The glucocorticoid receptor in skeletal health and disease: insights from targeted knockout mice

in Journal of Endocrinology
Authors:
Eugenie Macfarlane Bone Research Program, ANZAC Research Institute, The University of Sydney, Australia

Search for other papers by Eugenie Macfarlane in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3608-3285
,
Hong Zhou Bone Research Program, ANZAC Research Institute, The University of Sydney, Australia

Search for other papers by Hong Zhou in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5899-9660
, and
Markus J Seibel Bone Research Program, ANZAC Research Institute, The University of Sydney, Australia
Department of Endocrinology and Metabolism, Concord Repatriation General Hospital, Sydney, Australia

Search for other papers by Markus J Seibel in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2701-378X

Correspondence should be addressed to E Macfarlane: eugenie.macfarlane@sydney.edu.au

This paper forms part of a special collection produced in collaboration with the Endocrine Society of Australia. The guest editors for this section were Timothy Cole and Bu Yeap.

Restricted access
Rent on DeepDyve

Sign up for journal news

Glucocorticoids are steroid hormones, secreted by the adrenals to regulate a range of metabolic, immunologic, and homeostatic functions. Due to their potent anti-inflammatory effects, synthetic glucocorticoids are widely used to treat inflammatory disorders. However, their use especially at high doses and over the long-term is associated with several unwanted side effects that compromises their intended use (e.g. glucocorticoid-induced osteoporosis and/or diabetes, myopathy, and skin atrophy). Both endogenous and synthetic glucocorticoids exert their effects through the glucocorticoid receptor, a transcription factor present in nearly all nucleated cells. Glucocorticoid receptor knockout mouse models have proved to be valuable tools in understanding how glucocorticoids contribute to skeletal health and disease. These models, described in this review, have helped to establish that the effects of glucocorticoids on the skeleton are multifaceted, cell specific and concentration dependent. Intriguingly, while endogenous glucocorticoids are essential for bone formation, high-dose exogenous glucocorticoids may induce bone loss. Additionally, the actions of endogenous glucocorticoids vary greatly depending on the disease microenvironment. For example, endogenous glucocorticoids have predominately beneficial anti-inflammatory effects in rheumatoid arthritis, but detrimental actions in osteoarthritis by driving cartilage loss and abnormal bone formation. Studies in tissue-specific knockout models provide important insights that will aid the development of new glucocorticoid therapeutics that can specifically target certain cell types to minimise unwanted effects from current glucocorticoid therapy.

 

  • Collapse
  • Expand
  • Aghajanian P & & Mohan S 2018 The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Research 6 19. (https://doi.org/10.1038/s41413-018-0021-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Angeli A, Guglielmi G, Dovio A, Capelli G, De Feo D, Giannini S, Giorgino R, Moro L & & Giustina A 2006 High prevalence of asymptomatic vertebral fractures in post-menopausal women receiving chronic glucocorticoid therapy: a cross-sectional outpatient study. Bone 39 253259. (https://doi.org/10.1016/j.bone.2006.02.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Antoni FA 1986 Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocrine Reviews 7 351378. (https://doi.org/10.1210/edrv-7-4-351)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baschant U, Frappart L, Rauchhaus U, Bruns L, Reichardt HM, Kamradt T, Brauer R & & Tuckermann JP 2011 Glucocorticoid therapy of antigen-induced arthritis depends on the dimerized glucocorticoid receptor in T cells. PNAS 108 1931719322. (https://doi.org/10.1073/pnas.1105857108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, Consler TG, Parks DJ, Stewart EL, Willson TM, et al.2002 Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110 93105. (https://doi.org/10.1016/s0092-8674(0200817-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bledsoe RK, Stewart EL & & Pearce KH 2004 Structure and function of the glucocorticoid receptor ligand binding domain. Vitamins and Hormones 68 4991. (https://doi.org/10.1016/S0083-6729(0468002-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blunt JW Jr, Plotz CM, Lattes R, Howes EL, Meyer K & & Ragan C 1950 Effect of cortisone on experimental fractures in the rabbit. Proceedings of the Society for Experimental Biology and Medicine 73 678681. (https://doi.org/10.3181/00379727-73-17785)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Buttgereit F, Burmester GR & & Lipworth BJ 2005 Optimised glucocorticoid therapy: the sharpening of an old spear. Lancet 365 801803. (https://doi.org/10.1016/S0140-6736(0517989-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Buttgereit F, Zhou H, Kalak R, Gaber T, Spies CM, Huscher D, Straub RH, Modzelewski J, Dunstan CR & & Seibel MJ 2009 Transgenic disruption of glucocorticoid signaling in mature osteoblasts and osteocytes attenuates K/BxN mouse serum-induced arthritis in vivo. Arthritis and Rheumatism 60 19982007. (https://doi.org/10.1002/art.24619)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Charmandari E, Chrousos GP, Ichijo T, Bhattacharyya N, Vottero A, Souvatzoglou E & & Kino T 2005 The human glucocorticoid receptor (hGR) beta isoform suppresses the transcriptional activity of hGRalpha by interfering with formation of active coactivator complexes. Molecular Endocrinology 19 5264. (https://doi.org/10.1210/me.2004-0112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen M, Fu W, Xu H & & Liu CJ 2023 Pathogenic mechanisms of glucocorticoid-induced osteoporosis. Cytokine and Growth Factor Reviews 70 5466. (https://doi.org/10.1016/j.cytogfr.2023.03.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, Aguzzi A, Fantuzzi G, Hummler E, Unsicker K & & Schütz G 1995 Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes and Development 9 16081621. (https://doi.org/10.1101/gad.9.13.1608)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Conaway HH, Henning P, Lie A, Tuckermann J & & Lerner UH 2016 Activation of dimeric glucocorticoid receptors in osteoclast progenitors potentiates RANKL induced mature osteoclast bone resorbing activity. Bone 93 4354. (https://doi.org/10.1016/j.bone.2016.08.024)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coutinho AE, Gray M, Brownstein DG, Salter DM, Sawatzky DA, Clay S, Gilmour JS, Seckl JR, Savill JS & & Chapman KE 2012 11β-hydroxysteroid dehydrogenase type 1, but not type 2, deficiency worsens acute inflammation and experimental arthritis in mice. Endocrinology 153 234240. (https://doi.org/10.1210/en.2011-1398)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Crowson LP, Davis JM, Hanson AC, Myasoedova E, Kronzer VL, Makol A, Peterson LS, Bekele DI & & Crowson CS 2023 Time trends in glucocorticoid use in rheumatoid arthritis during the biologics era: 1999–2018. Seminars in Arthritis and Rheumatism 61 152219. (https://doi.org/10.1016/j.semarthrit.2023.152219)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davies TH, Ning YM & & Sánchez ER 2002 A new first step in activation of steroid receptors: hormone-induced switching of fkbp51 and fkbp52 immunophilins. Journal of Biological Chemistry 277 45974600. (https://doi.org/10.1074/jbc.C100531200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diederich S, Eigendorff E, Burkhardt P, Quinkler M, Bumke-Vogt C, Rochel M, Seidelmann D, Esperling P, Oelkers W & & Bähr V 2002 11beta-hydroxysteroid dehydrogenase types 1 and 2: an important pharmacokinetic determinant for the activity of synthetic mineralo- and glucocorticoids. Journal of Clinical Endocrinology and Metabolism 87 56955701. (https://doi.org/10.1210/jc.2002-020970)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Falkenstein E, Norman AW & & Wehling M 2000 Mannheim classification of nongenomically initiated (rapid) steroid action(s). Journal of Clinical Endocrinology and Metabolism 85 20722075. (https://doi.org/10.1210/jcem.85.5.6516)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fardet L & & Fève B 2014 Systemic glucocorticoid therapy: a review of its metabolic and cardiovascular adverse events. Drugs 74 17311745. (https://doi.org/10.1007/s40265-014-0282-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fenton CG, Doig CL, Fareed S, Naylor A, Morrell AP, Addison O, Wehmeyer C, Buckley CD, Cooper MS, Lavery GG, et al.2019 11β-HSD1 plays a critical role in trabecular bone loss associated with systemic glucocorticoid therapy. Arthritis Research and Therapy 21 188. (https://doi.org/10.1186/s13075-019-1972-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fraenkel L, Bathon JM, England BR, St Clair EW, Arayssi T, Carandang K, Deane KD, Genovese M, Huston KK, Kerr G, et al.2021 American College of Rheumatology Guideline for the treatment of rheumatoid arthritis. Arthritis Care and Research 73 924939. (https://doi.org/10.1002/acr.24596)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gado M, Baschant U, Hofbauer LC & & Henneicke H 2022 Bad to the bone: the effects of therapeutic glucocorticoids on osteoblasts and osteocytes. Frontiers in Endocrinology 13 835720. (https://doi.org/10.3389/fendo.2022.835720)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Giguère V, Hollenberg SM, Rosenfeld MG & & Evans RM 1986 Functional domains of the human glucocorticoid receptor. Cell 46 645652. (https://doi.org/10.1016/0092-8674(8690339-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haller J, Mikics E & & Makara GB 2008 The effects of non-genomic glucocorticoid mechanisms on bodily functions and the central neural system: a critical evaluation of findings. Frontiers in Neuroendocrinology 29 273291. (https://doi.org/10.1016/j.yfrne.2007.10.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hammond GL 2016 Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action. Journal of Endocrinology 230 R13R25. (https://doi.org/10.1530/JOE-16-0070)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hardy RS, Fenton C, Croft AP, Naylor AJ, Begum R, Desanti G, Buckley CD, Lavery G, Cooper MS & & Raza K 2018 11beta-hydroxysteroid dehydrogenase type 1 regulates synovitis, joint destruction, and systemic bone loss in chronic polyarthritis. Journal of Autoimmunity 92 104113. (https://doi.org/10.1016/j.jaut.2018.05.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hardy RS, Raza K & & Cooper MS 2020 Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nature Reviews. Rheumatology 16 133144. (https://doi.org/10.1038/s41584-020-0371-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hench PS & & Kendall EC 1949 The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone; compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis. Proceedings of the Staff Meetings Mayo Clinic 24 181197.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, Scheimann J & & Myers B 2016 Regulation of the hypothalamic-pituitary-adrenocortical stress response. Comprehensive Physiology 6 603621. (https://doi.org/10.1002/cphy.c150015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • James CG, Ulici V, Tuckermann J, Underhill TM & & Beier F 2007 Expression profiling of dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development. BMC Genomics 8 205. (https://doi.org/10.1186/1471-2164-8-205)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jia D, O’Brien CA, Stewart SA, Manolagas SC & & Weinstein RS 2006 Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology 147 55925599. (https://doi.org/10.1210/en.2006-0459)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Johnell O, Kanis JA, Odén A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C & & Jönsson B 2004 Mortality after osteoporotic fractures. Osteoporosis International 15 3842. (https://doi.org/10.1007/s00198-003-1490-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kalak R, Zhou H, Street J, Day RE, Modzelewski JRK, Spies CM, Liu PY, Li G, Dunstan CR & & Seibel MJ 2009 Endogenous glucocorticoid signalling in osteoblasts is necessary to maintain normal bone structure in mice. Bone 45 6167. (https://doi.org/10.1016/j.bone.2009.03.673)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Khan SH, Awasthi S, Guo C, Goswami D, Ling J, Griffin PR, Simons SS & & Kumar R 2012 Binding of the N-terminal region of coactivator TIF2 to the intrinsically disordered AF1 domain of the glucocorticoid receptor is accompanied by conformational reorganizations. Journal of Biological Chemistry 287 4454644560. (https://doi.org/10.1074/jbc.M112.411330)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim HJ, Zhao H, Kitaura H, Bhattacharyya S, Brewer JA, Muglia LJ, Ross FP & & Teitelbaum SL 2006 Glucocorticoids suppress bone formation via the osteoclast. Journal of Clinical Investigation 116 21522160. (https://doi.org/10.1172/JCI28084)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kumar R, Volk DE, Li J, Lee JC, Gorenstein DG & & Thompson EB 2004 TATA box binding protein induces structure in the recombinant glucocorticoid receptor AF1 domain. PNAS 101 1642516430. (https://doi.org/10.1073/pnas.0407160101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li A, Hardy R, Stoner S, Tuckermann J, Seibel M & & Zhou H 2013 Deletion of mesenchymal glucocorticoid receptor attenuates embryonic lung development and abdominal wall closure. PLoS One 8 e63578. (https://doi.org/10.1371/journal.pone.0063578)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Y, Strecker S, Wang L, Kronenberg MS, Wang W, Rowe DW & & Maye P 2013 Osterix-cre labeled progenitor cells contribute to the formation and maintenance of the bone marrow stroma. PLoS One 8 e71318. (https://doi.org/10.1371/journal.pone.0071318)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu YZ, Akhter MP, Gao X, Wang XY, Wang XB, Zhao G, Wei X, Wu HJ, Chen H, Wang D, et al.2018 Glucocorticoid-induced delayed fracture healing and impaired bone biomechanical properties in mice. Clinical Interventions in Aging 13 14651474. (https://doi.org/10.2147/CIA.S167431)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu NZ & & Cidlowski JA 2005 Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Molecular Cell 18 331342. (https://doi.org/10.1016/j.molcel.2005.03.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR & & Sigler PB 1991 Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352 497505. (https://doi.org/10.1038/352497a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Macfarlane E, Cavanagh L, Fong-Yee C, Tuckermann J, Chen D, Little CB, Seibel MJ & & Zhou H 2023 Deletion of the chondrocyte glucocorticoid receptor attenuates cartilage degradation through suppression of early synovial activation in murine posttraumatic osteoarthritis. Osteoarthritis and Cartilage 31 11891201. (https://doi.org/10.1016/j.joca.2023.04.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Manwani N, Gagnon S, Post M, Joza S, Muglia L, Cornejo S, Kaplan F & & Sweezey NB 2010 Reduced viability of mice with lung epithelial-specific knockout of glucocorticoid receptor. American Journal of Respiratory Cell and Molecular Biology 43 599606. (https://doi.org/10.1165/rcmb.2009-0263OC)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Menke A, Arloth J, Pütz B, Weber P, Klengel T, Mehta D, Gonik M, Rex-Haffner M, Rubel J, Uhr M, et al.2012 Dexamethasone stimulated gene expression in peripheral blood is a sensitive marker for glucocorticoid receptor resistance in depressed patients. Neuropsychopharmacology 37 14551464. (https://doi.org/10.1038/npp.2011.331)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Murakami H & & Kowalewski K 1966 Effects of cortisone and an anabolic androgen on the fractured humerus in guinea pigs: clinical and histological study over a six-week period of fracture healing. Canadian Journal of Surgery 9 425434.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nicolaides NC, Galata Z, Kino T, Chrousos GP & & Charmandari E 2010 The human glucocorticoid receptor: molecular basis of biologic function. Steroids 75 112. (https://doi.org/10.1016/j.steroids.2009.09.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oakley RH & & Cidlowski JA 2011 Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. Journal of Biological Chemistry 286 31773184. (https://doi.org/10.1074/jbc.R110.179325)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oakley RH, Sar M & & Cidlowski JA 1996 The human glucocorticoid receptor isoform: expression, biochemical properties, and putative function. Journal of Biological Chemistry 271 95509559. (https://doi.org/10.1074/jbc.271.16.9550)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, Manolagas SC & & Weinstein RS 2004 Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145 18351841. (https://doi.org/10.1210/en.2003-0990)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pemmari A, Leppänen T, Hämäläinen M, Moilanen T, Vuolteenaho K & & Moilanen E 2020 Widespread regulation of gene expression by glucocorticoids in chondrocytes from patients with osteoarthritis as determined by RNA-Seq. Arthritis Research and Therapy 22 271. (https://doi.org/10.1186/s13075-020-02289-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pierce JL, Ding KH, Xu J, Sharma AK, Yu K, Del Mazo Arbona N, Rodríguez-Santos Z, Bernard PJ, Bollag WB, Johnson MH, et al.2019 The glucocorticoid receptor in osteoprogenitors regulates bone mass and marrow fat. Journal of Endocrinology 243 2742. (https://doi.org/10.1530/JOE-19-0230)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pierce JL, Sharma AK, Roberts RL, Yu K, Irsik DL, Choudhary V, Dorn JS, Bensreti H, Benson RD, Kaiser H, et al.2022 The glucocorticoid receptor in osterix-expressing cells regulates bone mass, bone marrow adipose tissue, and systemic metabolism in female mice during aging. Journal of Bone and Mineral Research 37 285302. (https://doi.org/10.1002/jbmr.4468)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pincus T & & Cutolo M 2014 Clinical trials documenting the efficacy of low-dose glucocorticoids in rheumatoid arthritis. Neuroimmunomodulation 22 4650. (https://doi.org/10.1159/000362734)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pofi R, Caratti G, Ray DW & & Tomlinson JW 2023 Treating the side effects of exogenous glucocorticoids; can we separate the good from the bad? Endocrine Reviews 44 9751011. (https://doi.org/10.1210/endrev/bnad016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rapp AE, Hachemi Y, Kemmler J, Koenen M, Tuckermann J & & Ignatius A 2018 Induced global deletion of glucocorticoid receptor impairs fracture healing. FASEB Journal 32 22352245. (https://doi.org/10.1096/fj.201700459RR)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rauch A, Seitz S, Baschant U, Schilling AF, Illing A, Stride B, Kirilov M, Mandic V, Takacz A, Schmidt-Ullrich R, et al.2010 Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metabolism 11 517531. (https://doi.org/10.1016/j.cmet.2010.05.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sandberg OH & & Aspenberg P 2015 Glucocorticoids inhibit shaft fracture healing but not metaphyseal bone regeneration under stable mechanical conditions. Bone and Joint Research 4 170175. (https://doi.org/10.1302/2046-3758.410.2000414)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sapolsky RM, Krey LC & & McEwan BS 1984 Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. PNAS 81 61746177. (https://doi.org/10.1073/pnas.81.19.6174)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Selye H 1976 Stress without distress. In Psychopathology of Human Adaptation. Serban G Ed. Boston, MA, USA: Springer.

  • Sher LB, Woitge HW, Adams DJ, Gronowicz GA, Krozowski Z, Harrison JR & & Kream BE 2004 Transgenic expression of 11β-hydroxysteroid dehydrogenase type 2 in osteoblasts reveals an anabolic role for endogenous glucocorticoids in bone. Endocrinology 145 922929. (https://doi.org/10.1210/en.2003-0655)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sher LB, Harrison JR, Adams DJ & & Kream BE 2006 Impaired cortical bone acquisition and osteoblast differentiation in mice with osteoblast-targeted disruption of glucocorticoid signaling. Calcified Tissue International 79 118125. (https://doi.org/10.1007/s00223-005-0297-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sissons HA & & Hadfield GJ 1951 The influence of cortisone on the repair of experimental fractures in the rabbit. British Journal of Surgery 39 172178. (https://doi.org/10.1002/bjs.18003915411)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB, Solomon DH, Strand V, et al.2018 Rheumatoid arthritis. Nature Reviews Disease Primers 4 18001. (https://doi.org/10.1038/nrdp.2018.1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sundahl N, Bridelance J, Libert C, De Bosscher K & & Beck IM 2015 Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds. Pharmacology and Therapeutics 152 2841. (https://doi.org/10.1016/j.pharmthera.2015.05.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tu J, Henneicke H, Zhang Y, Stoner S, Cheng TL, Schindeler A, Chen D, Tuckermann J, Cooper MS, Seibel MJ, et al.2014 Disruption of glucocorticoid signaling in chondrocytes delays metaphyseal fracture healing but does not affect normal cartilage and bone development. Bone 69 1222. (https://doi.org/10.1016/j.bone.2014.08.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tu J, Zhang Y, Kim S, Wiebe E, Spies CM, Buttgereit F, Cooper MS, Seibel MJ & & Zhou H 2016 Transgenic disruption of glucocorticoid signaling in osteoblasts attenuates joint inflammation in collagen antibody-induced arthritis. American Journal of Pathology 186 12931301. (https://doi.org/10.1016/j.ajpath.2015.12.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tu J, Stoner S, Fromm PD, Wang T, Chen D, Tuckermann J, Cooper MS, Seibel MJ & & Zhou H 2018 Endogenous glucocorticoid signaling in chondrocytes attenuates joint inflammation and damage. FASEB Journal 32 478487. (https://doi.org/10.1096/fj.201700659R)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tu J, Zhang P, Ji Z, Henneicke H, Li J, Kim S, Swarbrick MM, Wu Y, Little CB, Seibel MJ, et al.2019 Disruption of glucocorticoid signalling in osteoblasts attenuates age-related surgically induced osteoarthritis. Osteoarthritis and Cartilage 27 15181525. (https://doi.org/10.1016/j.joca.2019.04.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Staa TP, Leufkens HGM, Abenhaim L, Zhang B & & Cooper C 2000 Use of oral corticosteroids and risk of fractures. Journal of Bone and Mineral Research 15 9931000. (https://doi.org/10.1359/jbmr.2000.15.6.993)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Staa TP, Leufkens HG & & Cooper C 2002 The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporosis International 13 777787. (https://doi.org/10.1007/s001980200108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wallace BI, England BR, Baker JF, Rojas J, Sauer BC, Roul P, Kunkel GA, Braaten TJ, Petro A, Mikuls TR, et al.2023 Lowering expectations: glucocorticoid tapering among veterans with rheumatoid arthritis achieving low disease activity on stable biologic therapy. ACR Open Rheumatology 5 437442. (https://doi.org/10.1002/acr2.11584)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wassenberg S, Rau R, Zeidler H & Low-Dose Prednisolone Trail Group 2011 A dose of only 5 mg prednisolone daily retards radiographic progression in early rheumatoid arthritis - the Low-Dose-Prednisolone Trial. Clinical and Experimental Rheumatology 29 (Supplement 68) S68S72.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Waters RV, Gamradt SC, Asnis P, Vickery BH, Avnur Z, Hill E & & Bostrom M 2000 Systemic corticosteroids inhibit bone healing in a rabbit ulnar osteotomy model. Acta Orthopaedica Scandinavica 71 316321. (https://doi.org/10.1080/000164700317411951)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weber AJ, Li G, Kalak R, Street J, Buttgereit F, Dunstan CR, Seibel MJ & & Zhou H 2010 Osteoblast-targeted disruption of glucocorticoid signalling does not delay intramembranous bone healing. Steroids 75 282286. (https://doi.org/10.1016/j.steroids.2010.01.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang M, Trettel LB, Adams DJ, Harrison JR, Canalis E & & Kream BE 2010 Col3.6-HSD2 transgenic mice: a glucocorticoid loss-of-function model spanning early and late osteoblast differentiation. Bone 47 573582. (https://doi.org/10.1016/j.bone.2010.06.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Z, Coutinho AE, Man TY, Kipari TMJ, Hadoke PWF, Salter DM, Seckl JR & & Chapman KE 2017 Macrophage 11β-HSD-1 deficiency promotes inflammatory angiogenesis. Journal of Endocrinology 234 291299. (https://doi.org/10.1530/JOE-17-0223)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou H, Mak W, Zheng Y, Dunstan CR & & Seibel MJ 2008 Osteoblasts directly control lineage commitment of mesenchymal progenitor cells through Wnt signaling. Journal of Biological Chemistry 283 19361945. (https://doi.org/10.1074/jbc.M702687200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou H, Mak W, Kalak R, Street J, Fong-Yee C, Zheng Y, Dunstan CR & & Seibel MJ 2009 Glucocorticoid-dependent Wnt signaling by mature osteoblasts is a key regulator of cranial skeletal development in mice. Development 136 427436. (https://doi.org/10.1242/dev.027706)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou H, Cooper MS & & Seibel MJ 2013 Endogenous glucocorticoids and bone. Bone Research 1 107119. (https://doi.org/10.4248/BR201302001)