This paper forms part of a special collection on Incretins. The guest editors for this collection were Timo D Müller and Erin Mulvihill.
The glucagon-like peptide 1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that emerged as a pharmacologic target in cardiometabolic disease, including diabetes and obesity, over 30 years ago. The subsequent widespread clinical use of GLP-1R agonists, including exenatide, liraglutide, and semaglutide, has made the GLP-1R a preeminent model for understanding basic GPCR biology, including the emergent field of biased agonism. Recent data demonstrate that the dual GLP-1R/glucose dependent insulinotropic polypeptide receptor (GIPR) agonist tirzepatide exhibits a biased signaling profile characterized by preferential Gαs activation over β-arrestin recruitment, which appears to contribute to its insulinotropic and body-weight reducing effects in preclinical models. This constitutes a major finding in which nuanced, mechanistic receptor signaling dynamics in vitro mediate real-world clinical differentiation within a drug class. Because of the striking bench-top-to-bed side relevance of this biased signaling phenomenon, we have undertaken a review of the emerging data detailing biased agonism at the GLP-1R. In this review, we introduce the core concept of biased agonism followed by a detailed consideration of the key mechanisms, including ligand-mediated bias, receptor-mediated bias, and systems/cell-type bias. Current industry programs are largely, if not entirely, focused on developing biased ligands, and so we have dedicated a section of the review to a brief meta-analysis of compounds reported to drive biased signaling, with a consideration of the structural determinants of receptor–ligand interactions. In this work, we aim to assess the current knowledge regarding signaling bias at the GLP-1R and how these ideas might be leveraged in future optimization.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 436 | 436 | 45 |
PDF Downloads | 605 | 605 | 61 |
Adelhorst K, Hedegaard BB, Knudsen LB & & Kirk O 1994 Structure-activity studies of glucagon-like peptide-1. Journal of Biological Chemistry 269 6275–6278. (https://doi.org/10.1016/S0021-9258(1737366-0)
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, et al.2019 The concise guide to pharmacology 2019/20: G protein-coupled receptors. British Journal of Pharmacology 176(Supplement 1) S21–S141. (https://doi.org/10.1111/bph.14748)
Baggio LL & & Drucker DJ 2007 Biology of incretins: GLP-1 and GIP. Gastroenterology 132 2131–2157. (https://doi.org/10.1053/j.gastro.2007.03.054)
Bergmann NC, Gasbjerg LS, Heimburger SM, Krogh LSL, Dela F, Hartmann B, Holst JJ, Jessen L, Christensen MB, Vilsboll T, et al.2020 No acute effects of exogenous glucose-dependent insulinotropic polypeptide on energy intake, appetite, or energy expenditure when added to treatment with a long-acting glucagon-like peptide 1 receptor agonist in men with type 2 diabetes. Diabetes Care 43 588–596. (https://doi.org/10.2337/dc19-0578)
Buenaventura T, Bitsi S, Laughlin WE, Burgoyne T, Lyu Z, Oqua AI, Norman H, McGlone ER, Klymchenko AS, Correa IR, et al.2019 Agonist-induced membrane nanodomain clustering drives GLP-1 receptor responses in pancreatic beta cells. PLoS Biology 17 e3000097. (https://doi.org/10.1371/journal.pbio.3000097)
Bueno AB, Sun B, Willard FS, Feng D, Ho JD, Wainscott DB, Showalter AD, Vieth M, Chen Q, Stutsman C, et al.2020 Structural insights into probe-dependent positive allosterism of the GLP-1 receptor. Nature Chemical Biology 16 1105–1110. (https://doi.org/10.1038/s41589-020-0589-7)
Campbell JE & & Drucker DJ 2013 Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metabolism 17 819–837. (https://doi.org/10.1016/j.cmet.2013.04.008)
Capozzi ME, Svendsen B, Encisco SE, Lewandowski SL, Martin MD, Lin H, Jaffe JL, Coch RW, Haldeman JM, MacDonald PE, et al.2019a beta Cell tone is defined by proglucagon peptides through cAMP signaling. JCI Insight 4 e126742. (https://doi.org/10.1172/jci.insight.126742)
Capozzi ME, Wait JB, Koech J, Gordon AN, Coch RW, Svendsen B, Finan B, D'Alessio DA & & Campbell JE 2019b Glucagon lowers glycemia when beta-cells are active. JCI Insight 5 e129954. (https://doi.org/10.1172/jci.insight.129954)
Chen M, Wang J, Dickerson KE, Kelleher J, Xie T, Gupta D, Lai EW, Pacak K, Gavrilova O & & Weinstein LS 2009 Central nervous system imprinting of the G protein G(s)alpha and its role in metabolic regulation. Cell Metabolism 9 548–555. (https://doi.org/10.1016/j.cmet.2009.05.004)
Chen M, Berger A, Kablan A, Zhang J, Gavrilova O & & Weinstein LS 2012 Gsalpha deficiency in the paraventricular nucleus of the hypothalamus partially contributes to obesity associated with Gsalpha mutations. Endocrinology 153 4256–4265. (https://doi.org/10.1210/en.2012-1113)
Cheng YH, Ho MS, Huang WT, Chou YT & & King K 2015 Modulation of glucagon-like Peptide-1 (GLP-1) potency by endocannabinoid-like lipids represents a novel mode of regulating GLP-1 receptor signaling. Journal of Biological Chemistry 290 14302–14313. (https://doi.org/10.1074/jbc.M115.655662)
Coskun T, Sloop KW, Loghin C, Alsina-Fernandez J, Urva S, Bokvist KB, Cui X, Briere DA, Cabrera O, Roell WC, et al.2018 LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Molecular Metabolism 18 3–14. (https://doi.org/10.1016/j.molmet.2018.09.009)
Darbalaei S, Yuliantie E, Dai A, Chang R, Zhao P, Yang D, Wang MW, Sexton PM & & Wootten D 2020 Evaluation of biased agonism mediated by dual agonists of the GLP-1 and glucagon receptors. Biochemical Pharmacology 180 114150. (https://doi.org/10.1016/j.bcp.2020.114150)
Darbalaei S, Chang RL, Zhou QT, Chen Y, Dai AT, Wang MW & & Yang DH 2022 Effects of site-directed mutagenesis of GLP-1 and glucagon receptors on signal transduction activated by dual and triple agonists. Acta Pharmacologica Sinica 44 421–433. (https://doi.org/10.1038/s41401-022-00962-y)
Davenport AP, Scully CCG, de Graaf C, Brown AJH & & Maguire JJ 2020 Advances in therapeutic peptides targeting G protein-coupled receptors. Nature Reviews. Drug Discovery 19 389–413. (https://doi.org/10.1038/s41573-020-0062-z)
Davies M, Pieber TR, Hartoft-Nielsen ML, Hansen OKH, Jabbour S & & Rosenstock J 2017 Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: a randomized clinical trial. JAMA 318 1460–1470. (https://doi.org/10.1001/jama.2017.14752)
Dawed AY, Mari A, Brown A, McDonald TJ, Li L, Wang S, Hong MG, Sharma S, Robertson NR, Mahajan A, et al.2023 Pharmacogenomics of GLP-1 receptor agonists: a genome-wide analysis of observational data and large randomised controlled trials. Lancet Diabetes and Endocrinology 11 33–41. (https://doi.org/10.1016/S2213-8587(2200340-0)
Del Prato S, Kahn SE, Pavo I, Weerakkody GJ, Yang Z, Doupis J, Aizenberg D, Wynne AG, Riesmeyer JS, Heine RJ, et al.2021 Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet 398 1811–1824. (https://doi.org/10.1016/S0140-6736(2102188-7)
Dillon JS, Tanizawa Y, Wheeler MB, Leng XH, Ligon BB, Rabin DU, Yoo-Warren H, Permutt MA & & Boyd AE 1993 Cloning and functional expression of the human glucagon-like peptide-1 (GLP-1) receptor. Endocrinology 133 1907–1910. (https://doi.org/10.1210/endo.133.4.8404634)
Ding WG, Renstrom E, Rorsman P, Buschard K & & Gromada J 1997 Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide stimulate Ca2+-induced secretion in rat alpha-cells by a protein kinase A-mediated mechanism. Diabetes 46 792–800. (https://doi.org/10.2337/diab.46.5.792)
Drucker DJ 2020 Advances in oral peptide therapeutics. Nature Reviews Drug Discovery 19 277–289. (https://doi.org/10.1038/s41573-019-0053-0)
Ehrlich AT, Semache M, Gross F, Da Fonte DF, Runtz L, Colley C, Mezni A, Le Gouill C, Lukasheva V, Hogue M, et al.2019 Biased signaling of the Mu opioid receptor revealed in native neurons. iScience 14 47–57. (https://doi.org/10.1016/j.isci.2019.03.011)
El Daibani A, Paggi JM, Kim K, Laloudakis YD, Popov P, Bernhard SM, Krumm BE, Olsen RHJ, Diberto J, Carroll FI, et al.2023 Molecular mechanism of biased signaling at the kappa opioid receptor. Nature Communications 14 1338. (https://doi.org/10.1038/s41467-023-37041-7)
Finan B, Yang B, Ottaway N, Stemmer K, Muller TD, Yi CX, Habegger K, Schriever SC, Garcia-Caceres C, Kabra DG, et al.2012 Targeted estrogen delivery reverses the metabolic syndrome. Nature Medicine 18 1847–1856. (https://doi.org/10.1038/nm.3009)
Finan B, Ma T, Ottaway N, Müller TD, Habegger KM, Heppner KM, Kirchner H, Holland J, Hembree J, Raver C, et al.2013 Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Science Translational Medicine 5 209ra151. (https://doi.org/10.1126/scitranslmed.3007218)
Finan B, Yang B, Ottaway N, Smiley DL, Ma T, Clemmensen C, Chabenne J, Zhang L, Habegger KM, Fischer K, et al.2015 A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nature Medicine 21 27–36. (https://doi.org/10.1038/nm.3761)
Frias JP, Bastyr EJ 3rd, Vignati L, Tschop MH, Schmitt C, Owen K, Christensen RH & & DiMarchi RD 2017 The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. Cell Metabolism 26 343–352.e2. (https://doi.org/10.1016/j.cmet.2017.07.011)
Frias JP, Davies MJ, Rosenstock J, Perez Manghi FC, Fernandez Lando L, Bergman BK, Liu B, Cui X, Brown K & Investigators S 2021 Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. New England Journal of Medicine 385 503–515. (https://doi.org/10.1056/NEJMoa2107519)
Frias JP, Nauck MA, Van J, Kutner ME, Cui X, Benson C, Urva S, Gimeno RE, Milicevic Z, Robins D, et al.2018 Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 392 2180–2193. (https://doi.org/10.1016/S0140-6736(1832260-8)
Frias JP, Hsia S, Eyde S, Liu R, Ma X, Konig M, Kazda C, Mather KJ, Haupt A, Pratt E, et al.2023 Efficacy and safety of oral orforglipron in patients with type 2 diabetes: a multicentre, randomised, dose-response, phase 2 study. Lancet 402 472–483. (https://doi.org/10.1016/S0140-6736(2301302-8)
Friedrichsen MH, Endahl L, Kreiner FF, Goldwater R, Kankam M, Toubro S & & Nygard SB 2023 Results from three phase 1 trials of NNC9204-1177, a glucagon/GLP-1 receptor co-agonist: effects on weight loss and safety in adults with overweight or obesity. Molecular Metabolism 78 101801. (https://doi.org/10.1016/j.molmet.2023.101801)
Garber A, Henry RR, Ratner R, Hale P, Chang CT, Bode B & LEAD-3 (Mono) Study Group 2011 Liraglutide, a once-daily human glucagon-like peptide 1 analogue, provides sustained improvements in glycaemic control and weight for 2 years as monotherapy compared with glimepiride in patients with type 2 diabetes. Diabetes, Obesity and Metabolism 13 348–356. (https://doi.org/10.1111/j.1463-1326.2010.01356.x)
Gomes I, Sierra S, Lueptow L, Gupta A, Gouty S, Margolis EB, Cox BM & & Devi LA 2020 Biased signaling by endogenous opioid peptides. PNAS 117 11820–11828. (https://doi.org/10.1073/pnas.2000712117)
Graham GV, McLaughlin CM & & Flatt PR 2020 Role of exendin‐4 in the Gila monster: further lessons regarding human oral glucagon‐like peptide‐1 therapy? Diabetes, Obesity and Metabolism 22 2509–2511. (https://doi.org/10.1111/dom.14171)
Griffith DA, Edmonds DJ, Fortin JP, Kalgutkar AS, Kuzmiski JB, Loria PM, Saxena AR, Bagley SW, Buckeridge C & Curto JMet al. 2022 A small-molecule oral agonist of the human glucagon-like peptide-1 receptor. Journal of Medicinal Chemistry 65 8208–8226. (https://doi.org/10.1021/acs.jmedchem.1c01856)
Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB & & Gloriam DE 2017 Trends in GPCR drug discovery: new agents, targets and indications. Nature Reviews Drug Discovery 16 829–842. (https://doi.org/10.1038/nrd.2017.178)
Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE & & Babu MM 2018 Pharmacogenomics of GPCR drug targets. Cell 172 41–54.e19. (https://doi.org/10.1016/j.cell.2017.11.033)
Henderson SJ, Konkar A, Hornigold DC, Trevaskis JL, Jackson R, Fritsch Fredin M, Jansson-Lofmark R, Naylor J, Rossi A, Bednarek MA, et al.2016 Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon receptor peptide agonist in rodents and non-human primates. Diabetes, Obesity and Metabolism 18 1176–1190. (https://doi.org/10.1111/dom.12735)
Jall S, Sachs S, Clemmensen C, Finan B, Neff F, DiMarchi RD, Tschop MH, Muller TD & & Hofmann SM 2017 Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice. Molecular Metabolism 6 440–446. (https://doi.org/10.1016/j.molmet.2017.02.002)
Jastreboff AM, Kaplan LM, Frias JP, Wu Q, Du Y, Gurbuz S, Coskun T, Haupt A, Milicevic Z, Hartman ML, et al.2023 Triple-hormone-receptor agonist retatrutide for obesity: a phase 2 trial. New England Journal of Medicine 389 514–526. (https://doi.org/10.1056/NEJMoa2301972)
Jones B, Buenaventura T, Kanda N, Chabosseau P, Owen BM, Scott R, Goldin R, Angkathunyakul N, Correa IR, Bosco D, et al.2018 Targeting GLP-1 receptor trafficking to improve agonist efficacy. Nature Communications 9 1602. (https://doi.org/10.1038/s41467-018-03941-2)
Karageorgos V, Venihaki M, Sakellaris S, Pardalos M, Kontakis G, Matsoukas MT, Gravanis A, Margioris A & & Liapakis G 2018 Current understanding of the structure and function of family B GPCRs to design novel drugs. Hormones (Athens) 17 45–59. (https://doi.org/10.1007/s42000-018-0009-5)
Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H & & Seino S 2001 Critical role of cAMP-GEFII–Rim2 complex in incretin-potentiated insulin secretion. Journal of Biological Chemistry 276 46046–46053. (https://doi.org/10.1074/jbc.M108378200)
Katada T & & Ui M 1979 Islet-activating protein. Enhanced insulin secretion and cyclic AMP accumulation in pancreatic islets due to activation of native calcium ionophores. Journal of Biological Chemistry 254 469–479. (https://doi.org/10.1016/S0021-9258(1737941-3)
Kawai T, Sun B, Yoshino H, Feng D, Suzuki Y, Fukazawa M, Nagao S, Wainscott DB, Showalter AD, Droz BA, et al.2020 Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist. PNAS 117 29959–29967. (https://doi.org/10.1073/pnas.2014879117)
Killion EA, Chen M, Falsey JR, Sivits G, Hager T, Atangan L, Helmering J, Lee J, Li H, Wu B, et al.2020 Chronic glucose-dependent insulinotropic polypeptide receptor (GIPR) agonism desensitizes adipocyte GIPR activity mimicking functional GIPR antagonism. Nature Communications 11 4981. (https://doi.org/10.1038/s41467-020-18751-8)
King K, Lin NP, Cheng YH, Chen GH & & Chein RJ 2015 Isolation of positive modulator of glucagon-like peptide-1 signaling from Trigonella foenum-graecum (fenugreek) seed. Journal of Biological Chemistry 290 26235–26248. (https://doi.org/10.1074/jbc.M115.672097)
Knerr PJ, Mowery SA, Finan B, Perez-Tilve D, Tschop MH & & DiMarchi RD 2020 Selection and progression of unimolecular agonists at the GIP, GLP-1, and glucagon receptors as drug candidates. Peptides 125 170225. (https://doi.org/10.1016/j.peptides.2019.170225)
Knudsen LB & & Lau J 2019 The discovery and development of liraglutide and semaglutide. Frontiers in Endocrinology 10 155. (https://doi.org/10.3389/fendo.2019.00155)
Knudsen LB, Nielsen PF, Huusfeldt PO, Johansen NL, Madsen K, Pedersen FZ, Thogersen H, Wilken M & & Agerso H 2000 Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. Journal of Medicinal Chemistry 43 1664–1669. (https://doi.org/10.1021/jm9909645)
Lau J, Bloch P, Schaffer L, Pettersson I, Spetzler J, Kofoed J, Madsen K, Knudsen LB, McGuire J, Steensgaard DB, et al.2015 Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. Journal of Medicinal Chemistry 58 7370–7380. (https://doi.org/10.1021/acs.jmedchem.5b00726)
Lefkowitz RJ 1998 G Protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. Journal of Biological Chemistry 273 18677–18680. (https://doi.org/10.1074/jbc.273.30.18677)
Lefkowitz RJ 2012 A brief history of G-protein coupled receptors (Nobel Lecture). Angewandte Chemie International Edition 2013 52 6 3 66–6378. (https://doi.org/10.1002/anie.201301924)
Lei S, Clydesdale L, Dai A, Cai X, Feng Y, Yang D, Liang YL, Koole C, Zhao P, Coudrat T, et al.2018 Two distinct domains of the glucagon-like peptide-1 receptor control peptide-mediated biased agonism. Journal of Biological Chemistry 293 9370–9387. (https://doi.org/10.1074/jbc.RA118.003278)
Liang YL, Khoshouei M, Glukhova A, Furness SGB, Zhao P, Clydesdale L, Koole C, Truong TT, Thal DM, Lei S, et al.2018 Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex. Nature 555 121–125. (https://doi.org/10.1038/nature25773)
Liu S, Jean-Alphonse FG, White AD, Wootten D, Sexton PM, Gardella TJ, Vilardaga JP & & Gellman SH 2019 Use of backbone modification to enlarge the spatiotemporal diversity of parathyroid hormone receptor-1 signaling via biased agonism. Journal of the American Chemical Society 141 14486–14490. (https://doi.org/10.1021/jacs.9b04179)
Lucey M, Pickford P, Bitsi S, Minnion J, Ungewiss J, Schoeneberg K, Rutter GA, Bloom SR, Tomas A & & Jones B 2020 Disconnect between signalling potency and in vivo efficacy of pharmacokinetically optimised biased glucagon-like peptide-1 receptor agonists. Molecular Metabolism 37 100991. (https://doi.org/10.1016/j.molmet.2020.100991)
Malaisse WJ, Malaisse-Lagae F & & Mayhew D 1967 A possible role for the adenylcyclase system in insulin secretion. Journal of Clinical Investigation 46 1724–1734. (https://doi.org/10.1172/JCI105663)
Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, et al.2016 Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. New England Journal of Medicine 375 1834–1844. (https://doi.org/10.1056/NEJMoa1607141)
Marzook A, Chen S, Pickford P, Lucey M, Wang Y, Correa IR Jr, Broichhagen J, Hodson DJ, Salem V, Rutter GA, et al.2021 Evaluation of efficacy- versus affinity-driven agonism with biased GLP-1R ligands P5 and exendin-F1. Biochemical Pharmacology 190 114656. (https://doi.org/10.1016/j.bcp.2021.114656)
Montrose-Rafizadeh C, Avdonin P, Garant MJ, Rodgers BD, Kole S, Yang H, Levine MA, Schwindinger W & & Bernier M 1999 Pancreatic glucagon-like Peptide-1 receptor couples to multiple G proteins and activates mitogen-activated protein kinase pathways in Chinese hamster ovary cells. Endocrinology 140 1132–1140. (https://doi.org/10.1210/endo.140.3.6550)
Morris LC, Nance KD, Gentry PR, Days EL, Weaver CD, Niswender CM, Thompson AD, Jones CK, Locuson CW, Morrison RD, et al.2014 Discovery of (S)-2-cyclopentyl-N-((1-isopropylpyrrolidin2-yl)-9-methyl-1-oxo-2,9-dihydro-1H-py rrido[3,4-b]indole-4-carboxamide (VU0453379): a novel, CNS penetrant glucagon-like peptide 1 receptor (GLP-1R) positive allosteric modulator (PAM). Journal of Medicinal Chemistry 57 10192–10197. (https://doi.org/10.1021/jm501375c)
Novikoff A, O'Brien SL, Bernecker M, Grandl G, Kleinert M, Knerr PJ, Stemmer K, Klingenspor M, Zeigerer A, DiMarchi R, et al.2021 Spatiotemporal GLP-1 and GIP receptor signaling and trafficking/recycling dynamics induced by selected receptor mono- and dual-agonists. Molecular Metabolism 49 101181. (https://doi.org/10.1016/j.molmet.2021.101181)
Pamir N, Lynn FC, Buchan AMJ, Ehses J, Hinke SA, Pospisilik JA, Miyawaki K, Yamada Y, Seino Y, McIntosh CHS, et al.2003 Glucose-dependent insulinotropic polypeptide receptor null mice exhibit compensatory changes in the enteroinsular axis. American Journal of Physiology Endocrinology and Metabolism 284 E931–E939. (https://doi.org/10.1152/ajpendo.00270.2002)
Pederson RA, Satkunarajah M, McIntosh CHS, Scrocchi LA, Flamez D, Schuit F, Drucker DJ & & Wheeler MB 1998 Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor –/– mice. Diabetes 47 1046–1052. (https://doi.org/10.2337/diabetes.47.7.1046)
Pena KA, White AD, Savransky S, Castillo IP, Jean-Alphonse FG, Gardella TJ, Sutkeviciute I & & Vilardaga JP 2022 Biased GPCR signaling by the native parathyroid hormone-related protein 1 to 141 relative to its N-terminal fragment 1 to 36. Journal of Biological Chemistry 298 102332. (https://doi.org/10.1016/j.jbc.2022.102332)
Portron A, Jadidi S, Sarkar N, DiMarchi R & & Schmitt C 2017 Pharmacodynamics, pharmacokinetics, safety and tolerability of the novel dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 agonist RG7697 after single subcutaneous administration in healthy subjects. Diabetes, Obesity and Metabolism 19 1446–1453. (https://doi.org/10.1111/dom.13025)
Rajagopal S, Ahn S, Rominger DH, Gowen-MacDonald W, Lam CM, Dewire SM, Violin JD & & Lefkowitz RJ 2011 Quantifying ligand bias at seven-transmembrane receptors. Molecular Pharmacology 80 367–377. (https://doi.org/10.1124/mol.111.072801)
Rosenstock J, Frias J, Jastreboff AM, Du Y, Lou J, Gurbuz S, Thomas MK, Hartman ML, Haupt A, Milicevic Z, et al.2023 Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: a randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA. Lancet 402 529–544. (https://doi.org/10.1016/S0140-6736(2301053-X)
Runge S, Thogersen H, Madsen K, Lau J & & Rudolph R 2008 Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain. Journal of Biological Chemistry 283 11340–11347. (https://doi.org/10.1074/jbc.M708740200)
Saxena AR, Gorman DN, Esquejo RM, Bergman A, Chidsey K, Buckeridge C, Griffith DA & & Kim AM 2021 Danuglipron (PF-06882961) in type 2 diabetes: a randomized, placebo-controlled, multiple ascending-dose phase 1 trial. Nature Medicine 27 1079–1087. (https://doi.org/10.1038/s41591-021-01391-w)
Schiavon M, Visentin R, Gobel B, Riz M, Cobelli C, Klabunde T & & Dalla Man C 2021 Improved postprandial glucose metabolism in type 2 diabetes by the dual glucagon-like peptide-1/glucagon receptor agonist SAR425899 in comparison with liraglutide. Diabetes, Obesity and Metabolism 23 1795–1805. (https://doi.org/10.1111/dom.14394)
Schmitt C, Portron A, Jadidi S, Sarkar N & & DiMarchi R 2017 Pharmacodynamics, pharmacokinetics and safety of multiple ascending doses of the novel dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 agonist RG7697 in people with type 2 diabetes mellitus. Diabetes, Obesity and Metabolism 19 1436–1445. (https://doi.org/10.1111/dom.13024)
Shigeto M, Ramracheya R, Tarasov AI, Cha CY, Chibalina MV, Hastoy B, Philippaert K, Reinbothe T, Rorsman N, Salehi A, et al.2015 GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. Journal of Clinical Investigation 125 4714–4728. (https://doi.org/10.1172/JCI81975)
Smith JS, Lefkowitz RJ & & Rajagopal S 2018 Biased signalling: from simple switches to allosteric microprocessors. Nature Reviews Drug Discovery 17 243–260. (https://doi.org/10.1038/nrd.2017.229)
Song G, Yang D, Wang Y, de Graaf C, Zhou Q, Jiang S, Liu K, Cai X, Dai A, Lin G, et al.2017 Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546 312–315. (https://doi.org/10.1038/nature22378)
Sorli C, Harashima SI, Tsoukas GM, Unger J, Karsbøl JD, Hansen T & & Bain SC 2017 Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes and Endocrinology 5 251–260. (https://doi.org/10.1016/S2213-8587(1730013-X)
Sriram K & & Insel PA 2018 G Protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Molecular Pharmacology 93 251–258. (https://doi.org/10.1124/mol.117.111062)
Sun B, Willard FS, Feng D, Alsina-Fernandez J, Chen Q, Vieth M, Ho JD, Showalter AD, Stutsman C, Ding L, et al.2022 Structural determinants of dual incretin receptor agonism by tirzepatide. PNAS 119 e2116506119. (https://doi.org/10.1073/pnas.2116506119)
Svendsen B, Larsen O, Gabe MBN, Christiansen CB, Rosenkilde MM, Drucker DJ & & Holst JJ 2018 Insulin secretion depends on intra-islet glucagon signaling. Cell Reports 25 1127–1134.e2. (https://doi.org/10.1016/j.celrep.2018.10.018)
Teixeira LB, Parreiras-E-Silva LT, Bruder-Nascimento T, Duarte DA, Simoes SC, Costa RM, Rodriguez DY, Ferreira PAB, Silva CAA, Abrao EP, et al.2017 Ang-(1–7) is an endogenous beta-arrestin-biased agonist of the AT1 receptor with protective action in cardiac hypertrophy. Scientific Reports 7 11903. (https://doi.org/10.1038/s41598-017-12074-3)
Tschop MH, Finan B, Clemmensen C, Gelfanov V, Perez-Tilve D, Muller TD & & DiMarchi RD 2016 Unimolecular polypharmacy for treatment of diabetes and obesity. Cell Metabolism 24 51–62. (https://doi.org/10.1016/j.cmet.2016.06.021)
van der Lee MM, Verkaar F, Wat JW, van Offenbeek J, Timmerman M, Voorneveld L, van Lith LH & & Zaman GJ 2013 2013 beta-arrestin-biased signaling of PTH analogs of the type 1 parathyroid hormone receptor. Cellular Signalling 25 527–538. (https://doi.org/10.1016/j.cellsig.2012.11.012)
Wang J, Yang D, Cheng X, Yang L, Wang Z, Dai A, Cai X, Zhang C, Yuliantie E, Liu Q, et al.2021 Allosteric modulators enhancing GLP-1 binding to GLP-1R via a transmembrane site. ACS Chemical Biology 16 2444–2452. (https://doi.org/10.1021/acschembio.1c00552)
Weis WI & & Kobilka BK 2018 The molecular basis of G protein-coupled receptor activation. Annual Review of Biochemistry 87 897–919. (https://doi.org/10.1146/annurev-biochem-060614-033910)
Wharton S, Blevins T, Connery L, Rosenstock J, Raha S, Liu R, Ma X, Mather KJ, Haupt A, Robins D, et al.2023 Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. New England Journal of Medicine 389 877–888. (https://doi.org/10.1056/NEJMoa2302392)
Willard FS, Douros JD, Gabe MB, Showalter AD, Wainscott DB, Suter TM, Capozzi ME, van der Velden WJ, Stutsman C, Cardona GR, et al.2020 Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 5 e140532. (https://doi.org/10.1172/jci.insight.140532)
Winpenny D, Clark M & & Cawkill D 2016 Biased ligand quantification in drug discovery: from theory to high throughput screening to identify new biased Mu opioid receptor agonists. British Journal of Pharmacology 173 1393–1403. (https://doi.org/10.1111/bph.13441)
Wisler JW, Xiao K, Thomsen AR & & Lefkowitz RJ 2014 Recent developments in biased agonism. Current Opinion in Cell Biology 27 18–24. (https://doi.org/10.1016/j.ceb.2013.10.008)
Wootten D, Reynolds CA, Smith KJ, Mobarec JC, Koole C, Savage EE, Pabreja K, Simms J, Sridhar R, Furness SGB, et al.2016 The extracellular surface of the GLP-1 receptor is a molecular trigger for biased agonism. Cell 165 1632–1643. (https://doi.org/10.1016/j.cell.2016.05.023)
Wu F, Yang L, Hang K, Laursen M, Wu L, Han GW, Ren Q, Roed NK, Lin G, Hanson MA, et al.2020 Full-length human GLP-1 receptor structure without orthosteric ligands. Nature Communications 11 1272. (https://doi.org/10.1038/s41467-020-14934-5)
Zaïmia N, Obeid J, Varrault A, Sabatier J, Broca C, Gilon P, Costes S, Bertrand G & & Ravier MA 2023 GLP-1 and GIP receptors signal through distinct beta-arrestin 2-dependent pathways to regulate pancreatic beta cell function. Cell Reports 42 113326. (https://doi.org/10.1016/j.celrep.2023.113326)
Zhang H, Sturchler E, Zhu J, Nieto A, Cistrone PA, Xie J, He L, Yea K, Jones T, Turn R, et al.2015 Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects. Nature Communications 6 8918. (https://doi.org/10.1038/ncomms9918)
Zhang Y, Sun B, Feng D, Hu H, Chu M, Qu Q, Tarrasch JT, Li S, Sun Kobilka T, Kobilka BK, et al.2017 Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546 248–253. (https://doi.org/10.1038/nature22394)
Zhang X, Belousoff MJ, Liang YL, Danev R, Sexton PM & & Wootten D 2021 Structure and dynamics of semaglutide- and taspoglutide-bound GLP-1R-Gs complexes. Cell Reports 36 109374. (https://doi.org/10.1016/j.celrep.2021.109374)
Zhao P, Liang YL, Belousoff MJ, Deganutti G, Fletcher MM, Willard FS, Bell MG, Christe ME, Sloop KW, Inoue A, et al.2020 Activation of the GLP-1 receptor by a non-peptidic agonist. Nature 577 432–436. (https://doi.org/10.1038/s41586-019-1902-z)
Zhao F, Zhou Q, Cong Z, Hang K, Zou X, Zhang C, Chen Y, Dai A, Liang A, Ming Q, et al.2022 Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nature Communications 13 1057. (https://doi.org/10.1038/s41467-022-28683-0)
Online ISSN: 1479-6805
Print ISSN: 0022-0795
CONTACT US
Bioscientifica Ltd | Starling House | 1600 Bristol Parkway North | Bristol BS34 8YU | UK
Bioscientifica Ltd | Registered in England no 3190519