Specific cellular microenvironments for spatiotemporal regulation of StAR and steroid synthesis

in Journal of Endocrinology
Authors:
Ana Fernanda Castillo Departamento de Bioquímica Humana, Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina

Search for other papers by Ana Fernanda Castillo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1572-4728
,
Cecilia Poderoso Departamento de Bioquímica Humana, Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina

Search for other papers by Cecilia Poderoso in
Current site
Google Scholar
PubMed
Close
,
Paula Mariana Maloberti Departamento de Bioquímica Humana, Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina

Search for other papers by Paula Mariana Maloberti in
Current site
Google Scholar
PubMed
Close
,
Fabiana Cornejo Maciel Departamento de Bioquímica Humana, Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina

Search for other papers by Fabiana Cornejo Maciel in
Current site
Google Scholar
PubMed
Close
,
María Mercedes Mori Sequeiros Garcia Departamento de Bioquímica Humana, Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina

Search for other papers by María Mercedes Mori Sequeiros Garcia in
Current site
Google Scholar
PubMed
Close
,
Ulises Daniel Orlando CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina

Search for other papers by Ulises Daniel Orlando in
Current site
Google Scholar
PubMed
Close
,
Pablo Mele Departamento de Bioquímica Humana, Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina

Search for other papers by Pablo Mele in
Current site
Google Scholar
PubMed
Close
,
Yanina Benzo Departamento de Bioquímica Humana, Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina

Search for other papers by Yanina Benzo in
Current site
Google Scholar
PubMed
Close
,
Melina Andrea Dattilo Departamento de Bioquímica Humana, Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina

Search for other papers by Melina Andrea Dattilo in
Current site
Google Scholar
PubMed
Close
,
Jesica Prada CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina

Search for other papers by Jesica Prada in
Current site
Google Scholar
PubMed
Close
,
Luciano Quevedo CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina

Search for other papers by Luciano Quevedo in
Current site
Google Scholar
PubMed
Close
,
Matías Belluno CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina

Search for other papers by Matías Belluno in
Current site
Google Scholar
PubMed
Close
,
Cristina Paz Departamento de Bioquímica Humana, Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina

Search for other papers by Cristina Paz in
Current site
Google Scholar
PubMed
Close
, and
Ernesto Jorge Podesta Departamento de Bioquímica Humana, Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina

Search for other papers by Ernesto Jorge Podesta in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to A F Castillo: afcastillo@fmed.uba.ar

*(A F Castillo, C Poderoso and P M Maloberti contributed equally to this work)

This paper forms part of a special collection marking 30 Years Since the Identification and Characterization of the StAR Protein. The guest editors for this collection were Professor Doug Stocco, Professor Barbara Clark and Professor Ernesto Podesta.

Restricted access
Rent on DeepDyve

Sign up for journal news

For many years, research in the field of steroid synthesis has aimed to understand the regulation of the rate-limiting step of steroid synthesis, i.e. the transport of cholesterol from the outer to the inner mitochondrial membrane, and identify the protein involved in the conversion of cholesterol into pregnenolone. The extraordinary work by B Clark, J Wells, S R King, and D M Stocco eventually identified this protein and named it steroidogenic acute regulatory protein (StAR). The group’s finding was also one of the milestones in understanding the mechanism of nonvesicular lipid transport between organelles. A notable feature of StAR is its high degree of phosphorylation. In fact, StAR phosphorylation in the acute phase is required for full steroid biosynthesis. As a contribution to this subject, our work has led to the characterization of StAR as a substrate of kinases and phosphatases and as an integral part of a mitochondrion-associated multiprotein complex, essential for StAR function and cholesterol binding and mitochondrial transport to yield maximum steroid production. Results allow us to postulate the existence of a specific cellular microenvironment where StAR protein synthesis and activation, along with steroid synthesis and secretion, are performed in a compartmentalized manner, at the site of hormone receptor stimulation, and involving the compartmentalized formation of the steroid molecule-synthesizing complex.

 

  • Collapse
  • Expand
  • Alonso M, Melani M, Converso D, Jaitovich A, Paz C, Carreras MC, Medina JH & & Poderoso JJ 2004 Mitochondrial extracellular signal-regulated kinases 1/2 (ERK1/2) are modulated during brain development. Journal of Neurochemistry 89 248256. (https://doi.org/10.1111/J.1471-4159.2004.02323.X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arakane F, King SR, Du Y, Kallen CB, Walsh LP, Watari H, Stocco DM & & Strauss JF 1997 Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. Journal of Biological Chemistry 272 3265632662. (https://doi.org/10.1074/JBC.272.51.32656)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baker BY, Epand RF, Epand RM & & Miller WL 2007 Cholesterol binding does not predict activity of the steroidogenic acute regulatory protein, StAR. Journal of Biological Chemistry 282 1022310232. (https://doi.org/10.1074/jbc.M611221200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bey P, Gorostizaga AB, Maloberti PM, Lozano RC, Poderoso C, Maciel FC, Podestá EJ & & Paz C 2003 Adrenocorticotropin induces mitogen-activated protein kinase phosphatase 1 in Y1 mouse adrenocortical tumor cells. Endocrinology 144 13991406. (https://doi.org/10.1210/EN.2002-220987)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blom N, Gammeltoft S & & Brunak S 1999 Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology 294 13511362. (https://doi.org/10.1006/jmbi.1999.3310)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boutros T, Chevet E & & Metrakos P 2008 Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacological Reviews 60 261310. (https://doi.org/10.1124/PR.107.00106)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brautigan DL & & Pinault FM 1991 Activation of membrane protein-tyrosine phosphatase involving cAMP- and Ca2+/phospholipid-dependent protein kinases. PNAS 88 66966700. (https://doi.org/10.1073/PNAS.88.15.6696)f

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brion L, Maloberti PM, Gomez NV, Poderoso C, Gorostizaga AB, Mori Sequeiros Garcia MM, Acquier AB, Cooke M, Mendez CF, Podesta EJ, et al.2011 MAPK phosphatase-1 (MKP-1) expression is up-regulated by hCG/cAMP and modulates steroidogenesis in MA-10 Leydig cells. Endocrinology 152 26652677. (https://doi.org/10.1210/EN.2011-0021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cano F, Poderoso C, Cornejo Maciel F, Castilla R, Maloberti P, Castillo F, Neuman I, Paz C & & Podestá EJ 2006 Protein tyrosine phosphatases regulate arachidonic acid release, StAR induction and steroidogenesis acting on a hormone-dependent arachidonic acid-preferring acyl-CoA synthetase. Journal of Steroid Biochemistry and Molecular Biology 99 197202. (https://doi.org/10.1016/J.JSBMB.2006.01.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Casal AJ, Ryser S, Capponi AM & & Wang-Buholzer CF 2007 Angiotensin II-induced mitogen-activated protein kinase phosphatase-1 expression in bovine adrenal glomerulosa cells: implications in mineralocorticoid biosynthesis. Endocrinology 148 55735581. (https://doi.org/10.1210/EN.2007-0241)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castillo AF, Fan J, Papadopoulos V & & Podestá EJ 2011 Hormone-dependent expression of a steroidogenic acute regulatory protein natural antisense transcript in MA-10 mouse tumor Leydig cells. PLoS One 6 e22822. (https://doi.org/10.1371/JOURNAL.PONE.0022822)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castillo AF, Orlando UD, Lopez P, Solano AR, Maloberti PM & & Podesta EJ 2015 Gene expression profile and signaling pathways in MCF-7 breast cancer cells mediated by Acyl-CoA synthetase 4 overexpression. Transcriptomics 3 2. (https://doi.org/10.4172/2329-8936.1000120)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castillo AF, Orlando UD, Maloberti PM, Prada JG, Dattilo MA, Solano AR, Bigi MM, Ríos Medrano MA, Torres MT, Indo S, et al.2021 New inhibitor targeting Acyl-CoA synthetase 4 reduces breast and prostate tumor growth, therapeutic resistance and steroidogenesis. Cellular and Molecular Life Sciences 78 28932910. (https://doi.org/10.1007/S00018-020-03679-5).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark BJ, Wells J, King SR & & Stocco DM 1994 The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). Journal of Biological Chemistry 269 2831428322. (https://doi.org/10.1016/S0021-9258(1846930-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cooke BA, Dirami G, Chaudry L, Choi MSK, Abayasekara DRE & & Phipp L 1991 Release of arachidonic acid and the effects of corticosteroids on steroidogenesis in rat testis Leydig cells. Journal of Steroid Biochemistry and Molecular Biology 40 465471. (https://doi.org/10.1016/0960-0760(9190216-R)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cooke BA, Lindh ML & & Janszen FHA 1976 Correlation of protein kinase activation and testosterone production after stimulation of Leydig cells with luteinizing hormone. Biochemical Journal 160 439446. (https://doi.org/10.1042/BJ1600439).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cooke M, Di Cónsoli H, Maloberti P & & Cornejo Maciel F 2013 Expression and function of OXE receptor, an eicosanoid receptor, in steroidogenic cells. Molecular and Cellular Endocrinology 371 7178. (https://doi.org/10.1016/J.MCE.2012.11.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cooke M, Orlando U, Maloberti P, Podestá EJ & & Maciel FC 2011 Tyrosine phosphatase SHP2 regulates the expression of acyl-CoA synthetase ACSL4. Journal of Lipid Research 52 19361948. (https://doi.org/10.1194/jlr.M015552)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Crivello JF & & Jefcoate CR 1980 Intracellular movement of cholesterol in rat adrenal cells. Kinetics and effects of inhibitors. Journal of Biological Chemistry 255 81448151. (https://doi.org/10.1016/S0021-9258(1970620-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dada L, Maciel FC, Neuman I, Mele PG, Maloberti P, Paz C, Cymeryng C, Finkielstein C, Mendez CF & & Podestá EJ 1996 Cytosolic and mitochondrial proteins as possible targets of cycloheximide effect on adrenal steroidogenesis. Endocrine Research 22 533539. (https://doi.org/10.1080/07435809609043742)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dattilo M, Neuman I, Muñoz M, Maloberti P & & Cornejo Maciel F 2015 OxeR1 regulates angiotensin II and cAMP-stimulated steroid production in human H295R adrenocortical cells. Molecular and Cellular Endocrinology 408 3844. (https://doi.org/10.1016/J.MCE.2015.01.040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Brito OM & & Scorrano L 2008 Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456 605610. (https://doi.org/10.1038/NATURE07534)

  • Didolkar AK & & Sundaram K 1987 Arachidonic acid is involved in the regulation of hCG induced steroidogenesis in rat Leydig cells. Life Sciences 41 471477. (https://doi.org/10.1016/0024-3205(8790223-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dix CJ, Habberfield AD, Sullivan MHF & & Cooke BA 1984 Inhibition of steroid production in Leydig cells by non-steroidal anti-inflammatory and related compounds: evidence for the involvement of lipoxygenase products in steroidogenesis. Biochemical Journal 219 529537. (https://doi.org/10.1042/BJ2190529)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Duarte A, Castillo AF, Podestá EJ & & Poderoso C 2014 Mitochondrial fusion and ERK activity regulate steroidogenic acute regulatory protein localization in mitochondria. PLoS One 9 e100387. (https://doi.org/10.1371/JOURNAL.PONE.0100387)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Duarte A, Poderoso C, Cooke M, Soria G, Cornejo Maciel F, Gottifredi V & & Podestá EJ 2012 Mitochondrial fusion is essential for steroid biosynthesis. PLoS One 7 e45829. (https://doi.org/10.1371/JOURNAL.PONE.0045829)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dufau ML, Tsuruhara T, Horner KA, Podesta E & & Catt KJ 1977 Intermediate role of adenosine 3’:5’-cyclic monophosphate and protein kinase during gonadotropin-induced steroidogenesis in testicular interstitial cells. PNAS 74 34193423. (https://doi.org/10.1073/PNAS.74.8.3419)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferguson SM & & De Camilli P 2012 Dynamin, a membrane-remodelling GTPase. Nature Reviews Molecular Cell Biology 13 7588. (https://doi.org/10.1038/NRM3266)

  • Fleury A, Mathieu AP, Ducharme L, Hales DB & & Lehoux JG 2004 Phosphorylation and function of the hamster adrenal steroidogenic acute regulatory protein (StAR). Journal of Steroid Biochemistry and Molecular Biology 91 259271. (https://doi.org/10.1016/J.JSBMB.2004.04.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garton AJ & & Tonks NK 1994 PTP-PEST: a protein tyrosine phosphatase regulated by serine phosphorylation. EMBO Journal 13 37633771. (https://doi.org/10.1002/J.1460-2075.1994.TB06687.X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grozdanov PN & & Stocco DM 2012 Short RNA molecules with high binding affinity to the KH motif of A-kinase anchoring protein 1 (AKAP1): implications for the regulation of steroidogenesis. Molecular Endocrinology 26 21042117. (https://doi.org/10.1210/ME.2012-1123)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gyles SL, Burns CJ, Whitehouse BJ, Sugden D, Marshll PJ, Persaud SJ & & Jones PM 2001 ERKs regulate cyclic AMP-induced steroid synthesis through transcription of the steroidogenic acute regulatory (StAR) gene. Journal of Biological Chemistry 276 3488834895. (https://doi.org/10.1074/jbc.M102063200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Helfenberger KE, Castillo AF, Mele PG, Fiore A, Herrera L, Finocchietto P, Podestá EJ & & Poderoso C 2019 Angiotensin II stimulation promotes mitochondrial fusion as a novel mechanism involved in protein kinase compartmentalization and cholesterol transport in human adrenocortical cells. Journal of Steroid Biochemistry and Molecular Biology 192 105413. (https://doi.org/10.1016/J.JSBMB.2019.105413)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hirakawa T & & Ascoli M 2003 The lutropin/choriogonadotropin receptor-induced phosphorylation of the extracellular signal-regulated kinases in Leydig cells is mediated by a protein kinase A-dependent activation of ras. Molecular Endocrinology 17 21892200. (https://doi.org/10.1210/ME.2003-0205)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hosoi T, Koguchi Y, Sugikawa E, Chikada A, Ogawa K, Tsuda N, Suto N, Tsunoda S, Taniguchi T & & Ohnuki T 2002 Identification of a novel human eicosanoid receptor coupled to G(i/o). Journal of Biological Chemistry 277 3145931465. (https://doi.org/10.1074/jbc.M203194200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jones CE, Holden S, Tenaillon L, Bhatia U, Seuwen K, Tranter P, Turner J, Kettle R, Bouhelal R, Charlton S, et al.2003 Expression and characterization of a 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid receptor highly expressed on human eosinophils and neutrophils. Molecular Pharmacology 63 471477. (https://doi.org/10.1124/MOL.63.3.471)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kang MJ, Fujino T, Sasano H, Minekura H, Yabuki N, Nagura H, Iijima H & & Yamamoto TT 1997 A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. PNAS 94 28802884. (https://doi.org/10.1073/PNAS.94.7.2880)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laplante M & & Sabatini DM 2012 MTOR signaling in growth control and disease. Cell 149 274293. (https://doi.org/10.1016/J.CELL.2012.03.017)

  • Lawan A, Shi H, Gatzke F & & Bennett AM 2013 Diversity and specificity of the mitogen-activated protein kinase phosphatase-1 functions. Cellular and Molecular Life Sciences 70 223237. (https://doi.org/10.1007/S00018-012-1041-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee J, Foong YH, Musaitif I, Tong T & & Jefcoate C 2016 Analysis of specific RNA in cultured cells through quantitative integration of q-PCR and N-SIM single cell FISH images: application to hormonal stimulation of StAR transcription. Molecular and Cellular Endocrinology 429 93105. (https://doi.org/10.1016/J.MCE.2016.04.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maloberti P, Castilla R, Castillo F, Maciel FC, Mendez CF, Paz C & & Podestá EJ 2005 Silencing the expression of mitochondrial acyl-CoA thioesterase I and acyl-CoA synthetase 4 inhibits hormone-induced steroidogenesis. FEBS Journal 272 18041814. (https://doi.org/10.1111/J.1742-4658.2005.04616.X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maloberti P, Maciel FC, Castillo AF, Castilla R, Duarte A, Toledo MF, Meuli F, Mele P, Paz C & & Podestá EJ 2007 Enzymes involved in arachidonic acid release in adrenal and Leydig cells. Molecular and Cellular Endocrinology 265–266 113120. (https://doi.org/10.1016/J.MCE.2006.12.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maloberti PM, Duarte AB, Orlando UD, Pasqualini ME, Solano AR, Lopez-Otín C & & Podesta EJ 2010 Functional interaction between acyl-CoA synthetase 4, lipooxygenases and cyclooxygenase-2 in the aggressive phenotype of breast cancer cells. PLoS One 5 e15540. (https://doi.org/10.1371/JOURNAL.PONE.0015540)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Manna PR, Chandrala SP, Jo Y & & Stocco DM 2006 cAMP-independent signaling regulates steroidogenesis in mouse Leydig cells in the absence of StAR phosphorylation. Journal of Molecular Endocrinology 37 8195. (https://doi.org/10.1677/JME.1.02065)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Manna PR, Dyson MT & & Stocco DM 2009 Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Molecular Human Reproduction 15 321333. (https://doi.org/10.1093/MOLEHR/GAP025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Manna PR, Jo Y & & Stocco DM 2007 Regulation of Leydig cell steroidogenesis by extracellular signal-regulated kinase 1/2: role of protein kinase A and protein kinase C signaling. Journal of Endocrinology 193 5363. (https://doi.org/10.1677/JOE-06-0201)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin LA, Kennedy BE & & Karten B 2016 Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. Journal of Bioenergetics and Biomembranes 48 137151. (https://doi.org/10.1007/S10863-014-9592-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin LJ, Boucher N, Brousseau C & & Tremblay JJ 2008 The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin-dependent protein kinase I. Molecular Endocrinology 22 20212037. (https://doi.org/10.1210/ME.2007-0370)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martinat N, Crépieux P, Reiter E & & Guillou F 2005 Extracellular signal-regulated kinases (ERK) 1, 2 are required for luteinizing hormone (LH)-induced steroidogenesis in primary Leydig cells and control steroidogenic acute regulatory (StAR) expression. Reproduction, Nutrition, Development 45 101108. (https://doi.org/10.1051/RND:2005007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martinelle N, Holst M, Söder O & & Svechnikov K 2004 Extracellular signal-regulated kinases are involved in the acute activation of steroidogenesis in immature rat Leydig cells by human chorionic gonadotropin. Endocrinology 145 46294634. (https://doi.org/10.1210/EN.2004-0496)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mele PG, Dada LA, Paz C, Neuman I, Cymeryng CB, Mendez CF, Finkielstein CV, Maciel FC & & Podestá EJ 1997 Involvement of arachidonic acid and the lipoxygenase pathway in mediating luteinizing hormone-induced testosterone synthesis in rat Leydig cells. Endocrine Research 23 1526. (https://doi.org/10.1080/07435809709031839)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miettinen TP & & Björklund M 2017 Mitochondrial function and cell size: an allometric relationship. Trends in Cell Biology 27 393402. (https://doi.org/10.1016/J.TCB.2017.02.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miller WL 2007 StAR search--what we know about how the steroidogenic acute regulatory protein mediates mitochondrial cholesterol import. Molecular Endocrinology 21 589601. (https://doi.org/10.1210/ME.2006-0303)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moraga PF, Llanos MN & & Ronco AM 1997 Arachidonic acid release from rat Leydig cells depends on the presence of luteinizing hormone/human chorionic gonadotrophin receptors. Journal of Endocrinology 154 201209. (https://doi.org/10.1677/JOE.0.1540201)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moravek MB, Shang M, Menon B & & Menon KMJ 2016 HCG-mediated activation of mTORC1 signaling plays a crucial role in steroidogenesis in human granulosa lutein cells. Endocrine 54 217224. (https://doi.org/10.1007/S12020-016-1065-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mori Sequeiros Garcia M, Gorostizaga A, Brion L, González-Calvar SI & & Paz C 2015 cAMP-activated Nr4a1 expression requires ERK activity and is modulated by MAPK phosphatase-1 in MA-10 Leydig cells. Molecular and Cellular Endocrinology 408 4552. (https://doi.org/10.1016/J.MCE.2015.01.041)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naon D, Zaninello M, Giacomello M, Varanita T, Grespi F, Lakshminaranayan S, Serafini A, Semenzato M, Herkenne S, Hernández-Alvarez MI, et al.2016 Critical reappraisal confirms that mitofusin 2 is an endoplasmic reticulum-mitochondria tether. PNAS 113 1124911254. (https://doi.org/10.1073/PNAS.1606786113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Orlando UD, Castillo AF, Dattilo MA, Solano AR, Maloberti PM & & Podesta EJ 2015 Acyl-CoA synthetase-4, a new regulator of mTOR and a potential therapeutic target for enhanced estrogen receptor function in receptor-positive and -negative breast cancer. Oncotarget 6 4263242650. (https://doi.org/10.18632/ONCOTARGET.5822)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Orlando UD, Garona J, Ripoll GV, Maloberti PM, Solano ÁR, Avagnina A, Gomez DE, Alonso DF & & Podestá EJ 2012 The functional interaction between Acyl-CoA synthetase 4, 5-lipooxygenase and cyclooxygenase-2 controls tumor growth: a novel therapeutic target. PLoS One 7 e40794. (https://doi.org/10.1371/JOURNAL.PONE.0040794)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paz C, Maciel FC, Maloberti P, Walsh LP, Stocco DM & & Podestá EJ 2002 Protein tyrosine phosphatases are involved in LH/chorionic gonadotropin and 8Br-cAMP regulation of steroidogenesis and StAR protein levels in MA-10 Leydig cells. Journal of Endocrinology 175 793801. (https://doi.org/10.1677/JOE.0.1750793)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paz C, Maciel FC, Mendez C & & Podesta EJ 1999 Corticotropin increases protein tyrosine phosphatase activity by a cAMP-dependent mechanism in rat adrenal gland. European Journal of Biochemistry 265 911918. (https://doi.org/10.1046/J.1432-1327.1999.00759.X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Petersson F, Andersson RGG, A:son Berg A & & Hammar M 1988 Early effects of hCG on human testicular cyclic AMP content, protein kinase activity, in-vitro progesterone conversion and the serum concentrations of testosterone and oestradiol. International Journal of Andrology 11 179186. (https://doi.org/10.1111/J.1365-2605.1988.TB00993.X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Petrescu AD, Gallegos AM, Okamura Y, Strauss JF & & Schroeder F 2001 Steroidogenic acute regulatory protein binds cholesterol and modulates mitochondrial membrane sterol domain dynamics. Journal of Biological Chemistry 276 3697036982. (https://doi.org/10.1074/jbc.M101939200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Poderoso C, Converso DP, Maloberti P, Duarte A, Neuman I, Galli S, Maciel FC, Paz C, Carreras MC, Poderoso JJ, et al.2008 A mitochondrial kinase complex is essential to mediate an ERK1/2-dependent phosphorylation of a key regulatory protein in steroid biosynthesis. PLoS One 3 e1443. (https://doi.org/10.1371/JOURNAL.PONE.0001443)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Podesta EJ, Dufau ML, Solano AR & & Catt KJ 1978 Hormonal activation of protein kinase in isolated Leydig cells. Electrophoretic analysis of cyclic AMP receptors. Journal of Biological Chemistry 253 89949001. (https://doi.org/10.1016/S0021-9258(1734276-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Podesta EJ, Milani A, Steffen H & & Neher R 1979 Steroidogenesis in isolated adrenocortical cells. Correlation with receptor-bound adenosine 3’:5’-cyclic monophosphate. Biochemical Journal 180 355363. (https://doi.org/10.1042/BJ1800355)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Podesta EJ, Solano AR & & Lemos JR 1991 Stimulation of an individual cell with peptide hormone in a prescribed region of its plasma membrane results in a compartmentalized cyclic AMP-dependent protein kinase response. Journal of Molecular Endocrinology 6 269279. (https://doi.org/10.1677/JME.0.0060269)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prasad M, Kaur J, Pawlak KJ, Bose M, Whittal RM & & Bose HS 2015 Mitochondria-associated endoplasmic reticulum membrane (MAM) regulates steroidogenic activity via steroidogenic acute regulatory protein (StAR)-voltage-dependent anion channel 2 (VDAC2) interaction. Journal of Biological Chemistry 290 26042616. (https://doi.org/10.1074/jbc.M114.605808)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rambold AS & & Pearce EL 2018 Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends in Immunology 39 618. (https://doi.org/10.1016/J.IT.2017.08.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rocchi S, Gaillard I, van Obberghen E, Chambaz EM & & Vilgrain I 2000 Adrenocorticotrophic hormone stimulates phosphotyrosine phosphatase SHP2 in bovine adrenocortical cells: phosphorylation and activation by cAMP-dependent protein kinase. Biochemical Journal 352 483490. (https://doi.org/10.1042/bj3520483)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosini P, De Chiara G, Bonini P, Lucibello M, Marcocci ME, Garaci E, Cozzolino F & & Torcia M 2004 Nerve growth factor-dependent survival of CESS B cell line is mediated by increased expression and decreased degradation of MAPK phosphatase 1. Journal of Biological Chemistry 279 1401614023. (https://doi.org/10.1074/jbc.M305356200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rusiñol AE, Cui Z, Chen MH & & Vance JE 1994 A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. Journal of Biological Chemistry 269 2749427502. (https://doi.org/10.1016/S0021-9258(1847012-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schimmer BP, Tsao J & & Knapp M 1977 Isolation of mutant adrenocortical tumor cells resistant to cyclic nucleotides. Molecular and Cellular Endocrinology 8 135145. (https://doi.org/10.1016/0303-7207(7790025-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sewer MB & & Waterman MR 2003 CAMP-dependent protein kinase enhances CYP17 transcription via MKP-1 activation in H295R human adrenocortical cells. Journal of Biological Chemistry 278 81068111. (https://doi.org/10.1074/jbc.M210264200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shi S, Zhou X, Li J, Zhang L, Hu Y, Li Y, Yang G & & Chu G 2020 MiR-214-3p promotes proliferation and inhibits estradiol synthesis in porcine granulosa cells. Journal of Animal Science and Biotechnology 11 94. (https://doi.org/10.1186/S40104-020-00500-Y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Solano AR, Dada L & & Podesta EJ 1988 Lipoxygenase products as common intermediates in cyclic AMP-dependent and -independent adrenal steroidogenesis in rats. Journal of Molecular Endocrinology 1 147154. (https://doi.org/10.1677/JME.0.0010147)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tilokani L, Nagashima S, Paupe V & & Prudent J 2018 Mitochondrial dynamics: overview of molecular mechanisms. Essays in Biochemistry 62 341360. (https://doi.org/10.1042/EBC20170104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vance JE 2014 MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochimica et Biophysica Acta 1841 595609. (https://doi.org/10.1016/J.BBALIP.2013.11.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vilgrain I, Chinn A, Gaillard I, Chambaz EM & & Feige JJ 1998 Hormonal regulation of focal adhesions in bovine adrenocortical cells: induction of paxillin dephosphorylation by adrenocorticotropic hormone. Biochemical Journal 332 533540. (https://doi.org/10.1042/BJ3320533)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang XJ, Dyson MT, Jo Y, Eubank DW & & Stocco DM 2003 Involvement of 5-lipoxygenase metabolites of arachidonic acid in cyclic AMP-stimulated steroidogenesis and steroidogenic acute regulatory protein gene expression. Journal of Steroid Biochemistry and Molecular Biology 85 159166. (https://doi.org/10.1016/S0960-0760(0300189-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang XJ, Walsh LP, Reinhart AJ & & Stocco DM 2000 The role of arachidonic acid in steroidogenesis and steroidogenic acute regulatory (StAR) gene and protein expression. Journal of Biological Chemistry 275 2020420209. (https://doi.org/10.1074/jbc.M003113200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu BE, Stippec S, Robinson FL & & Cobb MH 2001 Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking. Journal of Biological Chemistry 276 2650926515. (https://doi.org/10.1074/jbc.M102769200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao D, Duan H, Kim YC & & Jefcoate CR 2005 Rodent StAR mRNA is substantially regulated by control of mRNA stability through sites in the 3’-untranslated region and through coupling to ongoing transcription. Journal of Steroid Biochemistry and Molecular Biology 96 155173. (https://doi.org/10.1016/J.JSBMB.2005.02.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou T, Sun L, Humphreys J & & Goldsmith EJ 2006 Docking interactions induce exposure of activation loop in the MAP kinase ERK2. Structure 14 10111019. (https://doi.org/10.1016/J.STR.2006.04.006)

    • PubMed
    • Search Google Scholar
    • Export Citation