Sodium-iodide symporter and its related solute carriers in thyroid cancer

in Journal of Endocrinology
Authors:
Zhongqin Gong Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China

Search for other papers by Zhongqin Gong in
Current site
Google Scholar
PubMed
Close
,
Minghui Wei Department of Head & Neck Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, China

Search for other papers by Minghui Wei in
Current site
Google Scholar
PubMed
Close
,
Alexander C Vlantis Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China

Search for other papers by Alexander C Vlantis in
Current site
Google Scholar
PubMed
Close
,
Jason Y K Chan Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China

Search for other papers by Jason Y K Chan in
Current site
Google Scholar
PubMed
Close
,
C Andrew Van Hasselt Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China

Search for other papers by C Andrew Van Hasselt in
Current site
Google Scholar
PubMed
Close
,
Dongcai Li Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China

Search for other papers by Dongcai Li in
Current site
Google Scholar
PubMed
Close
,
Xianhai Zeng Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China

Search for other papers by Xianhai Zeng in
Current site
Google Scholar
PubMed
Close
,
Lingbin Xue Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China

Search for other papers by Lingbin Xue in
Current site
Google Scholar
PubMed
Close
,
Michael C F Tong Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China

Search for other papers by Michael C F Tong in
Current site
Google Scholar
PubMed
Close
, and
George G Chen Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China

Search for other papers by George G Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7276-3830

Correspondence should be addressed to M C F Tong or G G Chen: mtong@ent.cuhk.edu.hk or gchen@cuhk.edu.hk
Restricted access
Rent on DeepDyve

Sign up for journal news

The solute carrier (SLC) family is a large group of membrane transport proteins. Their dysfunction plays an important role in the pathogenesis of thyroid cancer. The most well-known SLC is the sodium-iodide symporter (NIS), also known as sodium/iodide co-transporter or solute carrier family 5 member 5 (SLC5A5) in thyroid cancer. The dysregulation of NIS in thyroid cancer is well documented. The role of NIS in the uptake of iodide is critical in the treatment of thyroid cancer, radioactive iodide (RAI) therapy in particular. In addition to NIS, other SLC members may affect the autophagy, proliferation, and apoptosis of thyroid cancer cells, indicating that an alteration in SLC members may affect different cellular events in the evolution of thyroid cancer. The expression of the SLC members may impact the uptake of chemicals by the thyroid, suggesting that targeting SLC members may be a promising therapeutic strategy in thyroid cancer.

 

  • Collapse
  • Expand
  • Anderson CM & & Stahl A 2013 SLC27 fatty acid transport proteins. Molecular Aspects of Medicine 34 516528. (https://doi.org/10.1016/j.mam.2012.07.010)

  • Bastos AU, Oler G, Nozima BH, Moyses RA & & Cerutti JM 2015 BRAF V600E and decreased NIS and TPO expression are associated with aggressiveness of a subgroup of papillary thyroid microcarcinoma. European Journal of Endocrinology 173 525540. (https://doi.org/10.1530/EJE-15-0254)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bonaldi E, Gargiuli C, De Cecco L, Micali A, Rizzetti MG, Greco A, Borrello MG & & Minna E 2021 BRAF inhibitors induce feedback activation of RAS pathway in thyroid cancer cells. International Journal of Molecular Sciences 22 5744. (https://doi.org/10.3390/ijms22115744)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Buitrago D, Keutgen XM, Crowley M, Filicori F, Aldailami H, Hoda R, Liu YF, Hoda RS, Scognamiglio T, Jin M, et al.2012 Intercellular adhesion molecule-1 (ICAM-1) is upregulated in aggressive papillary thyroid carcinoma. Annals of Surgical Oncology 19 973980. (https://doi.org/10.1245/s10434-011-2029-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cabanillas ME, McFadden DG & & Durante C 2016 Thyroid cancer. Lancet 388 27832795. (https://doi.org/10.1016/S0140-6736(1630172-6)

  • Chai YJ, Yi JW, Oh SW, Kim YA, Yi KH, Kim JH & & Lee KE 2017 Upregulation of SLC2 (GLUT) family genes is related to poor survival outcomes in papillary thyroid carcinoma: analysis of data from the Cancer Genome Atlas. Surgery 161 188194. (https://doi.org/10.1016/j.surg.2016.04.050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen Y, Li H, Liang W, Guo Y, Peng M, Ke W, Xiao H, Guan H & & Li Y 2021 SLC6A15 acts as a tumor suppressor to inhibit migration and invasion in human papillary thyroid cancer. Journal of Cellular Biochemistry 122 814826. (https://doi.org/10.1002/jcb.29914)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Darrouzet E, Lindenthal S, Marcellin D, Pellequer JL & & Pourcher T 2014 The sodium/iodide symporter: state of the art of its molecular characterization. Biochimica et Biophysica Acta 1838 244253. (https://doi.org/10.1016/j.bbamem.2013.08.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dorum S, Erdoğan H, Köksoy AY, Topak A & & Görükmez Ö 2022 Clinical features of pediatric renal glucosuria cases due to SLC5A2 gene variants. Pediatrics International 64 e14948. (https://doi.org/10.1111/ped.14948)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, Caillou B, Ricard M, Lumbroso JD, De Vathaire F, et al.2006 Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. Journal of Clinical Endocrinology and Metabolism 91 28922899. (https://doi.org/10.1210/jc.2005-2838)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Engelhart DC, Granados JC, Shi D, Saier MH Jr, Baker ME, Abagyan R & & Nigam SK 2020 Systems biology analysis reveals eight SLC22 transporter subgroups, including OATs, OCTs, and OCTNs. International Journal of Molecular Sciences 21 1791. (https://doi.org/10.3390/ijms21051791)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feng K, Ma R, Li H, Yin K, Du G, Chen X, Liu Z & & Yin D 2022 Upregulated SLC27A2/FATP2 in differentiated thyroid carcinoma promotes tumor proliferation and migration. Journal of Clinical Laboratory Analysis 36 e24148. (https://doi.org/10.1002/jcla.24148)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Forster IC 2019 The molecular mechanism of SLC34 proteins: insights from two decades of transport assays and structure-function studies. Pflügers Archiv: European Journal of Physiology 471 1542. (https://doi.org/10.1007/s00424-018-2207-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fortunati N, Catalano MG, Arena K, Brignardello E, Piovesan A & & Boccuzzi G 2004 Valproic acid induces the expression of the Na+/I- symporter and iodine uptake in poorly differentiated thyroid cancer cells. Journal of Clinical Endocrinology and Metabolism 89 10061009. (https://doi.org/10.1210/jc.2003-031407)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foster JR, Tinwell H & & Melching-Kollmuss S 2021 A review of species differences in the control of, and response to, chemical-induced thyroid hormone perturbations leading to thyroid cancer. Archives of Toxicology 95 807836. (https://doi.org/10.1007/s00204-020-02961-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Francis GL 2021 Solute carrier proteins and their role in thyroid hormone synthesis. Clinical Thyroidology 33 107109. (https://doi.org/10.1089/ct.2021;33.107-109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ganapathy V, Gopal E, Miyauchi S & & Prasad PD 2005 Biological functions of SLC5A8, a candidate tumour suppressor. Biochemical Society Transactions 33 237240. (https://doi.org/10.1042/BST0330237)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gierlikowski W, Broniarek K, Cheda Ł, Rogulski Z & & Kotlarek-Łysakowska M 2021 MiR-181a-5p regulates NIS expression in papillary thyroid carcinoma. International Journal of Molecular Sciences 22. (https://doi.org/10.3390/ijms22116067)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Groeneweg S, van Geest FS, Peeters RP, Heuer H & & Visser WE 2020a Thyroid hormone transporters. Endocrine Reviews 41 146–201. (https://doi.org/10.1210/endrev/bnz008)

  • Gunjača I, Matana A, Boutin T, Torlak V, Punda A, Polašek O, Boraska V, Hayward C, Zemunik T & & Barbalić M 2019 Genome-wide association meta-analysis for total thyroid hormone levels in Croatian population. Journal of Human Genetics 64 473480. (https://doi.org/10.1038/s10038-019-0586-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hadley B, Litfin T, Day CJ, Haselhorst T, Zhou Y & & Tiralongo J 2019 Nucleotide sugar transporter SLC35 family structure and function. Computational and Structural Biotechnology Journal 17 11231134. (https://doi.org/10.1016/j.csbj.2019.08.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hagenbuch B & & Stieger B 2013 The SLCO (former SLC21) superfamily of transporters. Molecular Aspects of Medicine 34 396412. (https://doi.org/10.1016/j.mam.2012.10.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hakim SA, Abd El Atti RM, Faheim RM & & Abou Gabal HH 2021 Evaluation of the prognostic value of solute carrier family 34 member 2 “SLC34A2” in papillary thyroid carcinoma: an immunohistochemical study. Analytical Cellular Pathology 2021 3198555. (https://doi.org/10.1155/2021/3198555)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han R, Sun W & & Zhang H 2021 Identification of a signature comprising 5 soluble carrier family genes to predict the recurrence of papillary thyroid carcinoma. Technology in Cancer Research and Treatment 20 15330338211036314. (https://doi.org/10.1177/15330338211036314)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hatano M, Udagawa T, Kanamori T, Sutani A, Mori T, Sohara E, Uchida S, Morio T & & Nishioka M 2022 A novel SLC5A2 heterozygous variant in a family with familial renal glucosuria. Human Genome Variation 9 42. (https://doi.org/10.1038/s41439-022-00221-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • He J, Jin Y, Zhou M, Li X, Chen W, Wang Y, Gu S, Cao Y, Chu C, Liu X, et al.2018 Solute carrier family 35 member F2 is indispensable for papillary thyroid carcinoma progression through activation of transforming growth factor-beta type I receptor/apoptosis signal-regulating kinase 1/mitogen-activated protein kinase signaling axis. Cancer Science 109 642655. (https://doi.org/10.1111/cas.13478)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • He J, Zhou M, Li X, Gu S, Cao Y, Xing T, Chen W, Chu C, Gu F, Zhou J, et al.2020 SLC34A2 simultaneously promotes papillary thyroid carcinoma growth and invasion through distinct mechanisms. Oncogene 39 26582675. (https://doi.org/10.1038/s41388-020-1181-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hermanns P, Classen C & & Pohlenz J 2020 A novel homozygous mutation in the solute carrier family 26 member 7 gene causes thyroid dyshormonogenesis in a girl with congenital hypothyroidism. Thyroid 30 18311833. (https://doi.org/10.1089/thy.2020.0293)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holman GD 2020 Structure, function and regulation of mammalian glucose transporters of the SLC2 family. Pflügers Archiv 472 11551175. (https://doi.org/10.1007/s00424-020-02411-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hou S, Xie X, Zhao J, Wu C, Li N, Meng Z, Cai C & & Tan J 2020 Downregulation of miR-146b-3p inhibits proliferation and migration and modulates the expression and location of sodium/iodide symporter in dedifferentiated thyroid cancer by potentially targeting MUC20. Frontiers in Oncology 10 566365. (https://doi.org/10.3389/fonc.2020.566365)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang F, Wang H, Xiao J, Shao C, Zhou Y, Cong W, Gong M, Sun J, Shan L, Hao Z, et al.2021 SLC34A2 up-regulation and SLC4A4 down-regulation correlates with invasion, metastasis, and the MAPK signaling pathway in papillary thyroid carcinomas. Journal of Cancer 12 54395453. (https://doi.org/10.7150/jca.56730)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ishii J, Suzuki A, Kimura T, Tateyama M, Tanaka T, Yazawa T, Arimasu Y, Chen IS, Aoyama K, Kubo Y, et al.2019 Congenital goitrous hypothyroidism is caused by dysfunction of the iodide transporter SLC26A7. Communications Biology 2 270. (https://doi.org/10.1038/s42003-019-0503-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jia L, Chen Y, Chen F, Lv J, Li Y, Hou F, Yang Z & & Deng Z 2022 Small activating RNA-activated NIS gene promotes (131)I uptake and inhibits thyroid cancer via AMPK/mTOR pathway. Pathology, Research and Practice 229 153735. (https://doi.org/10.1016/j.prp.2021.153735)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jungnickel KEJ, Parker JL & & Newstead S 2018 Structural basis for amino acid transport by the CAT family of SLC7 transporters. Nature Communications 9 550. (https://doi.org/10.1038/s41467-018-03066-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Khatami F, Larijani B, Heshmat R, Keshtkar A, Mohammadamoli M, Teimoori-Toolabi L, Nasiri S & & Tavangar SM 2017 Meta-analysis of promoter methylation in eight tumor-suppressor genes and its association with the risk of thyroid cancer. PLoS One 12 e0184892. (https://doi.org/10.1371/journal.pone.0184892)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim SY, Kim HJ, Kim SM, Chang H, Lee YS, Chang HS & & Park CS 2020 Thyroid hormone supplementation therapy for differentiated thyroid cancer after lobectomy: 5 years of follow-up. Frontiers in Endocrinology 11 520. (https://doi.org/10.3389/fendo.2020.00520)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kushchayeva Y, Kushchayev S, Jensen K & & Brown RJ 2022 Impaired glucose metabolism, anti-diabetes medications, and risk of thyroid cancer. Cancers 14 555. (https://doi.org/10.3390/cancers14030555)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee J & & Roh JL 2022 SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer. Antioxidants 11 2444. (https://doi.org/10.3390/antiox11122444)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li L, Lv B, Chen B, Guan M, Sun Y, Li H, Zhang B, Ding C, He S & & Zeng Q 2015 Inhibition of miR-146b expression increases radioiodine-sensitivity in poorly differential thyroid carcinoma via positively regulating NIS expression. Biochemical and Biophysical Research Communications 462 314321. (https://doi.org/10.1016/j.bbrc.2015.04.134)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu J, Liu Y, Lin Y & & Liang J 2019 Radioactive iodine-refractory differentiated thyroid cancer and redifferentiation therapy. Endocrinology and Metabolism 34 215225. (https://doi.org/10.3803/EnM.2019.34.3.215)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu C, Wang J, Li D, Ni R, Zhao M, Huang C & & Liu S 2022a Solute carrier Family 27 Member 6 (SLC27A6) possibly promotes the proliferation of papillary thyroid cancer by regulating c-MYC. Biochemical Genetics 60 23132326. (https://doi.org/10.1007/s10528-022-10218-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Y, Liu C, Pan Y, Zhou J, Ju H & & Zhang Y 2022b Pyruvate carboxylase promotes malignant transformation of papillary thyroid carcinoma and reduces iodine uptake. Cell Death Discovery 8 423. (https://doi.org/10.1038/s41420-022-01214-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luster M, Clarke SE, Dietlein M, Lassmann M, Lind P, Oyen WJ, Tennvall J, Bombardieri E & European Association of Nuclear Medicine (EANM) 2008 Guidelines for radioiodine therapy of differentiated thyroid cancer. European Journal of Nuclear Medicine and Molecular Imaging 35 19411959. (https://doi.org/10.1007/s00259-008-0883-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ma J & & Kan Z 2021 Circular RNA circ_0008274 enhances the malignant progression of papillary thyroid carcinoma via modulating solute carrier family 7 member 11 by sponging miR-154-3p. Endocrine Journal 68 543552. (https://doi.org/10.1507/endocrj.EJ20-0453)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miranda-Filho A, Lortet-Tieulent J, Bray F, Cao B, Franceschi S, Vaccarella S & & Maso LD 2021 Thyroid cancer incidence trends by histology in 25 countries: a population-based study. Lancet Diabetes and Endocrinology 9 225234. (https://doi.org/10.1016/S2213-8587(2100027-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nagarajah J, Ho AL, Tuttle RM, Weber WA & & Grewal RK 2015 Correlation of BRAFV600E mutation and glucose metabolism in thyroid cancer patients: an 18F-FDG PET study. Journal of Nuclear Medicine 56 662667. (https://doi.org/10.2967/jnumed.114.150607)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oh JM & & Ahn BC 2021 Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics 11 62516277. (https://doi.org/10.7150/thno.57689)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oh JM, Rajendran RL, Gangadaran P, Hong CM, Jeong JH, Lee J & & Ahn BC 2022 Targeting GLI1 transcription factor for restoring iodine avidity with redifferentiation in radioactive-iodine refractory thyroid cancers. Cancers (Basel) 14 1782. (https://doi.org/10.3390/cancers14071782)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Panda S, Banerjee N & & Chatterjee S 2020 Solute carrier proteins and c-Myc: a strong connection in cancer progression. Drug Discovery Today 25 891900. (https://doi.org/10.1016/j.drudis.2020.02.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Petersen AM, Small CM, Yan YL, Wilson C, Batzel P, Bremiller RA, Buck CL, von Hippel FA, Cresko WA & & Postlethwait JH 2022 Evolution and developmental expression of the sodium–iodide symporter (NIS, slc5a5) gene family: implications for perchlorate toxicology. Evolutionary Applications 15 10791098. (https://doi.org/10.1111/eva.13424)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pizzagalli MD, Bensimon A & & Superti-Furga G 2021 A guide to plasma membrane solute carrier proteins. FEBS Journal 288 27842835. (https://doi.org/10.1111/febs.15531)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Plantinga TS, Tesselaar MH, Morreau H, Corssmit EP, Willemsen BK, Kusters B, van Engen-van Grunsven AC, Smit JW & & Netea-Maier RT 2016 Autophagy activity is associated with membranous sodium iodide symporter expression and clinical response to radioiodine therapy in non-medullary thyroid cancer. Autophagy 12 11951205. (https://doi.org/10.1080/15548627.2016.1174802)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Porra V, Ferraro-Peyret C, Durand C, Selmi-Ruby S, Giroud H, Berger-Dutrieux N, Decaussin M, Peix JL, Bournaud C, Orgiazzi J, et al.2005 Silencing of the tumor suppressor gene SLC5A8 is associated with BRAF mutations in classical papillary thyroid carcinomas. Journal of Clinical Endocrinology and Metabolism 90 30283035. (https://doi.org/10.1210/jc.2004-1394)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qu Y, Hao L & & Wang X 2023 A young‐onset type 2 diabetic Chinese girl with familial renal glycosuria caused by a novel mutation in SLC5A2: a case report. Journal of Diabetes 15 622626. (https://doi.org/10.1111/1753-0407.13410)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Read ML, Brookes K, Thornton CEM, Fletcher A, Nieto HR, Alshahrani M, Khan R, Borges de Souza P, Zha L, Webster JRM, et al.2022 Targeting non-canonical pathways as a strategy to modulate the sodium iodide symporter. Cell Chemical Biology 29 502516.e7. (https://doi.org/10.1016/j.chembiol.2021.07.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Read ML, Brookes K, Zha L, Manivannan S, Kim J, Kocbiyik M, Fletcher A, Gorvin CM, Firth G, Fruhwirth GO, et al.2023 Combined vorinostat and chloroquine inhibit sodium iodide symporter endocytosis and enhance radionuclide uptake in vivo. Clinical Cancer Research [epub]. (https://doi.org/10.1158/1078-0432.CCR-23-2043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Riedel C, Levy O & & Carrasco N 2001 Post-transcriptional regulation of the sodium/iodide symporter by thyrotropin. Journal of Biological Chemistry 276 2145821463. (https://doi.org/10.1074/jbc.M100561200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Riesco-Eizaguirre G, Santisteban P & & De la Vieja A 2021 The complex regulation of NIS expression and activity in thyroid and extrathyroidal tissues. Endocrine-Related Cancer 28 T141T165. (https://doi.org/10.1530/ERC-21-0217)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Riesco-Eizaguirre G, Wert-Lamas L, Perales-Paton J, Sastre-Perona A, Fernandez LP & & Santisteban P 2015 The miR-146b-3p/PAX8/NIS regulatory circuit modulates the differentiation phenotype and function of thyroid cells during carcinogenesis. Cancer Research 75 41194130. (https://doi.org/10.1158/0008-5472.CAN-14-3547)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodriguez AM, Perron B, Lacroix L, Caillou B, Leblanc Gr, Schlumberger M, Bidart JM & & Pourcher T 2002 Identification and characterization of a putative human iodide transporter located at the apical membrane of thyrocytes. Journal of Clinical Endocrinology and Metabolism 87 35003503. (https://doi.org/10.1210/jcem.87.7.8797)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Romero MF, Chen AP, Parker MD & & Boron WF 2013 The SLC4 family of bicarbonate (HCO₃⁻) transporters. Molecular Aspects of Medicine 34 159182. (https://doi.org/10.1016/j.mam.2012.10.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Santarelli S, Namendorf C, Anderzhanova E, Gerlach T, Bedenk B, Kaltwasser S, Wagner K, Labermaier C, Reichel J, Drgonova J, et al.2015 The amino acid transporter SLC6A15 is a regulator of hippocampal neurochemistry and behavior. Journal of Psychiatric Research 68 261269. (https://doi.org/10.1016/j.jpsychires.2015.07.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schaller L & & Lauschke VM 2019 The genetic landscape of the human solute carrier (SLC) transporter superfamily. Human Genetics 138 13591377. (https://doi.org/10.1007/s00439-019-02081-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schmitt TL, Espinoza CR & & Loos U 2001 Transcriptional regulation of the human sodium/iodide symporter gene by Pax8 and TTF-1. Experimental and Clinical Endocrinology and Diabetes 109 2731. (https://doi.org/10.1055/s-2001-11016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schumm MA, Lechner MG, Shu ML, Ochoa JE, Kim J, Tseng CH, Leung AM & & Yeh MW 2021 Frequency of thyroid hormone replacement after lobectomy for differentiated thyroid cancer. Endocrine Practice 27 691697. (https://doi.org/10.1016/j.eprac.2021.01.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shen L, Qian C, Cao H, Wang Z, Luo T & & Liang C 2018 Upregulation of the solute carrier family 7 genes is indicative of poor prognosis in papillary thyroid carcinoma. World Journal of Surgical Oncology 16 235. (https://doi.org/10.1186/s12957-018-1535-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Singh TD, Song J, Kim J, Chin J, Ji HD, Lee JE, Lee SB, Yoon H, Yu JH, Kim SK, et al.2019 A novel orally active inverse agonist of estrogen-related receptor gamma (ERRgamma), DN200434, a booster of NIS in anaplastic thyroid cancer. Clinical Cancer Research 25 50695081. (https://doi.org/10.1158/1078-0432.CCR-18-3007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Suh S, Kim YH, Goh TS, Jeong DC, Lee CS, Jang JY, Cha W, Han ME, Kim SJ, Kim IJ, et al.2018 mRNA expression of SLC5A5 and SLC2A family genes in papillary thyroid cancer: an analysis of the cancer genome Atlas. Yonsei Medical Journal 59 746753. (https://doi.org/10.3349/ymj.2018.59.6.746)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Suh HY, Choi H, Paeng JC, Cheon GJ, Chung JK & & Kang KW 2019 Comprehensive gene expression analysis for exploring the association between glucose metabolism and differentiation of thyroid cancer. BMC Cancer 19 1260. (https://doi.org/10.1186/s12885-019-6482-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tanimura Y, Kiriya M, Kawashima A, Mori H, Luo Y, Kondo T & & Suzuki K 2021 Regulation of solute carrier family 26 member 7 (Slc26a7) by thyroid stimulating hormone in thyrocytes. Endocrine Journal 68 691699. (https://doi.org/10.1507/endocrj.EJ20-0502)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Terrier P, Sheng ZM, Schlumberger M, Tubiana M, Caillou B, Travagli JP, Fragu P, Parmentier C & & Riou G 1988 Structure and expression of c-myc and c-fos proto-oncogenes in thyroid carcinomas. British Journal of Cancer 57 4347. (https://doi.org/10.1038/bjc.1988.6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vasconcelos S, Freitas F, Rebelo A, Lopes A & & Pereira B 2022 A novel mutation in the SLC5A2 gene causing benign renal glucosuria. Journal of Pediatric and Neonatal Individualized Medicine 11 e110125. (https://doi.org/10.3892/etm.2013.1326)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Visser WE, Wong WS, Van Mullem AA, Friesema EC, Geyer J & & Visser TJ 2010 Study of the transport of thyroid hormone by transporters of the SLC10 family. Molecular and Cellular Endocrinology 315 138145. (https://doi.org/10.1016/j.mce.2009.08.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang L, Zhang Y, Yang J, Liu L, Yao B, Tian Z & & He J 2021a The knockdown of ETV4 inhibits the papillary thyroid cancer development by promoting ferroptosis upon SLC7A11 downregulation. DNA and Cell Biology 40 12111221. (https://doi.org/10.1089/dna.2021.0216)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang XS, Wu SL, Peng Z & & Zhu HH 2021b SLCO4A1 is a prognosis-associated biomarker involved in neutrophil-mediated immunity in thyroid cancer. International Journal of General Medicine 14 96159628. (https://doi.org/10.2147/IJGM.S339921)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y, Yang L, Mao L, Zhang L, Zhu Y, Xu Y, Cheng Y, Sun R, Zhang Y, Ke J, et al.2022 SGLT2 inhibition restrains thyroid cancer growth via G1/S phase transition arrest and apoptosis mediated by DNA damage response signaling pathways. Cancer Cell International 22 74. (https://doi.org/10.1186/s12935-022-02496-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wen S, Luo Y, Wu W, Zhang T, Yang Y, Ji Q, Wu Y, Shi R, Ma B, Xu M, et al.2021 Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer. Acta Biochimica et Biophysica Sinica 53 15791589. (https://doi.org/10.1093/abbs/gmab145)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, Yip L, Mian C, Vianello F, Tuttle RM, et al.2013a Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 309 14931501. (https://doi.org/10.1001/jama.2013.3190)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu S, Cheng X, Wu J, Wang Y, Wang X, Wu L, Yu H, Bao J & & Zhang L 2022 Capsaicin restores sodium iodine symporter-mediated radioiodine uptake through bypassing canonical TSH‒TSHR pathway in anaplastic thyroid carcinoma cells. Journal of Molecular Cell Biology 13 791807. (https://doi.org/10.1093/jmcb/mjab072)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yan Z, Yangyanqiu W, Shuwen H, Jing M, Haihong L, Gong C, Yin J, Qing Z & & Weili G 2021 Downregulation of Rap1GAP expression activates the TGF-β/Smad3 pathway to inhibit the expression of sodium/iodine transporter in papillary thyroid carcinoma cells. BioMed Research International 2021 6840642. (https://doi.org/10.1155/2021/6840642)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ye T, Zhong L, Ye X, Liu J, Li L & & Yi H 2021 miR-221-3p and miR-222-3p regulate the SOCS3/STAT3 signaling pathway to downregulate the expression of NIS and reduce radiosensitivity in thyroid cancer. Experimental and Therapeutic Medicine 21 652. (https://doi.org/10.3892/etm.2021.10084)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zane M, Agostini M, Enzo MV, Casal Ide E, Del Bianco P, Torresan F, Merante Boschin I, Pennelli G, Saccani A, Rubello D, et al.2013 Circulating cell-free DNA, SLC5A8 and SLC26A4 hypermethylation, BRAF(V600E): a non-invasive tool panel for early detection of thyroid cancer. Biomedicine and Pharmacotherapy 67 723730. (https://doi.org/10.1016/j.biopha.2013.06.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang H & & Chen D 2018 Synergistic inhibition of MEK/ERK and BRAF V600E with PD98059 and PLX4032 induces sodium/iodide symporter (NIS) expression and radioiodine uptake in BRAF mutated papillary thyroid cancer cells. Thyroid Research 11 13. (https://doi.org/10.1186/s13044-018-0057-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Y & & Wang J 2020 Targeting uptake transporters for cancer imaging and treatment. Acta Pharmaceutica Sinica. B 10 7990. (https://doi.org/10.1016/j.apsb.2019.12.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Z, Liu D, Murugan AK, Liu Z & & Xing M 2014 Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer. Endocrine-Related Cancer 21 161173. (https://doi.org/10.1530/ERC-13-0399)

    • PubMed
    • Search Google Scholar
    • Export Citation