0147)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Raza FS, Takemori H, Tojo H, Okamoto M & & Vinson GP 2001 Identification of the rat adrenal zona fasciculata/reticularis specific protein, inner zone antigen (IZAg), as the putative membrane progesterone receptor. European Journal of Biochemistry 268 21412147. (https://doi.org/10.1046/j.1432-1327.2001.02096.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Redman CW & & Staff AC 2015 Preeclampsia, biomarkers, syncytiotrophoblast stress, and placental capacity. American Journal of Obstetrics and Gynecology 213(Supplement) S9 .e1S 9.e4. (https://doi.org/10.1016/j.ajog.2015.08.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sabbir MG 2019 Progesterone induced Warburg effect in HEK293 cells is associated with post-translational modifications and proteasomal degradation of progesterone receptor membrane component 1. Journal of Steroid Biochemistry and Molecular Biology 191 105376. (https://doi.org/10.1016/j.jsbmb.2019.105376)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sabbir MG, Inoue A, Taylor CG & & Zahradka P 2021 Loss of β-arrestins or six Gα proteins in HEK293 cells caused Warburg effect and prevented progesterone-induced rapid proteasomal degradation of progesterone receptor membrane component 1. Journal of Steroid Biochemistry and Molecular Biology 214 105995. (https://doi.org/10.1016/j.jsbmb.2021.105995)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Salsano S, Quiñonero A, Pérez S, Garrido Gómez T, Simón C & & Dominguez F 2017 Dynamic expression of PGRMC1 and SERBP1 in human endometrium: an implication in the human decidualization process. Fertility and Sterility 108 832842.e1. (https://doi.org/10.1016/j.fertnstert.2017.07.1163)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Salsano S, González-Martín R, Quiñonero A, Pérez-Debén S & & Domínguez F 2021 Deciphering the role of PGRMC1 during human decidualization using an in vitro approach. Journal of Clinical Endocrinology and Metabolism 106 23132327. (https://doi.org/10.1210/clinem/dgab303)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schaiff WT, Carlson MG, Smith SD, Levy R, Nelson DM & & Sadovsky Y 2000 Peroxisome proliferator-activated receptor-gamma modulates differentiation of human trophoblast in a ligand-specific manner. Journal of Clinical Endocrinology and Metabolism 85 38743881. (https://doi.org/10.1210/jcem.85.10.6885)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schwinn MK, Machleidt T, Zimmerman K, Eggers CT, Dixon AS, Hurst R, Hall MP, Encell LP, Binkowski BF & & Wood KV 2018 CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chemical Biology 13 467474. (https://doi.org/10.1021/acschembio.7b00549)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shen JJ, Zhu XF, Xu J, Wang ZF, Gu WJ & & Chen Y 2020 Oroxylin A exerts anticancer effects on human ovarian cancer cells via the PPARγdependent reversal of the progesterone receptor membrane component 1/2 expression profile. Oncology Reports 43 13091318. (https://doi.org/10.3892/or.2020.7509)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shu Q, Li W, Li J, Wang W, Liu C & & Sun K 2014 Cross-talk between cAMP and MAPK pathways in HSD11B2 induction by hCG in placental trophoblasts. PLoS One 9 e107938. (https://doi.org/10.1371/journal.pone.0107938)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun F, Nguyen T, Jin X, Huang R, Chen Z, Cunningham RL, Singh M & & Su C 2016 Pgrmc1/BDNF signaling plays a critical role in mediating glia-neuron cross talk. Endocrinology 157 20672079. (https://doi.org/10.1210/en.2015-1610)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thieffry C, Van Wynendaele M, Samain L, Tyteca D, Pierreux C, Marbaix E & & Henriet P 2022 Spatiotemporal expression pattern of progesterone receptor Component (PGRMC) 1 in endometrium from patients with or without endometriosis or adenomyosis. Journal of Steroid Biochemistry and Molecular Biology 223 106153. (https://doi.org/10.1016/j.jsbmb.2022.106153)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tsuru A, Yoshie M, Kojima J, Yonekawa R, Azumi M, Kusama K, Nishi H & & Tamura K 2022a PGRMC1 regulates cellular senescence via modulating FOXO1 expression in decidualizing endometrial stromal cells. Biomolecules 12 1046. (https://doi.org/10.3390/biom12081046)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tsuru A, Yoshie M, Yonekawa R, Kojima J, Azumi M, Kusama K, Nishi H & & Tamura K 2022b Possible involvement of miR-98 in the regulation of PGRMC1 during decidualization. Reproductive Medicine 3 189200. (https://doi.org/10.3390/reprodmed3020015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tuckey RC 2005 Progesterone synthesis by the human placenta. Placenta 26 273281. (https://doi.org/10.1016/j.placenta.2004.06.012)

  • Wang Q, Fujii H & & Knipp GT 2002 Expression of PPAR and RXR isoforms in the developing rat and human term placentas. Placenta 23 661671. (https://doi.org/10.1053/plac.2002.0855)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wendler A, Keller D, Albrecht C, Peluso JJ & & Wehling M 2011 Involvement of let-7/miR-98 microRNAs in the regulation of progesterone receptor membrane component 1 expression in ovarian cancer cells. Oncology Reports 25 273279. (https://doi.org/10.3892/or_00001071)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yoshie M, Kaneyama K, Kusama K, Higuma C, Nishi H, Isaka K & & Tamura K 2010 Possible role of the exchange protein directly activated by cyclic AMP (Epac) in the cyclic AMP-dependent functional differentiation and syncytialization of human placental BeWo cells. Human Reproduction 25 22292238. (https://doi.org/10.1093/humrep/deq190)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhu Q, Dong YC, Zhang L, Ma X & & Xia HF 2020 miR-98 is involved in missed abortion by targeting GDF6 and FAPP2. Reproduction 159 525537. (https://doi.org/10.1530/REP-19-0282)

    • PubMed
    • Search Google Scholar
    • Export Citation