Osteocalcin protects islet identity in low-density lipoprotein receptor knockout mice on high-fat diet

in Journal of Endocrinology
Authors:
Christine A Beamish Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA

Search for other papers by Christine A Beamish in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0319-1346
,
Yoon K Lee Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA

Search for other papers by Yoon K Lee in
Current site
Google Scholar
PubMed
Close
,
A Osama Gaber Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA

Search for other papers by A Osama Gaber in
Current site
Google Scholar
PubMed
Close
,
Priyanka Chanana Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA

Search for other papers by Priyanka Chanana in
Current site
Google Scholar
PubMed
Close
,
Edward A Graviss Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, Texas, USA

Search for other papers by Edward A Graviss in
Current site
Google Scholar
PubMed
Close
,
Malgorzata Kloc Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
Department of Cell and Microbiology, Weill Cornell Medical College, New York, New York, USA
Department of Genetics, The University of Texas Anderson Cancer Center, Houston, Texas, USA

Search for other papers by Malgorzata Kloc in
Current site
Google Scholar
PubMed
Close
,
M Waleed Gaber Department of Pediatrics, Hematology-Oncology Section, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by M Waleed Gaber in
Current site
Google Scholar
PubMed
Close
,
Willa A Hsueh Department of Internal Medicine, The Ohio State University Diabetes and Metabolism Research Center, Columbus, Ohio, USA

Search for other papers by Willa A Hsueh in
Current site
Google Scholar
PubMed
Close
, and
Omaima M Sabek Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
Department of Cell and Microbiology, Weill Cornell Medical College, New York, New York, USA

Search for other papers by Omaima M Sabek in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0919-0093

Correspondence should be addressed to O M Sabek: OMSabek@houstonmethodist.org
Restricted access
Rent on DeepDyve

Sign up for journal news

Metabolic syndrome (MetS) is an increasing global health threat and strong risk factor for type 2 diabetes (T2D). MetS causes both hyperinsulinemia and islet size overexpansion, and pancreatic β-cell failure impacts insulin and proinsulin secretion, mitochondrial density, and cellular identity loss. The low-density lipoprotein receptor knockout (LDLr−/−) model combined with high-fat diet (HFD) has been used to study alterations in multiple organs, but little is known about the changes to β-cell identity resulting from MetS. Osteocalcin (OC), an insulin-sensitizing protein secreted by bone, shows promising impact on β-cell identity and function. LDLr−/− mice at 12 months were fed chow or HFD for 3 months ± 4.5 ng/h OC. Islets were examined by immunofluorescence for alterations in nuclear Nkx6.1 and PDX1 presence, insulin–glucagon colocalization, islet size and %β-cell and islet area by insulin and synaptophysin, and mitochondria fluorescence intensity by Tomm20. Bone mineral density (BMD) and %fat changes were examined by Piximus Dexa scanning. HFD-fed mice showed fasting hyperglycemia by 15 months, increased weight gain, %fat, and fasting serum insulin and proinsulin; concurrent OC treatment mitigated weight increase and showed lower proinsulin-to-insulin ratio, and higher BMD. HFD increased %β and %islet area, while simultaneous OC-treatment with HFD was comparable to chow-fed mice. Significant reductions in nuclear PDX1 and Nkx6.1 expression, increased insulin–glucagon colocalization, and reduction in β-cell mitochondria fluorescence intensity were noted with HFD, but largely prevented with OC administration. OC supplementation here suggests a benefit to β-cell identity in LDLr−/− mice and offers intriguing clinical implications for countering metabolic syndrome.

Supplementary Materials

 

  • Collapse
  • Expand
  • Ackermann AM & & Gannon M 2007 Molecular regulation of pancreatic beta-cell mass development, maintenance, and expansion. Journal of Molecular Endocrinology 38 193206. (https://doi.org/10.1677/JME-06-0053)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anello M, Lupi R, Spampinato D, Piro S, Masini M, Boggi U, Del Prato S, Rabuazzo AM, Purrello F & & Marchetti P 2005 Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia 48 282289. (https://doi.org/10.1007/s00125-004-1627-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beamish CA, Gaber AO, Afshar SF, Fraga DW, Hamilton DJ & & Sabek OM 2019 Variability in endocrine cell identity in patients with chronic pancreatitis undergoing islet auto-transplantation. American Journal of Transplantation 19 15681576. (https://doi.org/10.1111/ajt.15154)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beamish CA, Gaber AO, Fraga DW, Hamilton DJ & & Sabek OM 2022 Pretransplant HOMA-β is predictive of insulin independence in 7 patients with chronic pancreatitis undergoing islet autotransplantation. Transplantation Direct 8 e1367. (https://doi.org/10.1097/TXD.0000000000001367)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brereton MF, Iberl M, Shimomura K, Zhang Q, Adriaenssens AE, Proks P, Spiliotis II, Dace W, Mattis KK, Ramracheya R, et al.2014 Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nature Communications 5 4639. (https://doi.org/10.1038/ncomms5639)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chitturi S, Abeygunasekera S, Farrell GC, Holmes-Walker J, Hui JM, Fung C, Karim R, Lin R, Samarasinghe D, Liddle C, et al.2002 NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology 35 373379. (https://doi.org/10.1053/jhep.2002.30692)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collins AR, Lyon CJ, Xia X, Liu JZ, Tangirala RK, Yin F, Boyadjian R, Bikineyeva A, Pratico D, Harrison DG, et al.2009 Age-accelerated atherosclerosis correlates with failure to upregulate antioxidant genes. Circulation Research 104 e42e54. (https://doi.org/10.1161/CIRCRESAHA.108.188771)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cox AR, Gottheil SK, Arany EJ & & Hill DJ 2010 The effects of low protein during gestation on mouse pancreatic development and beta cell regeneration. Pediatric Research 68 1622. (https://doi.org/10.1203/PDR.0b013e3181e17c90)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ducy P 2011 The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia 54 12911297. (https://doi.org/10.1007/s00125-011-2155-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, et al.1996 Increased bone formation in osteocalcin-deficient mice. Nature 382 448452. (https://doi.org/10.1038/382448a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eckel RH, Grundy SM & & Zimmet PZ 2005 The metabolic syndrome. Lancet 365 14151428. (https://doi.org/10.1016/S0140-6736(0566378-7)

  • Ferron M, Hinoi E, Karsenty G & & Ducy P 2008 Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. PNAS 105 52665270. (https://doi.org/10.1073/pnas.0711119105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferron M, Mckee MD, Levine RL, Ducy P & & Karsenty G 2012 Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50 568575. (https://doi.org/10.1016/j.bone.2011.04.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gower BA, Pollock NK, Casazza K, Clemens TL, Goree LL & & Granger WM 2013 Associations of total and undercarboxylated osteocalcin with peripheral and hepatic insulin sensitivity and beta-cell function in overweight adults. Journal of Clinical Endocrinology and Metabolism 98 E1173E1180. (https://doi.org/10.1210/jc.2013-1203)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guney E, Kisakol G, Ozgen G, Yilmaz C, Yilmaz R & & Kabalak T 2003 Effect of weight loss on bone metabolism: comparison of vertical banded gastroplasty and medical intervention. Obesity Surgery 13 383388. (https://doi.org/10.1381/096089203765887705)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guo S, Dai C, Guo M, Taylor B, Harmon JS, Sander M, Robertson RP, Powers AC & & Stein R 2013 Inactivation of specific beta cell transcription factors in type 2 diabetes. Journal of Clinical Investigation 123 33053316. (https://doi.org/10.1172/JCI65390)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gupte AA, Liu JZ, Ren Y, Minze LJ, Wiles JR, Collins AR, Lyon CJ, Pratico D, Finegold MJ, Wong ST, et al.2010 Rosiglitazone attenuates age- and diet-associated nonalcoholic steatohepatitis in male low-density lipoprotein receptor knockout mice. Hepatology 52 20012011. (https://doi.org/10.1002/hep.23941)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gupte AA, Minze LJ, Reyes M, Ren Y, Wang X, Brunner G, Ghosn M, Cordero-Reyes AM, Ding K, Pratico D, et al.2013 High-fat feeding-induced hyperinsulinemia increases cardiac glucose uptake and mitochondrial function despite peripheral insulin resistance. Endocrinology 154 26502662. (https://doi.org/10.1210/en.2012-2272)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gupte AA, Sabek OM, Fraga D, Minze LJ, Nishimoto SK, Liu JZ, Afshar S, Gaber L, Lyon CJ, Gaber AO, et al.2014 Osteocalcin protects against nonalcoholic steatohepatitis in a mouse model of metabolic syndrome. Endocrinology 155 46974705. (https://doi.org/10.1210/en.2014-1430)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hwang YC, Jeong IK, Ahn KJ & & Chung HY 2009 The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced beta-cell function in middle-aged male subjects. Diabetes/Metabolism Research and Reviews 25 768772. (https://doi.org/10.1002/dmrr.1045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE & & Herz J 1993 Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. Journal of Clinical Investigation 92 883893. (https://doi.org/10.1172/JCI116663)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S & & Sugimoto T 2011 Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporosis International 22 187194. (https://doi.org/10.1007/s00198-010-1184-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim A, Miller K, Jo J, Kilimnik G, Wojcik P & & Hara M 2009 Islet architecture: a comparative study. Islets 1 129136. (https://doi.org/10.4161/isl.1.2.9480)

  • Kim NH, Kim DL, Choi KM, Baik SH & & Choi DS 2000 Serum insulin, proinsulin and proinsulin/insulin ratio in type 2 diabetic patients: as an index of β-cell function or insulin resistance. Korean Journal of Internal Medicine 15 195201. (https://doi.org/10.3904/kjim.2000.15.3.195)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim JY, Lee HJ, Lee SJ, Jung YH, Yoo DY, Hwang IK, Seong JK, Ryu JM & & Han HJ 2017 Palmitic Acid-BSA enhances Amyloid-β production through GPR40-mediated dual pathways in neuronal cells: involvement of the Akt/mTOR/HIF-1α and Akt/NF-κB pathways. Scientific Reports 7 4335. (https://doi.org/10.1038/s41598-017-04175-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lecka-Czernik B, Stechschulte LA, Czernik PJ & & Dowling AR 2015 High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Molecular and Cellular Endocrinology 410 3541. (https://doi.org/10.1016/j.mce.2015.01.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, Mckee MD, Jung DY, et al.2007 Endocrine regulation of energy metabolism by the skeleton. Cell 130 456469. (https://doi.org/10.1016/j.cell.2007.05.047)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin JZ, Martagon AJ, Hsueh WA, Baxter JD, Gustafsson JA, Webb P & & Phillips KJ 2012 Thyroid hormone receptor agonists reduce serum cholesterol independent of the LDL receptor. Endocrinology 153 61366144. (https://doi.org/10.1210/en.2011-2081)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu T, Sun P, Zou J, Wang L, Wang G, Liu N, Liu Y, Ding X, Zhang B, Liang R, et al.2021 Increased frequency of beta cells with abnormal NKX6.1 expression in type 2 diabetes but not in subjects with higher risk for type 2 diabetes. BMC Endocrine Disorders 21 47. (https://doi.org/10.1186/s12902-021-00708-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ma Z, Wirström T, Borg LAH, Larsson-Nyrén G, Hals I, Bondo Hansen J, Grill V & & Björklund A 2012 Diabetes reduces β-cell mitochondria and induces distinct morphological abnormalities, which are reproducible by high glucose in vitro with attendant dysfunction. Islets 4 233242. (https://doi.org/10.4161/isl.20516)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCabe LR, Irwin R, Tekalur A, Evans C, Schepper JD, Parameswaran N & & Ciancio M 2019 Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice. Bone 118 2031. (https://doi.org/10.1016/j.bone.2018.03.024)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCluskey JT, Hamid M, Guo-Parke H, Mcclenaghan NH, Gomis R & & Flatt PR 2011 Development and functional characterization of insulin-releasing human pancreatic beta cell lines produced by electrofusion. Journal of Biological Chemistry 286 2198221992. (https://doi.org/10.1074/jbc.M111.226795)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mezza T, Ferraro PM, Sun VA, Moffa S, Cefalo CMA, Quero G, Cinti F, Sorice GP, Pontecorvi A, Folli F, et al.2018 Increased beta-cell workload modulates proinsulin-to-insulin ratio in humans. Diabetes 67 23892396. (https://doi.org/10.2337/db18-0279)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Minisola S, Rosso R, Romagnoli E, D'Erasmo E, Manfredi G, Damiani C, de Antoni F & & Mazzuoli G 1997 Serum osteocalcin and bone mineral density at various skeletal sites: a study performed with three different assays. Journal of Laboratory and Clinical Medicine 129 422429. (https://doi.org/10.1016/s0022-2143(9790075-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Montemurro C, Nomoto H, Pei L, Parekh VS, Vongbunyong KE, Vadrevu S, Gurlo T, Butler AE, Subramaniam R, Ritou E, et al.2019 IAPP toxicity activates HIF1alpha/PFKFB3 signaling delaying beta-cell loss at the expense of beta-cell function. Nature Communications 10 2679. (https://doi.org/10.1038/s41467-019-10444-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morrison JA, Aronson Friedman LA, Wang P & & Glueck CJ 2008 Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. Journal of Pediatrics 152 201206. (https://doi.org/10.1016/j.jpeds.2007.09.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, Rinfret S, Schiffrin EL & & Eisenberg MJ 2010 The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. Journal of the American College of Cardiology 56 11131132. (https://doi.org/10.1016/j.jacc.2010.05.034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mykkänen L, Haffner SM, Hales CN, Rönnemaa T & & Laakso M 1997 The relation of proinsulin, insulin, and proinsulin-to-insulin ratio to insulin sensitivity and acute insulin response in normoglycemic subjects. Diabetes 46 19901995. (https://doi.org/10.2337/diab.46.12.1990)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oliveira RBD, Carvalho CP, Polo CC, Dorighello G, Boschero AC, Oliveira HCD & & Collares-Buzato CB 2014 Impaired compensatory beta-cell function and growth in response to high-fat diet in LDL receptor knockout mice. International Journal of Experimental Pathology 95 296308. (https://doi.org/10.1111/iep.12084)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pfutzner A & & Forst T 2011 Elevated intact proinsulin levels are indicative of beta-cell dysfunction, insulin resistance, and cardiovascular risk: impact of the antidiabetic agent pioglitazone. Journal of Diabetes Science and Technology 5 784793. (https://doi.org/10.1177/193229681100500333)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pfutzner A, Kunt T, Hohberg C, Mondok A, Pahler S, Konrad T, Lubben G & & Forst T 2004 Fasting intact proinsulin is a highly specific predictor of insulin resistance in type 2 diabetes. Diabetes Care 27 682687. (https://doi.org/10.2337/diacare.27.3.682)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pi M, Wu Y & & Quarles LD 2011 GPRC6A mediates responses to osteocalcin in beta-cells in vitro and pancreas in vivo. Journal of Bone and Mineral Research 26 16801683. (https://doi.org/10.1002/jbmr.390)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, Bonner-Weir S & & Polonsky KS 1998 Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47 358364. (https://doi.org/10.2337/diabetes.47.3.358)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pittas AG, Harris SS, Eliades M, Stark P & & Dawson-Hughes B 2009 Association between serum osteocalcin and markers of metabolic phenotype. Journal of Clinical Endocrinology and Metabolism 94 827832. (https://doi.org/10.1210/jc.2008-1422)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pollock NK, Bernard PJ, Gower BA, Gundberg CM, Wenger K, Misra S, Bassali RW & & Davis CL 2011 Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with beta-cell function. Journal of Clinical Endocrinology and Metabolism 96 E1092E1099. (https://doi.org/10.1210/jc.2010-2731)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reid IR 2002 Relationships among body mass, its components, and bone. Bone 31 547555. (https://doi.org/10.1016/s8756-3282(0200864-5)

  • Roomi AB, Mahdi Salih AH, Noori SD, Nori W & & Tariq S 2022 Evaluation of bone mineral density, serum osteocalcin, and osteopontin levels in postmenopausal women with type 2 diabetes mellitus, with/without osteoporosis. Journal of Osteoporosis 2022 1437061. (https://doi.org/10.1155/2022/1437061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sabek OM, Nishimoto SK, Fraga D, Tejpal N, Ricordi C & & Gaber AO 2015 Osteocalcin effect on human beta-cells mass and function. Endocrinology 156 31373146. (https://doi.org/10.1210/EN.2015-1143)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sabek OM, Redondo MJ, Nguyen DT, Beamish CA, Fraga DW, Hampe CS, Mulukutla SN, Graviss EA & & Gaber AO 2020 Serum C-peptide and osteocalcin levels in children with recently diagnosed diabetes. Endocrinology, Diabetes and Metabolism 3 e00104. (https://doi.org/10.1002/edm2.104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schaffer AE, Taylor BL, Benthuysen JR, Liu J, Thorel F, Yuan W, Jiao Y, Kaestner KH, Herrera PL, Magnuson MA, et al.2013 Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic beta cell identity. PLoS Genetics 9 e1003274. (https://doi.org/10.1371/journal.pgen.1003274)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Seferovic MD, Beamish CA, Mosser RE, Townsend SE, Pappan K, Poitout V, Aagaard KM & & Gannon M 2018 Increases in bioactive lipids accompany early metabolic changes associated with beta-cell expansion in response to short-term high-fat diet. American Journal of Physiology 315 E1251E1263. (https://doi.org/10.1152/ajpendo.00001.2018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Singh S, Kumar D & & Lal AK 2015 Serum osteocalcin as a diagnostic biomarker for primary osteoporosis in women. Journal of Clinical and Diagnostic Research 9 RC04RC07. (https://doi.org/10.7860/JCDR/2015/14857.6318)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spacek T, Pavluch V, Alan L, Capkova N, Engstova H, Dlaskova A, Berkova Z, Saudek F & & Jezek P 2017 Nkx6.1 decline accompanies mitochondrial DNA reduction but subtle nucleoid size decrease in pancreatic islet beta-cells of diabetic Goto Kakizaki rats. Scientific Reports 7 15674. (https://doi.org/10.1038/s41598-017-15958-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spijker HS, Song H, Ellenbroek JH, Roefs MM, Engelse MA, Bos E, Koster AJ, Rabelink TJ, Hansen BC, Clark A, et al.2015 Loss of beta-cell identity occurs in type 2 diabetes and is associated with islet amyloid deposits. Diabetes 64 29282938. (https://doi.org/10.2337/db14-1752)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Surwit RS, Kuhn CM, Cochrane C, Mccubbin JA & & Feinglos MN 1988 Diet-induced type II Diabetes in C57BL/6J mice. Diabetes 37 11631167. (https://doi.org/10.2337/diab.37.9.1163)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Swisa A, Glaser B & & Dor Y 2017 Metabolic stress and compromised identity of pancreatic beta cells. Frontiers in Genetics 8 21. (https://doi.org/10.3389/fgene.2017.00021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Talchai C, Xuan S, Lin HV, Sussel L & & Accili D 2012 Pancreatic β−cell dedifferentiation as a mechanism of diabetic β-cell failure. Cell 150 12231234. (https://doi.org/10.1016/j.cell.2012.07.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor BL, Liu FF & & Sander M 2013 Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Reports 4 12621275. (https://doi.org/10.1016/j.celrep.2013.08.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wei J, Hanna T, Suda N, Karsenty G & & Ducy P 2014 Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a. Diabetes 63 10211031. (https://doi.org/10.2337/db13-0887)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wilson PW, D'agostino RB, Parise H, Sullivan L & & Meigs JB 2005 Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 112 30663072. (https://doi.org/10.1161/CIRCULATIONAHA.105.539528)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR & & Deng HW 2007 Relationship of obesity with osteoporosis. Journal of Clinical Endocrinology and Metabolism 92 16401646. (https://doi.org/10.1210/jc.2006-0572)

    • PubMed
    • Search Google Scholar
    • Export Citation