Maternal androgen exposure induces intergenerational effects via paternal inheritance

in Journal of Endocrinology
Authors:
Yu Zhou Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China

Search for other papers by Yu Zhou in
Current site
Google Scholar
PubMed
Close
,
Chao Lian Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China

Search for other papers by Chao Lian in
Current site
Google Scholar
PubMed
Close
,
Yingfei Lu Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China

Search for other papers by Yingfei Lu in
Current site
Google Scholar
PubMed
Close
,
Tianming Wang Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China

Search for other papers by Tianming Wang in
Current site
Google Scholar
PubMed
Close
,
Chengcheng Zhao Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China

Search for other papers by Chengcheng Zhao in
Current site
Google Scholar
PubMed
Close
,
Cuilan Zhang Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China

Search for other papers by Cuilan Zhang in
Current site
Google Scholar
PubMed
Close
,
Min Gong Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China

Search for other papers by Min Gong in
Current site
Google Scholar
PubMed
Close
,
Jianquan Chen Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China

Search for other papers by Jianquan Chen in
Current site
Google Scholar
PubMed
Close
, and
Rong Ju Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China

Search for other papers by Rong Ju in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3025-7213

Correspondence should be addressed to J Chen or R Ju: jqchen68@hotmail.com or jurong@njmu.edu.cn

*(Y Zhou and C Lian contributed equally to this work and share first authorship)

Restricted access
Rent on DeepDyve

Sign up for journal news

Polycystic ovary syndrome (PCOS) is a condition resulting from the interaction between environmental factors and hereditary components, profoundly affecting offspring development. Although the etiology of this disease remains unclear, aberrant in utero androgen exposure is considered one of the pivotal pathogenic factors. Herein, we demonstrate the intergenerational inheritance of PCOS-like phenotypes in F2 female offspring through F1 males caused by maternal testosterone exposure in F0 mice. We found impaired serum hormone expression and reproductive system development in prenatal testosterone-treated F1 male and F2 female mice (PTF1 and PTF2). In addition, downregulated N6-methyladenosine (m6A) methyltransferase and binding proteins induced mRNA hypomethylation in the PTF1 testis, including frizzled-6 (Fzd6). In the PTF2 ovary, decreased FZD6 protein expression inhibited the mammalian target of rapamycin (mTOR) signaling pathway and activated Forkhead box O3 (FoxO3) phosphorylation, which led to impaired follicular development. These data indicate that epigenetic modification of the mTOR signaling pathway could be involved in the intergenerational inheritance of maternal testosterone exposure-induced impairments in the PTF2 ovary through male PTF1 mice.

Supplementary Materials

 

  • Collapse
  • Expand
  • Abruzzese GA, Ferreira SR, Ferrer MJ, Silva AF & & Motta AB 2023 Prenatal androgen excess induces multigenerational effects on female and male descendants. Clinical Medicine Insights. Endocrinology and Diabetes 16 11795514231196461. (https://doi.org/10.1177/11795514231196461)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Akpinar M, Lesche M, Fanourgakis G, Fu J, Anastassiadis K, Dahl A & & Jessberger R 2017 TDRD6 mediates early steps of spliceosome maturation in primary spermatocytes. PLoS Genetics 13 e1006660. (https://doi.org/10.1371/journal.pgen.1006660)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Biyasheva A, Legro RS, Dunaif A & & Urbanek M 2009 Evidence for association between polycystic ovary syn2drome (PCOS) and TCF7L2 and glucose intolerance in women with PCOS and TCF7L2. Journal of Clinical Endocrinology and Metabolism 94 26172625. (https://doi.org/10.1210/jc.2008-1664)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cardoso HJ, Figueira MI, Correia S, Vaz CV & & Socorro S 2014 The SCF/c-KIT system in the male: survival strategies in fertility and cancer. Molecular Reproduction and Development 81 10641079. (https://doi.org/10.1002/mrd.22430)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carrageta DF, Oliveira PF, Alves MG & & Monteiro MP 2019 Obesity and male hypogonadism: tales of a vicious cycle. Obesity Reviews 20 11481158. (https://doi.org/10.1111/obr.12863)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen Y, Wang J, Xu D, Xiang Z, Ding J, Yang X, Li D & & Han X 2021 m(6)A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells. Autophagy 17 457475. (https://doi.org/10.1080/15548627.2020.1720431)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen B, Du YR, Zhu H, Sun ML, Wang C, Cheng Y, Pang H, Ding G, Gao J, Tan Y, et al.2022 Maternal inheritance of glucose intolerance via oocyte TET3 insufficiency. Nature 605 761766. (https://doi.org/10.1038/s41586-022-04756-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Choi JH, Zhong X, McAlpine W, Liao TC, Zhang D, Fang B, Russell J, Ludwig S, Nair-Gill E, Zhang Z, et al.2019 LMBR1L regulates lymphopoiesis through Wnt/beta-catenin signaling. Science 364. (https://doi.org/10.1126/science.aau0812)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Correia B, Sousa MI & & Ramalho-Santos J 2020 The mTOR pathway in reproduction: from gonadal function to developmental coordination. Reproduction 159 R173R188. (https://doi.org/10.1530/REP-19-0057)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Crisosto N, Ladron de Guevara A, Echiburu B, Maliqueo M, Cavada G, Codner E, Paez F & & Sir-Petermann T 2019 Higher luteinizing hormone levels associated with antiMullerian hormone in postmenarchal daughters of women with polycystic ovary syndrome. Fertility and Sterility 111 381388. (https://doi.org/10.1016/j.fertnstert.2018.10.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dapas M & & Dunaif A 2022 Deconstructing a syndrome: genomic insights into PCOS causal mechanisms and classification. Endocrine Reviews 43 927965. (https://doi.org/10.1210/endrev/bnac001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Medeiros SF, Rodgers RJ & & Norman RJ 2021 Adipocyte and steroidogenic cell cross-talk in polycystic ovary syndrome. Human Reproduction Update 27 771796. (https://doi.org/10.1093/humupd/dmab004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Donkin I & & Barres R 2018 Sperm epigenetics and influence of environmental factors. Molecular Metabolism 14 111. (https://doi.org/10.1016/j.molmet.2018.02.006)

  • Dumesic DA, Hoyos LR, Chazenbalk GD, Naik R, Padmanabhan V & & Abbott DH 2020 Mechanisms of intergenerational transmission of polycystic ovary syndrome. Reproduction 159 R1R13. (https://doi.org/10.1530/REP-19-0197)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Filippou P & & Homburg R 2017 Is foetal hyperexposure to androgens a cause of PCOS? Human Reproduction Update 23 421432. (https://doi.org/10.1093/humupd/dmx013)

  • Fiorentino G, Cimadomo D, Innocenti F, Soscia D, Vaiarelli A, Ubaldi FM, Gennarelli G, Garagna S, Rienzi L & & Zuccotti M 2023 Biomechanical forces and signals operating in the ovary during folliculogenesis and their dysregulation: implications for fertility. Human Reproduction Update 29 123. (https://doi.org/10.1093/humupd/dmac031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fitz-James MH & & Cavalli G 2022 Molecular mechanisms of transgenerational epigenetic inheritance. Nature Reviews. Genetics 23 325341. (https://doi.org/10.1038/s41576-021-00438-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Floriot S, Bellutti L, Castille J, Moison P, Messiaen S, Passet B, Boulanger L, Boukadiri A, Tourpin S, Beauvallet C, et al.2021 CEP250 is required for maintaining centrosome cohesion in the germline and fertility in male mice. Frontiers in Cell and Developmental Biology 9 754054. (https://doi.org/10.3389/fcell.2021.754054)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fu H, Zhu X, Di Q, Sun J, Jiang Q & & Xu Q 2023 m6A contributes to a pro-survival state in GC-2 cells by facilitating DNA damage repair: novel perspectives on the mechanism underlying DEHP genotoxicity in male germ cells. Science of the Total Environment 859 160432. (https://doi.org/10.1016/j.scitotenv.2022.160432)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grande G, Barrachina F, Soler-Ventura A, Jodar M, Mancini F, Marana R, Chiloiro S, Pontecorvi A, Oliva R & & Milardi D 2022 The role of testosterone in spermatogenesis: lessons from proteome profiling of human spermatozoa in testosterone deficiency. Frontiers in Endocrinology 13 852661. (https://doi.org/10.3389/fendo.2022.852661)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gui Y & & Yuan S 2021 Epigenetic regulations in mammalian spermatogenesis: RNA-m(6)A modification and beyond. Cellular and Molecular Life Sciences 78 48934905. (https://doi.org/10.1007/s00018-021-03823-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guo Z & & Yu Q 2019 Role of mTOR signaling in female reproduction. Frontiers in Endocrinology 10 692. (https://doi.org/10.3389/fendo.2019.00692)

  • Guo J, Zhang T, Guo Y, Sun T, Li H, Zhang X, Yin H, Cao G, Yin Y, Wang H, et al.2018 Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice. PNAS 115 E5326E5333. (https://doi.org/10.1073/pnas.1800352115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hanley NA, Ikeda Y, Luo X & & Parker KL 2000 Steroidogenic factor 1 (SF-1) is essential for ovarian development and function. Molecular and Cellular Endocrinology 163 2732. (https://doi.org/10.1016/s0303-7207(9900237-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Horisawa-Takada Y, Kodera C, Takemoto K, Sakashita A, Horisawa K, Maeda R, Shimada R, Usuki S, Fujimura S, Tani N, et al.2021 Meiosis-specific ZFP541 repressor complex promotes developmental progression of meiotic prophase towards completion during mouse spermatogenesis. Nature Communications 12 3184. (https://doi.org/10.1038/s41467-021-23378-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hsu PJ, Zhu Y, MA H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, et al.2017 Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research 27 11151127. (https://doi.org/10.1038/cr.2017.99)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu J, Sun F & & Handel MA 2018 Nuclear localization of EIF4G3 suggests a role for the XY body in translational regulation during spermatogenesis in mice. Biology of Reproduction 98 102114. (https://doi.org/10.1093/biolre/iox150)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hua D, Zhou Y, Lu Y, Zhao C, Qiu W, Chen J & & Ju R 2020 Lipotoxicity impairs granulosa cell function through activated endoplasmic reticulum stress pathway. Reproductive Sciences 27 119131. (https://doi.org/10.1007/s43032-019-00014-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang T, Liu Z, Zheng Y, Feng T, Gao Q & & Zeng W 2020 YTHDF2 promotes spermagonial adhesion through modulating MMPs decay via m(6)A/mRNA pathway. Cell Death and Disease 11 37. (https://doi.org/10.1038/s41419-020-2235-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang J, Ren H, Chen A, Li T, Wang H, Jiang L, Zheng S, Qi H, Ji B, Wang X, et al.2022 Perfluorooctane sulfonate induces suppression of testosterone biosynthesis via Sertoli cell-derived exosomal/miR-9-3p downregulating StAR expression in Leydig cells. Environmental Pollution 301 118960. (https://doi.org/10.1016/j.envpol.2022.118960)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, Monahan J, Carrieri C, Enright AJ & & O’Carroll D 2017 The RNA m(6)A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Molecular Cell 67 10591067.e4. (https://doi.org/10.1016/j.molcel.2017.08.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jesus TT, Oliveira PF, Sousa M, Cheng CY & & Alves MG 2017 Mammalian target of rapamycin (mTOR): a central regulator of male fertility? Critical Reviews in Biochemistry and Molecular Biology 52 235253. (https://doi.org/10.1080/10409238.2017.1279120)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C & & Chen Y 2021 The role of m6A modification in the biological functions and diseases. Signal Transduction and Targeted Therapy 6 74. (https://doi.org/10.1038/s41392-020-00450-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Joham AE, Norman RJ, Stener-Victorin E, Legro RS, Franks S, Moran LJ, Boyle J & & Teede HJ 2022 Polycystic ovary syndrome. Lancet. Diabetes and Endocrinology 10 668680. (https://doi.org/10.1016/S2213-8587(2200163-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim D, Langmead B & & Salzberg SL 2015 HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12 357360. (https://doi.org/10.1038/nmeth.3317)

  • Kozielewicz P, Turku A, Bowin CF, Petersen J, Valnohova J, Canizal MCA, Ono Y, Inoue A, Hoffmann C & & Schulte G 2020 Structural insight into small molecule action on Frizzleds. Nature Communications 11 414. (https://doi.org/10.1038/s41467-019-14149-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Langmead B & & Salzberg SL 2012 Fast gapped-read alignment with Bowtie 2. Nature Methods 9 357359. (https://doi.org/10.1038/nmeth.1923)

  • Lesch BJ, Tothova Z, Morgan EA, Liao Z, Bronson RT, Ebert BL & & Page DC 2019 Intergenerational epigenetic inheritance of cancer susceptibility in mammals. eLife 8. (https://doi.org/10.7554/eLife.39380)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li B & & Dewey CN 2011 RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12 323. (https://doi.org/10.1186/1471-2105-12-323)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li R, Li Y, Kristiansen K & & Wang J 2008 SOAP: short oligonucleotide alignment program. Bioinformatics 24 713714. (https://doi.org/10.1093/bioinformatics/btn025)

  • Li M, Chi X, Wang Y, Setrerrahmane S, Xie W & & Xu H 2022 Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduction and Targeted Therapy 7 216. (https://doi.org/10.1038/s41392-022-01073-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE & & Jaffrey SR 2015 Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nature Methods 12 767772. (https://doi.org/10.1038/nmeth.3453)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu S, Lao Y, Wang Y, Li R, Fang X, Wang Y, Gao X & & Dong Z 2021 Role of RNA N6-methyladenosine modification in male infertility and Genital system tumors. Frontiers in Cell and Developmental Biology 9 676364. (https://doi.org/10.3389/fcell.2021.676364)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Love MI, Huber W & & Anders S 2014 Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15 550. (https://doi.org/10.1186/s13059-014-0550-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Manna PR, Stetson CL, Slominski AT & & Pruitt K 2016 Role of the steroidogenic acute regulatory protein in health and disease. Endocrine 51 721. (https://doi.org/10.1007/s12020-015-0715-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meczekalski B, Perez-Roncero GR, Lopez-Baena MT, Chedraui P & & Perez-Lopez FR 2020 The polycystic ovary syndrome and gynecological cancer risk. Gynecological Endocrinology 36 289293. (https://doi.org/10.1080/09513590.2020.1730794)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Merc V, Frolikova M & & Komrskova K 2021 Role of integrins in sperm activation and fertilization. International Journal of Molecular Sciences 22. (https://doi.org/10.3390/ijms222111809)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mimouni NEH, Paiva I, Barbotin AL, Timzoura FE, Plassard D, Le Gras S, Ternier G, Pigny P, Catteau-Jonard S, Simon V, et al.2021 Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process. Cell Metabolism 33 513530.e8. (https://doi.org/10.1016/j.cmet.2021.01.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moreira BP, Oliveira PF & & Alves MG 2019 Molecular mechanisms controlled by mTOR in male reproductive system. International Journal of Molecular Sciences 20. (https://doi.org/10.3390/ijms20071633)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Myers M, Britt KL, Wreford NG, Ebling FJ & & Kerr JB 2004 Methods for quantifying follicular numbers within the mouse ovary. Reproduction 127 569580. (https://doi.org/10.1530/rep.1.00095)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pani A, Gironi I, Di Vieste G, Mion E, Bertuzzi F & & Pintaudi B 2020 From prediabetes to type 2 diabetes mellitus in women with polycystic ovary syndrome: lifestyle and pharmacological management. International Journal of Endocrinology 2020 6276187. (https://doi.org/10.1155/2020/6276187)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M & & Jaffrey SR 2016 m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537 369373. (https://doi.org/10.1038/nature19342)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perez MF & & Lehner B 2019 Intergenerational and transgenerational epigenetic inheritance in animals. Nature Cell Biology 21 143151. (https://doi.org/10.1038/s41556-018-0242-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Persson S, Elenis E, Turkmen S, Kramer MS, Yong EL & & Poromaa IS 2021 Higher risk of type 2 diabetes in women with hyperandrogenic polycystic ovary syndrome. Fertility and Sterility 116 862871. (https://doi.org/10.1016/j.fertnstert.2021.04.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Petersen J, Wright SC, Rodriguez D, Matricon P, Lahav N, Vromen A, Friedler A, Stromqvist J, Wennmalm S, Carlsson J, et al.2017 Agonist-induced dimer dissociation as a macromolecular step in G protein-coupled receptor signaling. Nature Communications 8 226. (https://doi.org/10.1038/s41467-017-00253-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Risal S, Pei Y, Lu H, Manti M, Fornes R, Pui HP, Zhao Z, Massart J, Ohlsson C, Lindgren E, et al.2019 Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nature Medicine 25 18941904. (https://doi.org/10.1038/s41591-019-0666-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Risal S, Li C, Luo Q, Fornes R, Lu H, Eriksson G, Manti M, Ohlsson C, Lindgren E, Crisosto N, et al.2023 Transgenerational transmission of reproductive and metabolic dysfunction in the male progeny of polycystic ovary syndrome. Cell Reports. Medicine 4 101035. (https://doi.org/10.1016/j.xcrm.2023.101035)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roland AV, Nunemaker CS, Keller SR & & Moenter SM 2010 Prenatal androgen exposure programs metabolic dysfunction in female mice. Journal of Endocrinology 207 213223. (https://doi.org/10.1677/JOE-10-0217)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosenfield RL & & Ehrmann DA 2016 The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocrine Reviews 37 467520. (https://doi.org/10.1210/er.2015-1104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Salilew-Wondim D, Wang Q, Tesfaye D, Schellander K, Hoelker M, Hossain MM & & Tsang BK 2015 Polycystic ovarian syndrome is accompanied by repression of gene signatures associated with biosynthesis and metabolism of steroids, cholesterol and lipids. Journal of Ovarian Research 8 24. (https://doi.org/10.1186/s13048-015-0151-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sengupta P, Dutta S, Liew FF, Dhawan V, Das B, Mottola F, Slama P, Rocco L & & Roychoudhury S 2023 Environmental and genetic traffic in the journey from sperm to offspring. Biomolecules 13. (https://doi.org/10.3390/biom13121759)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shamhari A, Jefferi NES, Abd Hamid Z, Budin SB, Idris MHM & & Taib IS 2023 The role of promyelocytic leukemia zinc finger (PLZF) and glial-derived neurotrophic factor family receptor alpha 1 (GFRalpha1) in the cryopreservation of spermatogonia stem cells. International Journal of Molecular Sciences 24. (https://doi.org/10.3390/ijms24031945)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shen WJ, Li TR, Hu YJ, Liu HB & & Song M 2014 Relationships between TCF7L2 genetic polymorphisms and polycystic ovary syndrome risk: a meta-analysis. Metabolic Syndrome and Related Disorders 12 210219. (https://doi.org/10.1089/met.2014.0004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sir-Petermann T, Maliqueo M, Angel B, Lara HE, Perez-Bravo F & & Recabarren SE 2002 Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. Human Reproduction 17 25732579. (https://doi.org/10.1093/humrep/17.10.2573)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stener-Victorin E & & Deng Q 2021 Epigenetic inheritance of polycystic ovary syndrome - challenges and opportunities for treatment. Nature Reviews. Endocrinology 17 521533. (https://doi.org/10.1038/s41574-021-00517-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Su YQ, Yin Y, Guo J, Gong X, Tian Y & & Shi L 2022 MTOR-mediated interaction between the oocyte and granulosa cells regulates the development and function of both compartments in micedagger. Biology of Reproduction 107 7684. (https://doi.org/10.1093/biolre/ioac099)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tata B, Mimouni NEH, Barbotin AL, Malone SA, Loyens A, Pigny P, Dewailly D, Catteau-Jonard S, Sundstrom-Poromaa I, Piltonen TT, et al.2018 Elevated prenatal anti-Mullerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nature Medicine 24 83484 6. (https://doi.org/10.1038/s41591-018-0035-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wei J, Yu X, Yang L, Liu X, Gao B, Huang B, Dou X, Liu J, Zou Z, Cui XL, et al.2022 FTO mediates LINE1 m6A demethylation and chromatin regulation in mESCs and mouse development. Science 376 968973. (https://doi.org/10.1126/science.abe9582)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wong ML & & Medrano JF 2005 Real-time PCR for mRNA quantitation. BioTechniques 39 7585. (https://doi.org/10.2144/05391RV01)

  • Wu H, Sun L, Wen Y, Liu Y, Yu J, Mao F, Wang Y, Tong C, Guo X, Hu Z, et al.2016 Major spliceosome defects cause male infertility and are associated with nonobstructive azoospermia in humans. PNAS 113 41344139. (https://doi.org/10.1073/pnas.1513682113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xiao Z, Liu S, Li Z, Cui J, Wang H, Wang Z, Ren Q, Xia L, Wang Z & & Li Y 2022 The maternal microbiome programs the m(6)A epitranscriptome of the mouse fetal brain and intestine. Frontiers in Cell and Developmental Biology 10 882994. (https://doi.org/10.3389/fcell.2022.882994)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xie K, Ryan DP, Pearson BL, Henzel KS, Neff F, Vidal RO, Hennion M, Lehmann I, Schleif M, Schroder S, et al.2018 Epigenetic alterations in longevity regulators, reduced life span, and exacerbated aging-related pathology in old father offspring mice. PNAS 115 E2348E2357. (https://doi.org/10.1073/pnas.1707337115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu K, Yang Y, Feng GH, Sun BF, Chen JQ, Li YF, Chen YS, Zhang XX, Wang CX, Jiang LY, et al.2017 Mettl3-mediated m(6)A regulates spermatogonial differentiation and meiosis initiation. Cell Research 27 11001114. (https://doi.org/10.1038/cr.2017.100)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang Y, Hsu PJ, Chen YS & & Yang YG 2018 Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Research 28 616624. (https://doi.org/10.1038/s41422-018-0040-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang L, Zhang X, Liu S, Zhao C, Miao Y, Jin L, Wang D & & Zhou L 2021 Cyp17a1 is required for female sex determination and male fertility by regulating sex steroid biosynthesis in fish. Endocrinology 162. (https://doi.org/10.1210/endocr/bqab205)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang Q, Xi Q, Wang M, Long R, Hu J, Li Z, Ren X, Zhu L & & Jin L 2022 Rapamycin improves the quality and developmental competence of mice oocytes by promoting DNA damage repair during in vitro maturation. Reproductive Biology and Endocrinology 20 67. (https://doi.org/10.1186/s12958-022-00943-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang M, Bener MB, Jiang Z, Wang T, Esencan E, Scott R, Horvath T & & Seli E 2019 Mitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging. Aging 11 39193938. (https://doi.org/10.18632/aging.102024)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang H, Lin F, Zhao J & & Wang Z 2020a Expression regulation and physiological role of transcription factor FOXO3a during ovarian follicular development. Frontiers in Physiology 11 595086. (https://doi.org/10.3389/fphys.2020.595086)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang HL, Yi M, Li D, Li R, Zhao Y & & Qiao J 2020b Transgenerational inheritance of reproductive and metabolic phenotypes in PCOS rats. Frontiers in Endocrinology 11 144. (https://doi.org/10.3389/fendo.2020.00144)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang J, Xu JH, Qu QQ & & Zhong GQ 2020c Risk of cardiovascular and cerebrovascular events in polycystic ovarian syndrome women: a meta-analysis of cohort studies. Frontiers in Cardiovascular Medicine 7 552421. (https://doi.org/10.3389/fcvm.2020.552421)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang FF, Zhang Q, Wang YL, Wang FF, Hardiman PJ & & Qu F 2021 Intergenerational influences between maternal polycystic ovary syndrome and offspring: an updated overview. Journal of Pediatrics 232 272281. (https://doi.org/10.1016/j.jpeds.2021.01.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang X, Wang L, Ma Y, Wang Y, Liu H, Liu M, Qin L, Li J, Jiang C, Zhang X, et al.2022 CEP128 is involved in spermatogenesis in humans and mice. Nature Communications 13 1395. (https://doi.org/10.1038/s41467-022-29109-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou Y, Chung ACK, Fan R, Lee HM, Xu G, Tomlinson B, Chan JCN & & Kong APS 2017 Sirt3 deficiency increased the vulnerability of pancreatic beta cells to oxidative stress-induced dysfunction. Antioxidants and Redox Signaling 27 962976. (https://doi.org/10.1089/ars.2016.6859)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou Y, Zhang A, Gong M, Lu Y, Zhao C, Shen X, Zhang X, Wang L, Chen J & & Ju R 2020 Maternal testosterone excess contributes to reproductive system dysfunction of female offspring mice. Endocrinology 161. (https://doi.org/10.1210/endocr/bqz011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou Y, Gong M, Lu Y, Chen J & & Ju R 2021 Prenatal androgen excess impairs beta-cell function by decreased sirtuin 3 expression. Journal of Endocrinology 251 6981. (https://doi.org/10.1530/JOE-21-0129)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao T, Wang J, Wu Y, Han L, Chen J, Wei Y, Shen L, Long C, Wu S & & Wei G 2021 Increased m6A modification of RNA methylation related to the inhibition of demethylase FTO contributes to MEHP-induced Leydig cell injury. Environmental Pollution 268 115627. (https://doi.org/10.1016/j.envpol.2020.115627)

    • PubMed
    • Search Google Scholar
    • Export Citation