Adipocyte subpopulations mediate lipolysis and obesity-induced insulin resistance

in Journal of Endocrinology
Authors:
Jun Huang Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA

Search for other papers by Jun Huang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0009-6178-8456
,
Rita Sharma Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA

Search for other papers by Rita Sharma in
Current site
Google Scholar
PubMed
Close
,
Sohana Siyar Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA

Search for other papers by Sohana Siyar in
Current site
Google Scholar
PubMed
Close
,
Vishva Sharma Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
The Diabetes Institute, Ohio University, Athens, Ohio, USA

Search for other papers by Vishva Sharma in
Current site
Google Scholar
PubMed
Close
,
Vishwajeet Puri Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
The Diabetes Institute, Ohio University, Athens, Ohio, USA

Search for other papers by Vishwajeet Puri in
Current site
Google Scholar
PubMed
Close
, and
Kevin Y Lee Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
The Diabetes Institute, Ohio University, Athens, Ohio, USA

Search for other papers by Kevin Y Lee in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1528-7417

Correspondence should be addressed to K Y Lee: leek2@ohio.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Studies in humans and mice have determined that distinct subpopulations of adipocytes reside even within individual adipose tissue depots. Previously, our lab defined three white adipocyte subpopulations with stable and unique gene expression profiles, which were termed type 1, 2, and 3 adipocytes, respectively. Our previous studies demonstrated that type 2 adipocytes were highly responsive to the inflammatory cytokine, tumor necrosis factor alpha (TNFα). This study extends these findings to investigate the role of type 2 adipocytes in obesity. We found that treatment with TNFα increased lipolysis specifically in type 2 adipocytes, at least in part, through the reduction of fat-specific protein 27 (FSP27) expression. To assess the physiological role of lipolysis from this adipocyte subpopulation, a type2Ad-hFSP27tg mouse model was generated by overexpressing human FSP27 specifically in type 2 adipocytes. Glucose and insulin tolerance test analysis showed that male type2Ad-hFSP27tg mice on 60% high-fat diet exhibited improved glucose tolerance and insulin sensitivity, with no change in body weight compared to controls. These metabolic changes may, at least in part, be explained by the reduced lipolysis rate in the visceral fat of type2Ad-hFSP27tg mice. Although FSP27 overexpression in primary type 2 adipocytes was sufficient to acutely reduce TNFα-induced apoptosis in vitro, it failed to reduce macrophage infiltration in obesity in vivo. Taken together, these results strongly suggest that type 2 adipocytes contribute to the regulation of lipolysis and could serve as a potential therapeutic target for obesity-associated insulin resistance.

Supplementary Materials

 

  • Collapse
  • Expand
  • Anderson LA, McTernan PG, Barnett AH & & Kumar S 2001 The effects of androgens and estrogens on preadipocyte proliferation in human adipose tissue: influence of gender and site. Journal of Clinical Endocrinology and Metabolism 86 50455051. (https://doi.org/10.1210/jcem.86.10.7955)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anthony NM, Gaidhu MP & & Ceddia RB 2009 Regulation of visceral and subcutaneous adipocyte lipolysis by acute AICAR-induced AMPK activation. Obesity 17 13121317. (https://doi.org/10.1038/oby.2008.645)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bäckdahl J, Franzén L, Massier L, Li Q, Jalkanen J, Gao H, Andersson A, Bhalla N, Thorell A, Rydén M, et al.2021 Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metabolism 33 18691882.e6. (https://doi.org/10.1016/j.cmet.2021.07.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Banks AS, McAllister FE, Camporez JPG, Zushin PJ, Jurczak MJ, Laznik-Bogoslavski D, Shulman GI, Gygi SP & & Spiegelman BM 2015 An Erk/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature 517 391395. (https://doi.org/10.1038/nature13887)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chang E, Varghese M & & Singer K 2018 Gender and sex differences in adipose tissue. Current Diabetes Reports 18 69. (https://doi.org/10.1007/s11892-018-1031-3)

  • Chau YY, Bandiera R, Serrels A, Martínez-Estrada OM, Qing W, Lee M, Slight J, Thornburn A, Berry R, McHaffie S, et al.2014 Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nature Cell Biology 16 367375. (https://doi.org/10.1038/ncb2922)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Choi JH, Banks AS, Estall JL, Kajimura S, Boström P, Laznik D, Ruas JL, Chalmers MJ, Kamenecka TM, Blüher M, et al.2010 Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature 466 451456. (https://doi.org/10.1038/nature09291)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS & & Obin MS 2005 Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. Journal of Lipid Research 46 23472355. (https://doi.org/10.1194/jlr.M500294-JLR200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Emont MP, Jacobs C, Essene AL, Pant D, Tenen D, Colleluori G, Di Vincenzo A, Jørgensen AM, Dashti H, Stefek A, et al.2022 A single-cell atlas of human and mouse white adipose tissue. Nature 603 926933. (https://doi.org/10.1038/s41586-022-04518-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Espinosa De Ycaza AE, Søndergaard E, Morgan-Bathke M, Lytle K, Delivanis DA, Ramos P, Carranza Leon BG & & Jensen MD 2022 Adipose tissue inflammation is not related to adipose insulin resistance in humans. Diabetes 71 381393. (https://doi.org/10.2337/db21-0609)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grahn THM, Kaur R, Yin J, Schweiger M, Sharma VM, Lee MJ, Ido Y, Smas CM, Zechner R, Lass A, et al.2014 Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes. Journal of Biological Chemistry 289 1202912039. (https://doi.org/10.1074/jbc.M113.539890)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guerre-Millo M, Leturque A, Girard J & & Lavau M 1985 Increased insulin sensitivity and responsiveness of glucose metabolism in adipocytes from female versus male rats. Journal of Clinical Investigation 76 109116. (https://doi.org/10.1172/JCI111932)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gupta A, Balakrishnan B, Karki S, Slayton M, Jash S, Banerjee S, Grahn THM, Jambunathan S, Disney S, Hussein H, et al.2022 Human CIDEC transgene improves lipid metabolism and protects against high-fat diet–induced glucose intolerance in mice. Journal of Biological Chemistry 298 102347. (https://doi.org/10.1016/j.jbc.2022.102347)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hall JA, Ramachandran D, Roh HC, DiSpirito JR, Belchior T, Zushin P-JH, Palmer CJ, Hong S, Mina AI, Liu B, et al.2020 Obesity-linked PPARγ S273 phosphorylation promotes insulin resistance through growth differentiation factor 3. Cell Biology. (https://doi.org/10.1101/2020.01.13.904953)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herrera-Marcos LV, Sancho-Knapik S, Gabás-Rivera C, Barranquero C, Gascón S, Romanos E, Martínez-Beamonte R, Navarro MA, Surra JC, Arnal C, et al.2020 Pgc1a is responsible for the sex differences in hepatic Cidec/Fsp27β mRNA expression in hepatic steatosis of mice fed a Western diet. American Journal of Physiology-Endocrinology and Metabolism 318 E249E261. (https://doi.org/10.1152/ajpendo.00199.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Horton TJ, Dow S, Armstrong M & & Donahoo WT 2009 Greater systemic lipolysis in women compared with men during moderate-dose infusion of epinephrine and/or norepinephrine. Journal of Applied Physiology 107 200210. (https://doi.org/10.1152/japplphysiol.90812.2008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jia Q, Morgan-Bathke ME & & Jensen MD 2020 Adipose tissue macrophage burden, systemic inflammation, and insulin resistance. American Journal of Physiology-Endocrinology and Metabolism 319 E254E264. (https://doi.org/10.1152/ajpendo.00109.2020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lebovitz HE 2019 Thiazolidinediones: the forgotten diabetes medications. Current Diabetes Reports 19 151. (https://doi.org/10.1007/s11892-019-1270-y)

  • Lee KY, Luong Q, Sharma R, Dreyfuss JM, Ussar S & & Kahn CR 2019 Developmental and functional heterogeneity of white adipocytes within a single fat depot. EMBO Journal 38. (https://doi.org/10.15252/embj.201899291)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Macotela Y, Boucher J, Tran TT & & Kahn CR 2009 Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes 58 803812. (https://doi.org/10.2337/db08-1054)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin S, Okano S, Kistler C, Fernandez-Rojo MA, Hill MM & & Parton RG 2009 Spatiotemporal regulation of early lipolytic signaling in adipocytes. Journal of Biological Chemistry 284 3209732107. (https://doi.org/10.1074/jbc.M109.002675)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Min SY, Desai A, Yang Z, Sharma A, DeSouza T, Genga RMJ, Kucukural A, Lifshitz LM, Nielsen S, Scheele C, et al.2019 Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells. PNAS 116 1797017979. (https://doi.org/10.1073/pnas.1906512116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moriyama K, Kokabu A & & Masumi A 2023 PPARγ protein expression is regulated by Cited1 and Cidec in mouse 3T3-L1 adipocytes treated with troglitazone. BPB Reports 6 5561. (https://doi.org/10.1248/bpbreports.6.2_55)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Muzumdar MD, Tasic B, Miyamichi K, Li L & & Luo L 2007 A global double-fluorescent Cre reporter mouse. Genesis 45 593605. (https://doi.org/10.1002/dvg.20335)

  • Pilz S, Scharnagl H, Tiran B, Seelhorst U, Wellnitz B, Boehm BO, Schaefer JR & & März W 2006 Free fatty acids are independently associated with all-cause and cardiovascular mortality in subjects with coronary artery disease. Journal of Clinical Endocrinology and Metabolism 91 25422547. (https://doi.org/10.1210/jc.2006-0195)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Plomgaard P, Fischer CP, Ibfelt T, Pedersen BK & & van Hall G 2008 Tumor necrosis factor-α modulates human in vivo lipolysis. Journal of Clinical Endocrinology and Metabolism 93 543549. (https://doi.org/10.1210/jc.2007-1761)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prins JB, Niesler CU, Winterford CM, Bright NA, Siddle K, O’Rahilly S, Walker NI & & Cameron DP 1997 Tumor necrosis factor-α induces apoptosis of human adipose cells. Diabetes 46 19391944. (https://doi.org/10.2337/diab.46.12.1939)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Puri V, Ranjit S, Konda S, Nicoloro SMC, Straubhaar J, Chawla A, Chouinard M, Lin C, Burkart A, Corvera S, et al.2008 Cidea is associated with lipid droplets and insulin sensitivity in humans. PNAS 105 78337838. (https://doi.org/10.1073/pnas.0802063105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ranjit S, Boutet E, Gandhi P, Prot M, Tamori Y, Chawla A, Greenberg AS, Puri V & & Czech MP 2011 Regulation of fat specific protein 27 by isoproterenol and TNF-α to control lipolysis in murine adipocytes. Journal of Lipid Research 52 221236. (https://doi.org/10.1194/jlr.M008771)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodeheffer MS, Birsoy K & & Friedman JM 2008 Identification of white adipocyte progenitor cells in vivo. Cell 135 240249. (https://doi.org/10.1016/j.cell.2008.09.036)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanchez-Gurmaches J & & Guertin DA 2014 Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nature Communications 5 4099. (https://doi.org/10.1038/ncomms5099)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Serino M, Menghini R, Fiorentino L, Amoruso R, Mauriello A, Lauro D, Sbraccia P, Hribal ML, Lauro R & & Federici M 2007 Mice heterozygous for tumor necrosis factor-α converting enzyme are protected from obesity-induced insulin resistance and diabetes. Diabetes 56 25412546. (https://doi.org/10.2337/db07-0360)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Seydoux J, Muzzin P, Moinat M, Pralong W, Girardier L & & Giacobino JP 1996 Adrenoceptor heterogeneity in human white adipocytes differentiated in culture as assessed by cytosolic free calcium measurements. Cellular Signalling 8 117122. (https://doi.org/10.1016/0898-6568(9502035-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sharma R, Luong Q, Sharma VM, Harberson M, Harper B, Colborn A, Berryman DE, Jessen N, Jørgensen JOL, Kopchick JJ, et al.2018 Growth hormone controls lipolysis by regulation of FSP27 expression. Journal of Endocrinology 239 289301. (https://doi.org/10.1530/JOE-18-0282)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shi H & & Clegg DJ 2009 Sex differences in the regulation of body weight. Physiology and Behavior 97 199204. (https://doi.org/10.1016/j.physbeh.2009.02.017)

  • Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, Clement N, Moes S, Colombi M, Meier JA, et al.2018 Insulin resistance causes inflammation in adipose tissue. Journal of Clinical Investigation 128 15381350. (https://doi.org/10.1172/JCI96139)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shulman GI 2014 Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. New England Journal of Medicine 371 11311141. (https://doi.org/10.1056/NEJMra1011035)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tan X, Cao Z, Li M, Xu E, Wang J & & Xiao Y 2016 TNF-α downregulates CIDEC via MEK/ERK pathway in human adipocytes. Obesity 24 10701080. (https://doi.org/10.1002/oby.21436)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tanaka N, Takahashi S, Matsubara T, Jiang C, Sakamoto W, Chanturiya T, Teng R, Gavrilova O & & Gonzalez FJ 2015 Adipocyte-specific disruption of fat-specific protein 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice. Journal of Biological Chemistry 290 30923105. (https://doi.org/10.1074/jbc.M114.605980)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Varghese M, Griffin C, McKernan K, Eter L, Lanzetta N, Agarwal D, Abrishami S & & Singer K 2019 Sex differences in inflammatory responses to adipose tissue lipolysis in diet-induced obesity. Endocrinology 160 293312. (https://doi.org/10.1210/en.2018-00797)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vijay J, Gauthier MF, Biswell RL, Louiselle DA, Johnston JJ, Cheung WA, Belden B, Pramatarova A, Biertho L, Gibson M, et al.2020 Single-cell analysis of human adipose tissue identifies depot- and disease-specific cell types. Nature Metabolism 2 97109. (https://doi.org/10.1038/s42255-019-0152-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang QA, Zhang F, Jiang L, Ye R, An Y, Shao M, Tao C, Gupta RK & & Scherer PE 2018 Peroxisome proliferator-activated receptor γ and its role in adipocyte homeostasis and thiazolidinedione-mediated insulin sensitization. Molecular and Cellular Biology 38 e00677-17. (https://doi.org/10.1128/MCB.00677-17)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL & & Ferrante AW 2003 Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation 112 17961808. (https://doi.org/10.1172/JCI19246)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, et al.2003 Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation 112 18211830. (https://doi.org/10.1172/JCI19451)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamauchi T, Kamon J, Waki H, Murakami K, Motojima K, Komeda K, Ide T, Kubota N, Terauchi Y, Tobe K, et al.2001 The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance. Journal of Biological Chemistry 276 4124541254. (https://doi.org/10.1074/jbc.M103241200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang X, Zhang X, Heckmann BL, Lu X & & Liu J 2011 Relative contribution of adipose triglyceride lipase and hormone-sensitive lipase to tumor necrosis factor-α (TNF-α)-induced lipolysis in adipocytes. Journal of Biological Chemistry 286 4047740485. (https://doi.org/10.1074/jbc.M111.257923)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang HH, Halbleib M, Ahmad F, Manganiello VC & & Greenberg AS 2002 Tumor necrosis factor-α stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 51 29292935. (https://doi.org/10.2337/diabetes.51.10.2929)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang J, Zhong W, Cui T, Yang M, Hu X, Xu K, Xie C, Xue C, Gibbons GH, Liu C, et al.2006 Generation of an adult smooth muscle cell–targeted Cre recombinase mouse model. Arteriosclerosis, Thrombosis, and Vascular Biology 26 e23e24. (https://doi.org/10.1161/01.ATV.0000202661.61837.93)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou L, Park SY, Xu L, Xia X, Ye J, Su L, Jeong KH, Hur JH, Oh H, Tamori Y, et al.2015 Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nature Communications 6 5949. (https://doi.org/10.1038/ncomms6949)

    • PubMed
    • Search Google Scholar
    • Export Citation