IGF-1 infusion increases growth in fetal sheep when euinsulinemia is maintained

in Journal of Endocrinology
Authors:
Jane Stremming Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA

Search for other papers by Jane Stremming in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8517-2463
,
Eileen I Chang Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA

Search for other papers by Eileen I Chang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3444-7260
,
Alicia White Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA

Search for other papers by Alicia White in
Current site
Google Scholar
PubMed
Close
,
Paul J Rozance Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA

Search for other papers by Paul J Rozance in
Current site
Google Scholar
PubMed
Close
, and
Laura D Brown Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA

Search for other papers by Laura D Brown in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to J Stremming: jane.stremming@cuanschutz.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Insulin-like growth factor 1 (IGF-1) is a critical fetal anabolic hormone. IGF-1 infusion to the normally growing sheep fetus increases the weight of some organs but does not consistently increase body weight. However, IGF-1 infusion profoundly decreases fetal plasma insulin concentrations, which may limit fetal growth potential. In this study, normally growing late-gestation fetal sheep received an intravenous infusion of either: IGF-1 (IGF), IGF-1 with insulin and dextrose to maintain fetal euinsulinemia and euglycemia (IGF+INS), or vehicle control (CON) for 1 week. The fetus underwent a metabolic study immediately prior to infusion start and after 1 week of the infusion to measure uterine and umbilical uptake rates of nutrients and oxygen. IGF+INS fetuses were 23% heavier than CON (P = 0.0081) and had heavier heart, liver, and adrenal glands than IGF and CON (P < 0.01). By design, final fetal insulin concentrations in IGF were 62% and 65% lower than IGF+INS and CON, respectively. Final glucose concentrations were similar in all groups. IGF+INS had lower final oxygen content than IGF and CON (P < 0.0001) and lower final amino acid concentrations than CON (P = 0.0002). Final umbilical oxygen uptake was higher in IGF+INS compared to IGF and CON (P < 0.05). Final umbilical uptake of several essential amino acids was higher in IGF+INS compared to CON (P < 0.05). In summary, maintaining euinsulinemia and euglycemia during fetal IGF-1 infusion is necessary to maximally support body growth. We speculate that IGF-1 and insulin stimulate placental nutrient transport to support fetal growth.

 

  • Collapse
  • Expand
  • Andrews SE, Brown LD, Thorn SR, Limesand SW, Davis M, Hay WW Jr & Rozance PJ 2015 Increased adrenergic signaling is responsible for decreased glucose-stimulated insulin secretion in the chronically hyperinsulinemic ovine fetus. Endocrinology 156 367376. (https://doi.org/10.1210/en.2014-1393)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barry JS, Rozance PJ & & Anthony RV 2008 An animal model of placental insufficiency-induced intrauterine growth restriction. Seminars in Perinatology 32 225230. (https://doi.org/10.1053/j.semperi.2007.11.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boehmer BH, Limesand SW & & Rozance PJ 2017 The impact of IUGR on pancreatic islet development and β-cell function. Journal of Endocrinology 235 R63R76. (https://doi.org/10.1530/JOE-17-0076)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boyle DW, Denne SC, Moorehead H, Lee WH, Bowsher RR & & Liechty EA 1998 Effect of rhIGF-I infusion on whole fetal and fetal skeletal muscle protein metabolism in sheep. American Journal of Physiology 275 E1082E1091. (https://doi.org/10.1152/ajpendo.1998.275.6.E1082)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown LD 2014 Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health. Journal of Endocrinology 221 R13R29. (https://doi.org/10.1530/JOE-13-0567)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown LD, Wesolowski SR, Kailey J, Bourque S, Wilson A, Andrews SE, Hay WW Jr & Rozance PJ 2016 Chronic hyperinsulinemia increases myoblast proliferation in fetal sheep skeletal muscle. Endocrinology 157 24472460. (https://doi.org/10.1210/en.2015-1744)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown LD, Palmer C, Teynor L, Boehmer BH, Stremming J, Chang EI, White A, Jones AK, Cilvik SN, Wesolowski SR, et al.2022 Fetal sex does not impact placental blood flow or placental amino acid transfer in late gestation pregnant sheep with or without placental insufficiency. Reproductive Sciences 29 17761789. (https://doi.org/10.1007/s43032-021-00750-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carver TD, Quick AA, Teng CC, Pike AW, Fennessey PV & & Hay WW Jr 1997 Leucine metabolism in chronically hypoglycemic hypoinsulinemic growth-restricted fetal sheep. American Journal of Physiology 272 E107E117. (https://doi.org/10.1152/ajpendo.1997.272.1.E107)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chang EI, Hetrick B, Wesolowski SR, McCurdy CE, Rozance PJ & & Brown LD 2021 A two-week insulin infusion in intrauterine growth restricted fetal sheep at 75% gestation increases skeletal myoblast replication but did not restore muscle mass or increase fiber number. Frontiers in Endocrinology 12 785242. (https://doi.org/10.3389/fendo.2021.785242)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Christou H, Connors JM, Ziotopoulou M, Hatzidakis V, Papathanassoglou E, Ringer SA & & Mantzoros CS 2001 Cord blood leptin and insulin-like growth factor levels are independent predictors of fetal growth. Journal of Clinical Endocrinology and Metabolism 86 935938. (https://doi.org/10.1210/jcem.86.2.7217)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cilvik SN, Wesolowski SR, Anthony RV, Brown LD & & Rozance PJ 2021 Late gestation fetal hyperglucagonaemia impairs placental function and results in diminished fetal protein accretion and decreased fetal growth. Journal of Physiology 599 34033427. (https://doi.org/10.1113/JP281288)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Vrijer B, Regnault TR, Wilkening RB, Meschia G & & Battaglia FC 2004 Placental uptake and transport of ACP, a neutral nonmetabolizable amino acid, in an ovine model of fetal growth restriction. American Journal of Physiology Endocrinology and Metabolism 287 E1114E1124. (https://doi.org/10.1152/ajpendo.00259.2004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eremia SC, De Boo HA, Bloomfield FH, Oliver MH & & Harding JE 2007 Fetal and amniotic insulin-like growth factor-I supplements improve growth rate in intrauterine growth restriction fetal sheep. Endocrinology 148 29632972. (https://doi.org/10.1210/en.2006-1701)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fowden AL 1995 Endocrine regulation of fetal growth. Reproduction, Fertility, and Development 7 351363. (https://doi.org/10.1071/rd9950351)

  • Fowden AL 2003 The insulin-like growth factors and feto-placental growth. Placenta 24 803812. (https://doi.org/10.1016/s0143-4004(0300080-8)

  • Fowden AL, Mao XZ & & Comline RS 1986 Effects of pancreatectomy on the growth and metabolite concentrations of the sheep fetus. Journal of Endocrinology 110 225231. (https://doi.org/10.1677/joe.0.1100225)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fowden AL, Hughes P & & Comline RS 1989 The effects of insulin on the growth rate of the sheep fetus during late gestation. Quarterly Journal of Experimental Physiology 74 703714. (https://doi.org/10.1113/expphysiol.1989.sp003322)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gluckman PD, Johnson-Barrett JJ, Butler JH, Edgar BW & & Gunn TR 1983 Studies of insulin-like growth factor -I and -II by specific radioligand assays in umbilical cord blood. Clinical Endocrinology 19 405413. (https://doi.org/10.1111/j.1365-2265.1983.tb00014.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hay WW Jr, Meznarich HK, Digiacomo JE, Hirst K & & Zerbe G 1988 Effects of insulin and glucose concentrations on glucose utilization in fetal sheep. Pediatric Research 23 381387. (https://doi.org/10.1203/00006450-198804000-00008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lassarre C, Hardouin S, Daffos F, Forestier F, Frankenne F & & Binoux M 1991 Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatric Research 29 219225. (https://doi.org/10.1203/00006450-199103000-00001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liechty EA, Boyle DW, Moorehead H, Lee WH, Bowsher RR & & Denne SC 1996 Effects of circulating IGF-I on glucose and amino acid kinetics in the ovine fetus. American Journal of Physiology 271 E177E185. (https://doi.org/10.1152/ajpendo.1996.271.1.E177)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lok F, Owens JA, Mundy L, Robinson JS & & Owens PC 1996 Insulin-like growth factor I promotes growth selectively in fetal sheep in late gestation. American Journal of Physiology 270 R1148R1155. (https://doi.org/10.1152/ajpregu.1996.270.5.R1148)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Milley JR 1986 The effect of chronic hyperinsulinemia on ovine fetal growth. Growth 50 390401.

  • Ostlund E, Bang P, Hagenäs L & & Fried G 1997 Insulin-like growth factor I in fetal serum obtained by cordocentesis is correlated with intrauterine growth retardation. Human Reproduction 12 840844. (https://doi.org/10.1093/humrep/12.4.840)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pan W & & Kastin AJ 2000 Interactions of IGF-1 with the blood-brain barrier in vivo and in situ. Neuroendocrinology 72 171178. (https://doi.org/10.1159/000054584)

  • Patel N, Hellmuth C, Uhl O, Godfrey K, Briley A, Welsh P, Pasupathy D, Seed PT, Koletzko B, Poston L, et al.2018 Cord metabolic profiles in obese pregnant women: insights into offspring growth and body composition. Journal of Clinical Endocrinology and Metabolism 103 346355. (https://doi.org/10.1210/jc.2017-00876)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Regnault TR, De Vrijer B, Galan HL, Wilkening RB, Battaglia FC & & Meschia G 2013 Umbilical uptakes and transplacental concentration ratios of amino acids in severe fetal growth restriction. Pediatric Research 73 602611. (https://doi.org/10.1038/pr.2013.30)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reinhardt RR & & Bondy CA 1994 Insulin-like growth factors cross the blood-brain barrier. Endocrinology 135 17531761. (https://doi.org/10.1210/endo.135.5.7525251)

  • Ross JT, McMillen IC, Lok F, Thiel AG, Owens JA & & Coulter CL 2007 Intrafetal insulin-like growth factor-I infusion stimulates adrenal growth but not steroidogenesis in the sheep fetus during late gestation. Endocrinology 148 54245432. (https://doi.org/10.1210/en.2006-1573)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roth S, Abernathy MP, Lee WH, Pratt L, Denne S, Golichowski A & & Pescovitz OH 1996 Insulin-like growth factors I and II peptide and messenger RNA levels in macrosomic infants of diabetic pregnancies. Journal of the Society for Gynecologic Investigation 3 7884. (https://doi.org/10.1177/107155769600300207)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rozance PJ, Zastoupil L, Wesolowski SR, Goldstrohm DA, Strahan B, Cree-Green M, Sheffield-Moore M, Meschia G, Hay WW Jr, Wilkening RB, et al.2018 Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growth-restricted fetal sheep. Journal of Physiology 596 6782. (https://doi.org/10.1113/JP275230)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schwartz R, Gruppuso PA, Petzold K, Brambilla D, Hiilesmaa V & & Teramo KA 1994 Hyperinsulinemia and macrosomia in the fetus of the diabetic mother. Diabetes Care 17 640648. (https://doi.org/10.2337/diacare.17.7.640)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Setia S, Sridhar MG, Bhat V, Chaturvedula L, Vinayagamoorti R & & John M 2006 Insulin sensitivity and insulin secretion at birth in intrauterine growth retarded infants. Pathology 38 236238. (https://doi.org/10.1080/00313020600696256)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stremming J, Heard S, White A, Chang EI, Shaw SC, Wesolowski SR, Jonker SS, Rozance PJ & & Brown LD 2021 IGF-1 infusion to fetal sheep increases organ growth but not by stimulating nutrient transfer to the fetus. American Journal of Physiology-Endocrinology and Metabolism 320 E527E538. (https://doi.org/10.1152/ajpendo.00453.2020))

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stremming J, White A, Donthi A, Batt DG, Hetrick B, Chang EI, Wesolowski SR, Seefeldt MB, Mccurdy CE, Rozance PJ, et al.2022 Sheep recombinant IGF-1 promotes organ-specific growth in fetal sheep. Frontiers in Physiology 13 954948. (https://doi.org/10.3389/fphys.2022.954948)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sundgren NC, Giraud GD, Schultz JM, Lasarev MR, Stork PJ & & Thornburg KL 2003 Extracellular signal-regulated kinase and phosphoinositol-3 kinase mediate IGF-1 induced proliferation of fetal sheep cardiomyocytes. American Journal of Physiology Regulatory, Integrative and Comparative Physiology 285 R1481R1489. (https://doi.org/10.1152/ajpregu.00232.2003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Susa JB & & Schwartz R 1985 Effects of hyperinsulinemia in the primate fetus. Diabetes 34 3641. (https://doi.org/10.2337/diab.34.2.s36)

  • Susa JB, McCormick KL, Widness JA, Singer DB, Oh W, Adamsons K & & Schwartz R 1979 Chronic hyperinsulinemia in the fetal rhesus monkey: effects on fetal growth and composition. Diabetes 28 10581063. (https://doi.org/10.2337/diab.28.12.1058)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Susa JB, Neave C, Sehgal P, Singer DB, Zeller WP & & Schwartz R 1984 Chronic hyperinsulinemia in the fetal rhesus monkey. Effects of physiologic hyperinsulinemia on fetal growth and composition. Diabetes 33 656660. (https://doi.org/10.2337/diab.33.7.656)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • White A, Louey S, Chang EI, Boehmer BH, Goldstrohm D, Jonker SS & & Rozance PJ 2018 A 1 week IGF-1 infusion decreases arterial insulin concentrations but increases pancreatic insulin content and islet vascularity in fetal sheep. Physiological Reports 6 e13840. (https://doi.org/10.14814/phy2.13840)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • White A, Stremming J, Boehmer BH, Chang EI, Jonker SS, Wesolowski SR, Brown LD & & Rozance PJ 2021 Reduced glucose-stimulated insulin secretion following a 1-wk IGF-1 infusion in late gestation fetal sheep is due to an intrinsic islet defect. American Journal of Physiology Endocrinology and Metabolism 320 E1138E1147. (https://doi.org/10.1152/ajpendo.00623.2020)

    • PubMed
    • Search Google Scholar
    • Export Citation