Human gut microbiota and endocrinology: paradigm shift from genome to its regulation

in Journal of Endocrinology
Authors:
Matthew T F Lamaudière Centre for Health & Life Sciences, Coventry University, Coventry, UK
Medicines & Healthcare products Regulatory Agency, Research and Innovation group, Hertfordshire, UK

Search for other papers by Matthew T F Lamaudière in
Current site
Google Scholar
PubMed
Close
,
Mark C Turner Centre for Health & Life Sciences, Coventry University, Coventry, UK

Search for other papers by Mark C Turner in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5503-6188
,
Ramesh P Arasaradnam Divison of Biomedical Sciences, Warwick Medical School, University of Warwick, Warwick, UK
Institute of Precision & Diagnostic Medicine, University Hospitals of Coventry and Warwickshire, NHS trust, Coventry, UK

Search for other papers by Ramesh P Arasaradnam in
Current site
Google Scholar
PubMed
Close
, and
Igor Y Morozov Centre for Health & Life Sciences, Coventry University, Coventry, UK

Search for other papers by Igor Y Morozov in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0927-0309

Correspondence should be addressed to I Y Morozov: ab6069@coventry.ac.uk
Restricted access
Rent on DeepDyve

Sign up for journal news

Over the last two decades, it has become clear that the human gut microbiota, a complex community of bacteria, archaea, fungi and viruses, are a critical determinant of human health and disease. Microbiota-derived metabolites provide the host with energy, protect against pathogens, modulate immune and endocrine systems as well as the level of reactive oxygen species in the gut. It has come with no surprise that the human gut microbiota is also linked to the production, utilisation and regulation of host hormones. This implies that the gut microbiota is capable of influencing human behaviour, appetite regulation and metabolism as well as development and immunity. Many of the advances in the field of crosstalk between the gut microbiota and host health, disease and behaviours are generally based on DNA analyses of microbial populations and transplantation of monocultured commensal species to germ-free animals. Recent reports on the activity of the gut microbiota in gastrointestinal diseases such as inflammatory bowel disease and colorectal cancer have highlighted two important points. First, microbial DNA-based abundance does not always correlate with their level of activity and secondly, that metabolism of the complex gut microbiota is regulated by host health status, including the production and metabolism of several human hormones. In this review, we will discuss the lessons learnt from studying the activity and metabolism of the human gut microbiota in health and across gastrointestinal diseases, and how these findings can shape future research on the microbiome–gut–endocrine axis.

 

  • Collapse
  • Expand
  • Abu-Ali GS, Mehta RS, Lloyd-Price J, Mallick H, Branck T, Ivey KL, Drew DA, DuLong C, Rimm E, Izard J, et al.2018 Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nature Microbiology 3 356366. (https://doi.org/10.1038/s41564-017-0084-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, et al.2011 The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterology and Motility 23 11321139. (https://doi.org/10.1111/j.1365-2982.2011.01796.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boedtkjer E & & Pedersen SF 2020 The acidic tumor microenvironment as a driver of cancer. Annual Review of Physiology 82 103126. (https://doi.org/10.1146/annurev-physiol-021119-034627)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boeynaems S, Holehouse AS, Weinhardt V, Kovacs D, Van Lindt J, Larabell C, Van Den Bosch L, Das R, Tompa PS, Pappu RV, et al.2019 Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties. PNAS 116 78897898. (https://doi.org/10.1073/pnas.1821038116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bravo JA, Julio-Pieper M, Forsythe P, Kunze W, Dinan TG, Bienenstock J & & Cryan JF 2012 Communication between gastrointestinal bacteria and the nervous system. Current Opinion in Pharmacology 12 667672. (https://doi.org/10.1016/j.coph.2012.09.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cahenzli J, Köller Y, Wyss M, Geuking MB & & McCoy KD 2013 Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host and Microbe 14 559570. (https://doi.org/10.1016/j.chom.2013.10.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cantarel BL, Lombard V & & Henrissat B 2012 Complex carbohydrate utilization by the healthy human microbiome. PLoS One 7 e28742. (https://doi.org/10.1371/journal.pone.0028742)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castañeda TR, Tong J, Datta R, Culler M & & Tschöp MH 2010 Ghrelin in the regulation of body weight and metabolism. Frontiers in Neuroendocrinology 31 4460. (https://doi.org/10.1016/j.yfrne.2009.10.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen HM, Yu YN, Wang JL, Lin YW, Kong X, Yang CQ, Yang L, Liu ZJ, Yuan YZ, Liu F, et al.2013 Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. American Journal of Clinical Nutrition 97 10441052. (https://doi.org/10.3945/ajcn.112.046607)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF & & Dinan TG 2014 Minireview: gut microbiota: the neglected endocrine organ. Molecular Endocrinology 28 12211238. (https://doi.org/10.1210/me.2014-1108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cook SI & & Sellin JH 1998 Review article: short chain fatty acids in health and disease. Alimentary Pharmacology and Therapeutics 12 499507. (https://doi.org/10.1046/j.1365-2036.1998.00337.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dabek M, McCrae SI, Stevens VJ, Duncan SH & & Louis P 2008 Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiology Ecology 66 487495. (https://doi.org/10.1111/j.1574-6941.2008.00520.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dalby MJ 2023 Questioning the foundations of the gut microbiota and obesity. Philosophical Transactions of the Royal Society of London 378 20220221. (https://doi.org/10.1098/rstb.2022.0221)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dalile B, Van Oudenhove L, Vervliet B & & Verbeke K 2019 The role of short-chain fatty acids in microbiota-gut-brain communication. Nature Reviews Gastroenterology and Hepatology 16 461478. (https://doi.org/10.1038/s41575-019-0157-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Deidda G & & Biazzo M 2021 Gut and brain: investigating physiological and pathological interactions between microbiota and brain to gain new therapeutic avenues for brain diseases. Frontiers in Neuroscience 15 753915. (https://doi.org/10.3389/fnins.2021.753915)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ & & Bakker BM 2013 The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research 54 23252340. (https://doi.org/10.1194/jlr.R036012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Desbonnet L, Garrett L, Clarke G, Bienenstock J & & Dinan TG 2008 The probiotic bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. Journal of Psychiatric Research 43 164174. (https://doi.org/10.1016/j.jpsychires.2008.03.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dobrzanska DA, Lamaudière MTF, Rollason J, Acton L, Duncan M, Compton S, Simms J, Weedall GD & & Morozov IY 2020 Preventive antibiotic treatment of calves: emergence of dysbiosis causing propagation of obese state-associated and mobile multidrug resistance-carrying bacteria. Microbial Biotechnology 13 669682. (https://doi.org/10.1111/1751-7915.13496)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Duncan SH, Barcenilla A, Stewart CS, Pryde SE & & Flint HJ 2002 Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Applied and Environmental Microbiology 68 51865190. (https://doi.org/10.1128/AEM.68.10.5186-5190.2002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dziewiecka H, Buttar HS, Kasperska A, Ostapiuk-Karolczuk J, Domagalska M, Cichoń J & & Skarpańska-Stejnborn A 2022 Physical activity induced alterations of gut microbiota in humans: a systematic review. BMC Sports Science, Medicine and Rehabilitation 14 122. (https://doi.org/10.1186/s13102-022-00513-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Evans JM, Morris LS & & Marchesi JR 2013 The gut microbiome: the role of a virtual organ in the endocrinology of the host. Journal of Endocrinology 218 R37R47. (https://doi.org/10.1530/JOE-13-0131)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, et al.2015 Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528 262266. (https://doi.org/10.1038/nature15766)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Franceschini A, Costantini I, Pavone FS & & Silvestri L 2020 Dissecting neuronal activation on a brain-wide scale with immediate early genes. Frontiers in Neuroscience 14 569517. (https://doi.org/10.3389/fnins.2020.569517)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hamamah S, Amin A, Al-Kassir AL, Chuang J & & Covasa M 2023 Dietary fat modulation of gut microbiota and impact on regulatory pathways controlling food intake. Nutrients 15 3365. (https://doi.org/10.3390/nu15153365)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heravi FS, Naseri K & & Hu H 2023 Gut microbiota composition in patients with neurodegenerative disorders (Parkinson's and Alzheimer's) and healthy controls: a systematic review. Nutrients 15 4365. (https://doi.org/10.3390/nu15204365)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hillier SG & & Lathe R 2019 Terpenes, hormones and life: isoprene rule revisited. Journal of Endocrinology 242 R9R22. (https://doi.org/10.1530/JOE-19-0084)

  • Hirayama M & & Ohno K 2021 Parkinson's disease and gut microbiota. Annals of Nutrition and Metabolism 77(Supplement 2) 2835. (https://doi.org/10.1159/000518147)

  • Holmes E, Li JV, Athanasiou T, Ashrafian H & & Nicholson JK 2011 Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends in Microbiology 19 349359. (https://doi.org/10.1016/j.tim.2011.05.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holstein SA & & Hohl RJ 2004 Isoprenoids: remarkable diversity of form and function. Lipids 39 293309. (https://doi.org/10.1007/s11745-004-1233-3)

  • Human Microbiome Project Consortium 2012 Structure, function and diversity of the healthy human microbiome. Nature 486 207214. (https://doi.org/10.1038/nature11234)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W, Tan Z, Shi J, et al.2015 Altered fecal microbiota composition in patients with major depressive disorder. Brain, Behavior, and Immunity 48 186194. (https://doi.org/10.1016/j.bbi.2015.03.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jiang HY, Zhang X, Yu ZH, Zhang Z, Deng M, Zhao JH & & Ruan B 2018 Altered gut microbiota profile in patients with generalized anxiety disorder. Journal of Psychiatric Research 104 130136. (https://doi.org/10.1016/j.jpsychires.2018.07.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karlsson CL, Onnerfält J, Xu J, Molin G, Ahrné S & & Thorngren-Jerneck K 2012 The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20 22572261. (https://doi.org/10.1038/oby.2012.110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J & & Bäckhed F 2013 Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498 99103. (https://doi.org/10.1038/nature12198)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim DH, Kang HJ, Kim SW & & Kobashi K 1992 pH-inducible beta-glucosidase and beta-glucuronidase of intestinal bacteria. Chemical and Pharmaceutical Bulletin 40 16671669. (https://doi.org/10.1248/cpb.40.1667)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al.2013 Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine 19 576585. (https://doi.org/10.1038/nm.3145)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koliarakis I, Psaroulaki A, Nikolouzakis TK, Kokkinakis M, Sgantzos MN, Goulielmos G, Androutsopoulos VP, Tsatsakis A & & Tsiaoussis J 2018 Intestinal microbiota and colorectal cancer: a new aspect of research. Journal of Balkan Union of Oncology 23 12161234.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kootte RS, Levin E, Salojärvi J, Smits LP, Hartstra AV, Udayappan SD, Hermes G, Bouter KE, Koopen AM, Holst JJ, et al.2017 Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metabolism 26 611619.e6. (https://doi.org/10.1016/j.cmet.2017.09.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krajmalnik-Brown R, Ilhan ZE, Kang DW & & DiBaise JK 2012 Effects of gut microbes on nutrient absorption and energy regulation. Nutrition in Clinical Practice 27 201214. (https://doi.org/10.1177/0884533611436116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lagkouvardos I, Overmann J & & Clavel T 2017 Cultured microbes represent a substantial fraction of the human and mouse gut microbiota. Gut Microbes 8 493503. (https://doi.org/10.1080/19490976.2017.1320468)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P, Gross GJ, Salzman NH & & Baker JE 2012 Intestinal microbiota determine severity of myocardial infarction in rats. FASEB Journal 26 17271735. (https://doi.org/10.1096/fj.11-197921)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lamaudière MTF, Arasaradnam R, Weedall GD & & Morozov IY 2023a The colorectal cancer gut environment regulates activity of the microbiome and promotes the multidrug resistant phenotype of ESKAPE and other pathogens. mSphere 8 e0062622. (https://doi.org/10.1128/msphere.00626-22)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lamaudière MTF, Arasaradnam R, Weedall GD & & Morozov IY 2023b The colorectal cancer microbiota alter their transcriptome to adapt to the acidity, reactive oxygen species, and metabolite availability of gut microenvironments. mSphere 8 e0062722. (https://doi.org/10.1128/msphere.00627-22)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Larraufie P, Martin-Gallausiaux C, Lapaque N, Dore J, Gribble FM, Reimann F & & Blottiere HM 2018 SCFAs strongly stimulate PYY production in human enteroendocrine cells. Scientific Reports 8 74. (https://doi.org/10.1038/s41598-017-18259-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, Martin P, Philippe C, Walker F, Bado A, et al.2013 Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62 17871794. (https://doi.org/10.1136/gutjnl-2012-303816)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y & & Jiang X 2021 The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacological Research 165 105420. (https://doi.org/10.1016/j.phrs.2021.105420)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lyte M 2014 Microbial endocrinology and the microbiota-gut-brain axis. Advances in Experimental Medicine and Biology 817 324. (https://doi.org/10.1007/978-1-4939-0897-4_1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ma Q, Xing C, Long W, Wang HY, Liu Q & & Wang RF 2019 Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. Journal of Neuroinflammation 16 53. (https://doi.org/10.1186/s12974-019-1434-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mariadason JM 2008 HDACs and HDAC inhibitors in colon cancer. Epigenetics 3 2837. (https://doi.org/10.4161/epi.3.1.5736)

  • Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, et al.2012 IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Research 40 D115D122. (https://doi.org/10.1093/nar/gkr1044)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Metchnikof E 1907 The Prolongation of Life: Optimistic Studies. Eds. Mitchell C, Heinemann W. New York, NY, USA: G. P. Putnam’s Sons Publisher, pp. 18451916.

  • Moore WE & & Holdeman LV 1974 Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Applied Microbiology 27 961979. (https://doi.org/10.1128/am.27.5.961-979.1974)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morais LH, Schreiber HL 4th & & Mazmanian SK 2021 The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews Microbiology 19 241255. (https://doi.org/10.1038/s41579-020-00460-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morgan XC, Segata N & & Huttenhower C 2013 Biodiversity and functional genomics in the human microbiome. Trends in Genetics 29 5158. (https://doi.org/10.1016/j.tig.2012.09.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K & & Maes M 2017 The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Molecular Neurobiology 54 44324451. (https://doi.org/10.1007/s12035-016-0004-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Murphy EF, Cotter PD, Hogan A, O'Sullivan O, Joyce A, Fouhy F, Clarke SF, Marques TM, O'Toole PW, Stanton C, et al.2013 Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut 62 220226. (https://doi.org/10.1136/gutjnl-2011-300705)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Neuman H, Debelius JW, Knight R & & Koren O 2015 Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiology Reviews 39 509521. (https://doi.org/10.1093/femsre/fuu010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ni J, Wu GD, Albenberg L & & Tomov VT 2017 Gut microbiota and IBD: causation or correlation? Nature Reviews Gastroenterology and Hepatology 14 573584. (https://doi.org/10.1038/nrgastro.2017.88)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Norouzi-Beirami MH, Marashi SA, Banaei-Moghaddam AM & & Kavousi K 2019 Beyond taxonomic analysis of microbiomes: a functional approach for revisiting microbiome changes in colorectal cancer. Frontiers in Microbiology 10 3117. (https://doi.org/10.3389/fmicb.2019.03117)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF & & O'Leary OF 2015 Adult hippocampal neurogenesis is regulated by the microbiome. Biological Psychiatry 78 e7e9. (https://doi.org/10.1016/j.biopsych.2014.12.023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oka T, Perry JW & & Terada N 1982 The regulatory function of spermidine in hormonal control of the development of mouse mammary gland in culture. Federation Proceedings 41 30733077.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Olesen SW & & Alm EJ 2016 Dysbiosis is not an answer. Nature Microbiology 1 16228. (https://doi.org/10.1038/nmicrobiol.2016.228)

  • Pammi M, Cope J, Tarr PI, Warner BB, Morrow AL, Mai V, Gregory KE, Kroll JS, McMurtry V, Ferris MJ, et al.2017 Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome 5 31. (https://doi.org/10.1186/s40168-017-0248-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peng Y, Nie Y, Yu J & & Wong CC 2021 Microbial metabolites in colorectal cancer: basic and clinical implications. Metabolites 11 159. (https://doi.org/10.3390/metabo11030159)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Plottel CS & & Blaser MJ 2011 Microbiome and malignancy. Cell Host and Microbe 10 324335. (https://doi.org/10.1016/j.chom.2011.10.003)

  • Poutahidis T, Kearney SM, Levkovich T, Qi P, Varian BJ, Lakritz JR, Ibrahim YM, Chatzigiagkos A, Alm EJ & & Erdman SE 2013 Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One 8 e78898. (https://doi.org/10.1371/journal.pone.0078898)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al.2012 A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490 5560. (https://doi.org/10.1038/nature11450)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Queipo-Ortuño MI, Seoane LM, Murri M, Pardo M, Gomez-Zumaquero JM, Cardona F, Casanueva F & & Tinahones FJ 2013 Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One 8 e65465. (https://doi.org/10.1371/journal.pone.0065465)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Raj A & & van Oudenaarden A 2008 Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135 216226. (https://doi.org/10.1016/j.cell.2008.09.050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Régnier M, Van Hul M, Knauf C & & Cani PD 2021 Gut microbiome, endocrine control of gut barrier function and metabolic diseases. Journal of Endocrinology 248 R67R82. (https://doi.org/10.1530/JOE-20-0473)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ridlon JM, Ikegawa S, Alves JM, Zhou B, Kobayashi A, Iida T, Mitamura K, Tanabe G, Serrano M, De Guzman A, et al.2013 Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. Journal of Lipid Research 54 24372449. (https://doi.org/10.1194/jlr.M038869)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roshchina VV 2010 Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. In Microbial Endocrinology. Lyte M, Freestone P Eds. New York, NY, USA: Springer. (https://doi.org/10.1007/978-1-4419-5576-0_2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roy CC, Kien CL, Bouthillier L & & Levy E 2006 Short-chain fatty acids: ready for prime time? Nutrition in Clinical Practice 21 351366. (https://doi.org/10.1177/0115426506021004351)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanchez A & & Golding I 2013 Genetic determinants and cellular constraints in noisy gene expression. Science 342 11881193. (https://doi.org/10.1126/science.1242975)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Santacruz A, Collado MC, García-Valdés L, Segura MT, Martín-Lagos JA, Anjos T, Martí-Romero M, Lopez RM, Florido J, Campoy C, et al.2010 Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. British Journal of Nutrition 104 8392. (https://doi.org/10.1017/S0007114510000176)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schirmer M, Franzosa EA, Lloyd-Price J, McIver LJ, Schwager R, Poon TW, Ananthakrishnan AN, Andrews E, Barron G, Lake K, et al.2018 Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nature Microbiology 3 337346. (https://doi.org/10.1038/s41564-017-0089-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schroeder FA, Lin CL, Crusio WE & & Akbarian S 2007 Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biological Psychiatry 62 5564. (https://doi.org/10.1016/j.biopsych.2006.06.036)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sekirov I, Russell SL, Antunes LC & & Finlay BB 2010 Finlay BB Gut microbiota in health and disease. Physiological Reviews 90 859904. (https://doi.org/10.1152/physrev.00045.2009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sokolowska E & & Blachnio-Zabielska A 2019 The role of ceramides in insulin resistance. Frontiers in Endocrinology (Lausanne) 10 577. (https://doi.org/10.3389/fendo.2019.00577)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, McDonald D, Dietrich D, Ramadhar TR, Lekbua A, et al.2019 GABA-modulating bacteria of the human gut microbiota. Nature Microbiology 4 396403. (https://doi.org/10.1038/s41564-018-0307-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F, Zolfo M, Beghini F, Manara S, Karcher N, Pozzi C, et al.2019 Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nature Medicine 25 667678. (https://doi.org/10.1038/s41591-019-0405-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER & & Gordon JI 2006 An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 10271031. (https://doi.org/10.1038/nature05414)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vlasova AN, Kandasamy S, Chattha KS, Rajashekara G & & Saif LJ 2016 Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Veterinary Immunology and Immunopathology 172 7284. (https://doi.org/10.1016/j.vetimm.2016.01.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Walker AW & & Hoyles L 2023 Human microbiome myths and misconceptions. Nature Microbiology 8 13921396. (https://doi.org/10.1038/s41564-023-01426-7)

  • Wang Z & & Osborn LJ 2023 The Microbiome and Cardiovascular Disease. Amsterdam, Netherlands: Elsevier. (https://doi.org/10.1016/B978-0-12-824010-6.00022-8)

  • Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, et al.2011 Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472 5763. (https://doi.org/10.1038/nature09922)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK, et al.2015 Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163 15851595. (https://doi.org/10.1016/j.cell.2015.11.055)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, Fleck JS, Voigt AY, Palleja A, Ponnudurai R, et al.2019 Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nature Medicine 25 679689. (https://doi.org/10.1038/s41591-019-0406-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK & & Hsiao EY 2015 Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161 264276. (https://doi.org/10.1016/j.cell.2015.02.047)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, Zhu JJ, You C, Chen Q, Zhou L, et al.2015 Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. Journal of the American Heart Association 4 e002699. (https://doi.org/10.1161/JAHA.115.002699)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zagato E, Pozzi C, Bertocchi A, Schioppa T, Saccheri F, Guglietta S, Fosso B, Melocchi L, Nizzoli G, Troisi J, et al.2020 Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nature Microbiology 5 511524. (https://doi.org/10.1038/s41564-019-0649-5)

    • PubMed
    • Search Google Scholar
    • Export Citation