Over the last two decades, it has become clear that the human gut microbiota, a complex community of bacteria, archaea, fungi and viruses, are a critical determinant of human health and disease. Microbiota-derived metabolites provide the host with energy, protect against pathogens, modulate immune and endocrine systems as well as the level of reactive oxygen species in the gut. It has come with no surprise that the human gut microbiota is also linked to the production, utilisation and regulation of host hormones. This implies that the gut microbiota is capable of influencing human behaviour, appetite regulation and metabolism as well as development and immunity. Many of the advances in the field of crosstalk between the gut microbiota and host health, disease and behaviours are generally based on DNA analyses of microbial populations and transplantation of monocultured commensal species to germ-free animals. Recent reports on the activity of the gut microbiota in gastrointestinal diseases such as inflammatory bowel disease and colorectal cancer have highlighted two important points. First, microbial DNA-based abundance does not always correlate with their level of activity and secondly, that metabolism of the complex gut microbiota is regulated by host health status, including the production and metabolism of several human hormones. In this review, we will discuss the lessons learnt from studying the activity and metabolism of the human gut microbiota in health and across gastrointestinal diseases, and how these findings can shape future research on the microbiome–gut–endocrine axis.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 184 | 44 | 0 |
PDF Downloads | 249 | 68 | 0 |
Abu-Ali GS, Mehta RS, Lloyd-Price J, Mallick H, Branck T, Ivey KL, Drew DA, DuLong C, Rimm E, Izard J, et al.2018 Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nature Microbiology 3 356–366. (https://doi.org/10.1038/s41564-017-0084-4)
Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, et al.2011 The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterology and Motility 23 1132–1139. (https://doi.org/10.1111/j.1365-2982.2011.01796.x)
Boedtkjer E & & Pedersen SF 2020 The acidic tumor microenvironment as a driver of cancer. Annual Review of Physiology 82 103–126. (https://doi.org/10.1146/annurev-physiol-021119-034627)
Boeynaems S, Holehouse AS, Weinhardt V, Kovacs D, Van Lindt J, Larabell C, Van Den Bosch L, Das R, Tompa PS, Pappu RV, et al.2019 Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties. PNAS 116 7889–7898. (https://doi.org/10.1073/pnas.1821038116)
Bravo JA, Julio-Pieper M, Forsythe P, Kunze W, Dinan TG, Bienenstock J & & Cryan JF 2012 Communication between gastrointestinal bacteria and the nervous system. Current Opinion in Pharmacology 12 667–672. (https://doi.org/10.1016/j.coph.2012.09.010)
Cahenzli J, Köller Y, Wyss M, Geuking MB & & McCoy KD 2013 Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host and Microbe 14 559–570. (https://doi.org/10.1016/j.chom.2013.10.004)
Cantarel BL, Lombard V & & Henrissat B 2012 Complex carbohydrate utilization by the healthy human microbiome. PLoS One 7 e28742. (https://doi.org/10.1371/journal.pone.0028742)
Castañeda TR, Tong J, Datta R, Culler M & & Tschöp MH 2010 Ghrelin in the regulation of body weight and metabolism. Frontiers in Neuroendocrinology 31 44–60. (https://doi.org/10.1016/j.yfrne.2009.10.008)
Chen HM, Yu YN, Wang JL, Lin YW, Kong X, Yang CQ, Yang L, Liu ZJ, Yuan YZ, Liu F, et al.2013 Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. American Journal of Clinical Nutrition 97 1044–1052. (https://doi.org/10.3945/ajcn.112.046607)
Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF & & Dinan TG 2014 Minireview: gut microbiota: the neglected endocrine organ. Molecular Endocrinology 28 1221–1238. (https://doi.org/10.1210/me.2014-1108)
Cook SI & & Sellin JH 1998 Review article: short chain fatty acids in health and disease. Alimentary Pharmacology and Therapeutics 12 499–507. (https://doi.org/10.1046/j.1365-2036.1998.00337.x)
Dabek M, McCrae SI, Stevens VJ, Duncan SH & & Louis P 2008 Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiology Ecology 66 487–495. (https://doi.org/10.1111/j.1574-6941.2008.00520.x)
Dalby MJ 2023 Questioning the foundations of the gut microbiota and obesity. Philosophical Transactions of the Royal Society of London 378 20220221. (https://doi.org/10.1098/rstb.2022.0221)
Dalile B, Van Oudenhove L, Vervliet B & & Verbeke K 2019 The role of short-chain fatty acids in microbiota-gut-brain communication. Nature Reviews Gastroenterology and Hepatology 16 461–478. (https://doi.org/10.1038/s41575-019-0157-3)
Deidda G & & Biazzo M 2021 Gut and brain: investigating physiological and pathological interactions between microbiota and brain to gain new therapeutic avenues for brain diseases. Frontiers in Neuroscience 15 753915. (https://doi.org/10.3389/fnins.2021.753915)
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ & & Bakker BM 2013 The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research 54 2325–2340. (https://doi.org/10.1194/jlr.R036012)
Desbonnet L, Garrett L, Clarke G, Bienenstock J & & Dinan TG 2008 The probiotic bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. Journal of Psychiatric Research 43 164–174. (https://doi.org/10.1016/j.jpsychires.2008.03.009)
Dobrzanska DA, Lamaudière MTF, Rollason J, Acton L, Duncan M, Compton S, Simms J, Weedall GD & & Morozov IY 2020 Preventive antibiotic treatment of calves: emergence of dysbiosis causing propagation of obese state-associated and mobile multidrug resistance-carrying bacteria. Microbial Biotechnology 13 669–682. (https://doi.org/10.1111/1751-7915.13496)
Duncan SH, Barcenilla A, Stewart CS, Pryde SE & & Flint HJ 2002 Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Applied and Environmental Microbiology 68 5186–5190. (https://doi.org/10.1128/AEM.68.10.5186-5190.2002)
Dziewiecka H, Buttar HS, Kasperska A, Ostapiuk-Karolczuk J, Domagalska M, Cichoń J & & Skarpańska-Stejnborn A 2022 Physical activity induced alterations of gut microbiota in humans: a systematic review. BMC Sports Science, Medicine and Rehabilitation 14 122. (https://doi.org/10.1186/s13102-022-00513-2)
Evans JM, Morris LS & & Marchesi JR 2013 The gut microbiome: the role of a virtual organ in the endocrinology of the host. Journal of Endocrinology 218 R37–R47. (https://doi.org/10.1530/JOE-13-0131)
Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, et al.2015 Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528 262–266. (https://doi.org/10.1038/nature15766)
Franceschini A, Costantini I, Pavone FS & & Silvestri L 2020 Dissecting neuronal activation on a brain-wide scale with immediate early genes. Frontiers in Neuroscience 14 569517. (https://doi.org/10.3389/fnins.2020.569517)
Hamamah S, Amin A, Al-Kassir AL, Chuang J & & Covasa M 2023 Dietary fat modulation of gut microbiota and impact on regulatory pathways controlling food intake. Nutrients 15 3365. (https://doi.org/10.3390/nu15153365)
Heravi FS, Naseri K & & Hu H 2023 Gut microbiota composition in patients with neurodegenerative disorders (Parkinson's and Alzheimer's) and healthy controls: a systematic review. Nutrients 15 4365. (https://doi.org/10.3390/nu15204365)
Hillier SG & & Lathe R 2019 Terpenes, hormones and life: isoprene rule revisited. Journal of Endocrinology 242 R9–R22. (https://doi.org/10.1530/JOE-19-0084)
Hirayama M & & Ohno K 2021 Parkinson's disease and gut microbiota. Annals of Nutrition and Metabolism 77(Supplement 2) 28–35. (https://doi.org/10.1159/000518147)
Holmes E, Li JV, Athanasiou T, Ashrafian H & & Nicholson JK 2011 Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends in Microbiology 19 349–359. (https://doi.org/10.1016/j.tim.2011.05.006)
Holstein SA & & Hohl RJ 2004 Isoprenoids: remarkable diversity of form and function. Lipids 39 293–309. (https://doi.org/10.1007/s11745-004-1233-3)
Human Microbiome Project Consortium 2012 Structure, function and diversity of the healthy human microbiome. Nature 486 207–214. (https://doi.org/10.1038/nature11234)
Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W, Tan Z, Shi J, et al.2015 Altered fecal microbiota composition in patients with major depressive disorder. Brain, Behavior, and Immunity 48 186–194. (https://doi.org/10.1016/j.bbi.2015.03.016)
Jiang HY, Zhang X, Yu ZH, Zhang Z, Deng M, Zhao JH & & Ruan B 2018 Altered gut microbiota profile in patients with generalized anxiety disorder. Journal of Psychiatric Research 104 130–136. (https://doi.org/10.1016/j.jpsychires.2018.07.007)
Karlsson CL, Onnerfält J, Xu J, Molin G, Ahrné S & & Thorngren-Jerneck K 2012 The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20 2257–2261. (https://doi.org/10.1038/oby.2012.110)
Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J & & Bäckhed F 2013 Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498 99–103. (https://doi.org/10.1038/nature12198)
Kim DH, Kang HJ, Kim SW & & Kobashi K 1992 pH-inducible beta-glucosidase and beta-glucuronidase of intestinal bacteria. Chemical and Pharmaceutical Bulletin 40 1667–1669. (https://doi.org/10.1248/cpb.40.1667)
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al.2013 Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine 19 576–585. (https://doi.org/10.1038/nm.3145)
Koliarakis I, Psaroulaki A, Nikolouzakis TK, Kokkinakis M, Sgantzos MN, Goulielmos G, Androutsopoulos VP, Tsatsakis A & & Tsiaoussis J 2018 Intestinal microbiota and colorectal cancer: a new aspect of research. Journal of Balkan Union of Oncology 23 1216–1234.
Kootte RS, Levin E, Salojärvi J, Smits LP, Hartstra AV, Udayappan SD, Hermes G, Bouter KE, Koopen AM, Holst JJ, et al.2017 Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metabolism 26 611–619.e6. (https://doi.org/10.1016/j.cmet.2017.09.008)
Krajmalnik-Brown R, Ilhan ZE, Kang DW & & DiBaise JK 2012 Effects of gut microbes on nutrient absorption and energy regulation. Nutrition in Clinical Practice 27 201–214. (https://doi.org/10.1177/0884533611436116)
Lagkouvardos I, Overmann J & & Clavel T 2017 Cultured microbes represent a substantial fraction of the human and mouse gut microbiota. Gut Microbes 8 493–503. (https://doi.org/10.1080/19490976.2017.1320468)
Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P, Gross GJ, Salzman NH & & Baker JE 2012 Intestinal microbiota determine severity of myocardial infarction in rats. FASEB Journal 26 1727–1735. (https://doi.org/10.1096/fj.11-197921)
Lamaudière MTF, Arasaradnam R, Weedall GD & & Morozov IY 2023a The colorectal cancer gut environment regulates activity of the microbiome and promotes the multidrug resistant phenotype of ESKAPE and other pathogens. mSphere 8 e0062622. (https://doi.org/10.1128/msphere.00626-22)
Lamaudière MTF, Arasaradnam R, Weedall GD & & Morozov IY 2023b The colorectal cancer microbiota alter their transcriptome to adapt to the acidity, reactive oxygen species, and metabolite availability of gut microenvironments. mSphere 8 e0062722. (https://doi.org/10.1128/msphere.00627-22)
Larraufie P, Martin-Gallausiaux C, Lapaque N, Dore J, Gribble FM, Reimann F & & Blottiere HM 2018 SCFAs strongly stimulate PYY production in human enteroendocrine cells. Scientific Reports 8 74. (https://doi.org/10.1038/s41598-017-18259-0)
Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, Martin P, Philippe C, Walker F, Bado A, et al.2013 Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62 1787–1794. (https://doi.org/10.1136/gutjnl-2012-303816)
Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y & & Jiang X 2021 The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacological Research 165 105420. (https://doi.org/10.1016/j.phrs.2021.105420)
Lyte M 2014 Microbial endocrinology and the microbiota-gut-brain axis. Advances in Experimental Medicine and Biology 817 3–24. (https://doi.org/10.1007/978-1-4939-0897-4_1)
Ma Q, Xing C, Long W, Wang HY, Liu Q & & Wang RF 2019 Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. Journal of Neuroinflammation 16 53. (https://doi.org/10.1186/s12974-019-1434-3)
Mariadason JM 2008 HDACs and HDAC inhibitors in colon cancer. Epigenetics 3 28–37. (https://doi.org/10.4161/epi.3.1.5736)
Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, et al.2012 IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Research 40 D115–D122. (https://doi.org/10.1093/nar/gkr1044)
Metchnikof E 1907 The Prolongation of Life: Optimistic Studies. Eds. Mitchell C, Heinemann W. New York, NY, USA: G. P. Putnam’s Sons Publisher, pp. 1845–1916.
Moore WE & & Holdeman LV 1974 Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Applied Microbiology 27 961–979. (https://doi.org/10.1128/am.27.5.961-979.1974)
Morais LH, Schreiber HL 4th & & Mazmanian SK 2021 The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews Microbiology 19 241–255. (https://doi.org/10.1038/s41579-020-00460-0)
Morgan XC, Segata N & & Huttenhower C 2013 Biodiversity and functional genomics in the human microbiome. Trends in Genetics 29 51–58. (https://doi.org/10.1016/j.tig.2012.09.005)
Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K & & Maes M 2017 The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Molecular Neurobiology 54 4432–4451. (https://doi.org/10.1007/s12035-016-0004-2)
Murphy EF, Cotter PD, Hogan A, O'Sullivan O, Joyce A, Fouhy F, Clarke SF, Marques TM, O'Toole PW, Stanton C, et al.2013 Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut 62 220–226. (https://doi.org/10.1136/gutjnl-2011-300705)
Neuman H, Debelius JW, Knight R & & Koren O 2015 Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiology Reviews 39 509–521. (https://doi.org/10.1093/femsre/fuu010)
Ni J, Wu GD, Albenberg L & & Tomov VT 2017 Gut microbiota and IBD: causation or correlation? Nature Reviews Gastroenterology and Hepatology 14 573–584. (https://doi.org/10.1038/nrgastro.2017.88)
Norouzi-Beirami MH, Marashi SA, Banaei-Moghaddam AM & & Kavousi K 2019 Beyond taxonomic analysis of microbiomes: a functional approach for revisiting microbiome changes in colorectal cancer. Frontiers in Microbiology 10 3117. (https://doi.org/10.3389/fmicb.2019.03117)
Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF & & O'Leary OF 2015 Adult hippocampal neurogenesis is regulated by the microbiome. Biological Psychiatry 78 e7–e9. (https://doi.org/10.1016/j.biopsych.2014.12.023)
Oka T, Perry JW & & Terada N 1982 The regulatory function of spermidine in hormonal control of the development of mouse mammary gland in culture. Federation Proceedings 41 3073–3077.
Olesen SW & & Alm EJ 2016 Dysbiosis is not an answer. Nature Microbiology 1 16228. (https://doi.org/10.1038/nmicrobiol.2016.228)
Pammi M, Cope J, Tarr PI, Warner BB, Morrow AL, Mai V, Gregory KE, Kroll JS, McMurtry V, Ferris MJ, et al.2017 Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome 5 31. (https://doi.org/10.1186/s40168-017-0248-8)
Peng Y, Nie Y, Yu J & & Wong CC 2021 Microbial metabolites in colorectal cancer: basic and clinical implications. Metabolites 11 159. (https://doi.org/10.3390/metabo11030159)
Plottel CS & & Blaser MJ 2011 Microbiome and malignancy. Cell Host and Microbe 10 324–335. (https://doi.org/10.1016/j.chom.2011.10.003)
Poutahidis T, Kearney SM, Levkovich T, Qi P, Varian BJ, Lakritz JR, Ibrahim YM, Chatzigiagkos A, Alm EJ & & Erdman SE 2013 Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One 8 e78898. (https://doi.org/10.1371/journal.pone.0078898)
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al.2012 A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490 55–60. (https://doi.org/10.1038/nature11450)
Queipo-Ortuño MI, Seoane LM, Murri M, Pardo M, Gomez-Zumaquero JM, Cardona F, Casanueva F & & Tinahones FJ 2013 Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One 8 e65465. (https://doi.org/10.1371/journal.pone.0065465)
Raj A & & van Oudenaarden A 2008 Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135 216–226. (https://doi.org/10.1016/j.cell.2008.09.050)
Régnier M, Van Hul M, Knauf C & & Cani PD 2021 Gut microbiome, endocrine control of gut barrier function and metabolic diseases. Journal of Endocrinology 248 R67–R82. (https://doi.org/10.1530/JOE-20-0473)
Ridlon JM, Ikegawa S, Alves JM, Zhou B, Kobayashi A, Iida T, Mitamura K, Tanabe G, Serrano M, De Guzman A, et al.2013 Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. Journal of Lipid Research 54 2437–2449. (https://doi.org/10.1194/jlr.M038869)
Roshchina VV 2010 Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. In Microbial Endocrinology. Lyte M, Freestone P Eds. New York, NY, USA: Springer. (https://doi.org/10.1007/978-1-4419-5576-0_2)
Roy CC, Kien CL, Bouthillier L & & Levy E 2006 Short-chain fatty acids: ready for prime time? Nutrition in Clinical Practice 21 351–366. (https://doi.org/10.1177/0115426506021004351)
Sanchez A & & Golding I 2013 Genetic determinants and cellular constraints in noisy gene expression. Science 342 1188–1193. (https://doi.org/10.1126/science.1242975)
Santacruz A, Collado MC, García-Valdés L, Segura MT, Martín-Lagos JA, Anjos T, Martí-Romero M, Lopez RM, Florido J, Campoy C, et al.2010 Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. British Journal of Nutrition 104 83–92. (https://doi.org/10.1017/S0007114510000176)
Schirmer M, Franzosa EA, Lloyd-Price J, McIver LJ, Schwager R, Poon TW, Ananthakrishnan AN, Andrews E, Barron G, Lake K, et al.2018 Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nature Microbiology 3 337–346. (https://doi.org/10.1038/s41564-017-0089-z)
Schroeder FA, Lin CL, Crusio WE & & Akbarian S 2007 Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biological Psychiatry 62 55–64. (https://doi.org/10.1016/j.biopsych.2006.06.036)
Sekirov I, Russell SL, Antunes LC & & Finlay BB 2010 Finlay BB Gut microbiota in health and disease. Physiological Reviews 90 859–904. (https://doi.org/10.1152/physrev.00045.2009)
Sokolowska E & & Blachnio-Zabielska A 2019 The role of ceramides in insulin resistance. Frontiers in Endocrinology (Lausanne) 10 577. (https://doi.org/10.3389/fendo.2019.00577)
Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, McDonald D, Dietrich D, Ramadhar TR, Lekbua A, et al.2019 GABA-modulating bacteria of the human gut microbiota. Nature Microbiology 4 396–403. (https://doi.org/10.1038/s41564-018-0307-3)
Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F, Zolfo M, Beghini F, Manara S, Karcher N, Pozzi C, et al.2019 Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nature Medicine 25 667–678. (https://doi.org/10.1038/s41591-019-0405-7)
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER & & Gordon JI 2006 An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 1027–1031. (https://doi.org/10.1038/nature05414)
Vlasova AN, Kandasamy S, Chattha KS, Rajashekara G & & Saif LJ 2016 Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Veterinary Immunology and Immunopathology 172 72–84. (https://doi.org/10.1016/j.vetimm.2016.01.003)
Walker AW & & Hoyles L 2023 Human microbiome myths and misconceptions. Nature Microbiology 8 1392–1396. (https://doi.org/10.1038/s41564-023-01426-7)
Wang Z & & Osborn LJ 2023 The Microbiome and Cardiovascular Disease. Amsterdam, Netherlands: Elsevier. (https://doi.org/10.1016/B978-0-12-824010-6.00022-8)
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, et al.2011 Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472 57–63. (https://doi.org/10.1038/nature09922)
Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK, et al.2015 Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163 1585–1595. (https://doi.org/10.1016/j.cell.2015.11.055)
Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, Fleck JS, Voigt AY, Palleja A, Ponnudurai R, et al.2019 Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nature Medicine 25 679–689. (https://doi.org/10.1038/s41591-019-0406-6)
Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK & & Hsiao EY 2015 Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161 264–276. (https://doi.org/10.1016/j.cell.2015.02.047)
Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, Zhu JJ, You C, Chen Q, Zhou L, et al.2015 Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. Journal of the American Heart Association 4 e002699. (https://doi.org/10.1161/JAHA.115.002699)
Zagato E, Pozzi C, Bertocchi A, Schioppa T, Saccheri F, Guglietta S, Fosso B, Melocchi L, Nizzoli G, Troisi J, et al.2020 Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nature Microbiology 5 511–524. (https://doi.org/10.1038/s41564-019-0649-5)
Online ISSN: 1479-6805
Print ISSN: 0022-0795
CONTACT US
Bioscientifica Ltd | Starling House | 1600 Bristol Parkway North | Bristol BS34 8YU | UK
Bioscientifica Ltd | Registered in England no 3190519