Differential regulation of STARD1, STARD4 and STARD6 in the human ovary

in Journal of Endocrinology
Authors:
Nawal A Yahya Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA

Search for other papers by Nawal A Yahya in
Current site
Google Scholar
PubMed
Close
,
Steven R King Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA

Search for other papers by Steven R King in
Current site
Google Scholar
PubMed
Close
,
Bo Shi Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA

Search for other papers by Bo Shi in
Current site
Google Scholar
PubMed
Close
,
Aisha Shaaban Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA

Search for other papers by Aisha Shaaban in
Current site
Google Scholar
PubMed
Close
,
Nicole E Whitfield Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA

Search for other papers by Nicole E Whitfield in
Current site
Google Scholar
PubMed
Close
,
Chunmei Yan Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, People’s Republic of China

Search for other papers by Chunmei Yan in
Current site
Google Scholar
PubMed
Close
,
Richard J Kordus Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA

Search for other papers by Richard J Kordus in
Current site
Google Scholar
PubMed
Close
,
Gail F Whitman-Elia Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA

Search for other papers by Gail F Whitman-Elia in
Current site
Google Scholar
PubMed
Close
, and
Holly A LaVoie Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA

Search for other papers by Holly A LaVoie in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6658-549X

Correspondence should be addressed to H A LaVoie: holly.lavoie@uscmed.sc.edu

*(N A Yahya and S R King contributed equally to this work)

(The primary affiliation of C Yan is Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, People’s Republic of China)

This paper forms part of a special collection marking 30 Years Since the Identification and Characterization of the StAR Protein. The guest editors for this collection were Professor Doug Stocco, Professor Barbara Clark and Professor Ernesto Podesta.

Restricted access
Rent on DeepDyve

Sign up for journal news

Cells actively engaged in de novo steroidogenesis rely on an expansive intracellular network to efficiently transport cholesterol. The final link in the transport chain is STARD1, which transfers cholesterol to the enzyme complex that initiates steroidogenesis. However, the regulation of ovarian STARD1 is not fully characterized, and even less is known about the upstream cytosolic cholesterol transporters STARD4 and STARD6. Here, we identified both STARD4 and STARD6 mRNAs in the human ovary but only detected STARD4 protein since the primary STARD6 transcript turned out to be a splice variant. Corpora lutea contained the highest levels of STARD4 and STARD1 mRNA and STARD1 protein, while STARD4 protein was uniformly distributed across ovarian tissues. Cyclic AMP analog (8Br-cAMP) and phorbol ester (PMA) individually increased STARD1 and STARD4 mRNA along with STARD1 protein and its phosphoform in cultured primary human luteinized granulosa cells (hGCs). STARD6 transcripts and STARD4 protein were unresponsive to these stimuli. Combining lower doses of PMA and 8Br-cAMP blunted the 8Br-cAMP stimulation of STARD1 protein. Increasing cholesterol levels by blocking its conversion to steroid with aminoglutethimide or by adding LDL reduced the STARD4 mRNA response to stimuli. Sterol depletion reduced the STARD1 mRNA and protein response to PMA. These data support a possible role for STARD4, but not STARD6, in supplying cholesterol for steroidogenesis in the ovary. We demonstrate for the first time how cAMP, PMA and sterol pathways separately and in combination differentially regulate STARD4, STARD6 and STARD1 mRNA levels, as well as STARD1 and STARD4 protein in human primary ovarian cells.

 

  • Collapse
  • Expand
  • Arakane F, King SR, Du Y, Kallen CB, Walsh LP, Watari H, Stocco DM & & Strauss JF III 1997 Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. Journal of Biological Chemistry 272 3265632662. (https://doi.org/10.1074/jbc.272.51.32656)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bogan RL & & Niswender GD 2007 Constitutive steroidogenesis in ovine large luteal cells may be mediated by tonically active protein kinase A. Biology of Reproduction 77 209216. (https://doi.org/10.1095/biolreprod.106.059618)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bose HS, Whittal RM, Ran Y, Bose M, Baker BY & & Miller WL 2008 StAR-like activity and molten globule behavior of StARD6, a male germ-line protein. Biochemistry 47 22772288. (https://doi.org/10.1021/bi701966a)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Calderon-Dominguez M, Gil G, Medina MA, Pandak WM & & Rodriguez-Agudo D 2014 The StarD4 subfamily of steroidogenic acute regulatory-related lipid transfer (START) domain proteins: new players in cholesterol metabolism. International Journal of Biochemistry and Cell Biology 49 6468. (https://doi.org/10.1016/j.biocel.2014.01.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chin EC, Harris TE & & Abayasekara DR 2004 Changes in cAMP-dependent protein kinase (PKA) and progesterone secretion in luteinizing human granulosa cells. Journal of Endocrinology 183 3950. (https://doi.org/10.1677/joe.1.05549)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Christenson LK & & Devoto L 2003 Cholesterol transport and steroidogenesis by the corpus luteum. Reproductive Biology and Endocrinology 1 90. (https://doi.org/10.1186/1477-7827-1-90)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Christenson LK, Osborne TF, McAllister JM & & Strauss JF III 2001 Conditional response of the human steroidogenic acute regulatory protein gene promoter to sterol regulatory element binding protein-1a. Endocrinology 142 2836. (https://doi.org/10.1210/endo.142.1.7867)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark BJ 2012 The mammalian START domain protein family in lipid transport in health and disease. Journal of Endocrinology 212 257275. (https://doi.org/10.1530/JOE-11-0313)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark BJ 2020 The START-domain proteins in intracellular lipid transport and beyond. Molecular and Cellular Endocrinology 504 110704. (https://doi.org/10.1016/j.mce.2020.110704)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark BJ, Wells J, King SR & & Stocco DM 1994 The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). Journal of Biological Chemistry 269 2831428322. (https://doi.org/10.1016/S0021-9258(1846930-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Devoto L, Kohen P, Gonzalez RR, Castro O, Retamales I, Vega M, Carvallo P, Christenson LK & & Strauss JF III 2001 Expression of steroidogenic acute regulatory protein in the human corpus luteum throughout the luteal phase. Journal of Clinical Endocrinology and Metabolism 86 56335639. (https://doi.org/10.1210/jcem.86.11.7982)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Devoto L, Fuentes A, Kohen P, Céspedes P, Palomino A, Pommer R, Muñoz A & & Strauss JF 3rd 2009 The human corpus luteum: life cycle and function in natural cycles. Fertility and Sterility 92 10671079. (https://doi.org/10.1016/j.fertnstert.2008.07.1745)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Duncan WC, Cowen GM & & Illingworth PJ 1999 Steroidogenic enzyme expression in human corpora lutea in the presence and absence of exogenous human chorionic gonadotrophin (HCG). Molecular Human Reproduction 5 291298. (https://doi.org/10.1093/molehr/5.4.291)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fowkes RC, Chandras C, Chin EC, Okolo S, Abayasekara DR & & Michael AE 2001 Relationship between the production of prostaglandins and progesterone by luteinizing human granulosa cells. Journal of Endocrinology 171 455462. (https://doi.org/10.1677/joe.0.1710455)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garbarino J, Pan M, Chin HF, Lund FW, Maxfield FR & & Breslow JL 2012 STARD4 knockdown in HepG2 cells disrupts cholesterol trafficking associated with the plasma membrane, ER, and ERC. Journal of Lipid Research 53 27162725. (https://doi.org/10.1194/jlr.M032227)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gillio-Meina C, Hui YY & & LaVoie HA 2003 GATA-4 and GATA-6 transcription factors: expression, immunohistochemical localization, and possible function in the porcine ovary. Biology of Reproduction 68 412422. (https://doi.org/10.1095/biolreprod.102.009092)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gomes C, Oh SD, Kim JW, Chun SY, Lee K, Kwon HB & & Soh J 2005 Expression of the putative sterol binding protein Stard6 gene is male germ cell specific. Biology of Reproduction 72 651658. (https://doi.org/10.1095/biolreprod.104.032672)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grummer RR & & Carroll DJ 1988 A review of lipoprotein cholesterol metabolism: importance to ovarian function. Journal of Animal Science 66 31603173. (https://doi.org/10.2527/jas1988.66123160x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iaea DB, Mao S, Lund FW & & Maxfield FR 2017 Role of STARD4 in sterol transport between the endocytic recycling compartment and the plasma membrane. Molecular Biology of the Cell 28 11111122. (https://doi.org/10.1091/mbc.E16-07-0499)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jo Y, King SR, Khan SA & & Stocco DM 2005 Involvement of protein kinase C and cyclic adenosine 3',5'-monophosphate-dependent kinase in steroidogenic acute regulatory protein expression and steroid biosynthesis in Leydig cells. Biology of Reproduction 73 244255. (https://doi.org/10.1095/biolreprod.104.037721)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Juengel JL, Meberg BM, Turzillo AM, Nett TM & & Niswender GD 1995 Hormonal regulation of messenger ribonucleic acid encoding steroidogenic acute regulatory protein in ovine corpora lutea. Endocrinology 136 54235429. (https://doi.org/10.1210/endo.136.12.7588291)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kahsar-Miller MD, Conway-Myers BA, Boots LR & & Azziz R 2001 Steroidogenic acute regulatory protein (StAR) in the ovaries of healthy women and those with polycystic ovary syndrome. American Journal of Obstetrics and Gynecology 185 13811387. (https://doi.org/10.1067/mob.2001.118656)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • King SR & & LaVoie HA 2012 Gonadal transactivation of STARD1, CYP11A1 and HSD3B. Frontiers in Bioscience 17 824846. (https://doi.org/10.2741/3959)

  • King SR, Matassa AA, White EK, Walsh LP, Jo Y, Rao RM, Stocco DM & & Reyland ME 2004 Oxysterols regulate expression of the steroidogenic acute regulatory protein. Journal of Molecular Endocrinology 32 507517. (https://doi.org/10.1677/jme.0.0320507)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kiriakidou M, McAllister JM, Sugawara T & & Strauss JF III 1996 Expression of steroidogenic acute regulatory protein (StAR) in the human ovary. Journal of Clinical Endocrinology and Metabolism 81 41224128. (https://doi.org/10.1210/jcem.81.11.8923870)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kordus RJ, Hossain A, Corso MC, Chakraborty H, Whitman-Elia GF & & LaVoie HA 2019 Cumulus cell pappalysin-1, luteinizing hormone/choriogonadotropin receptor, amphiregulin and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 mRNA levels associate with oocyte developmental competence and embryo outcomes. Journal of Assisted Reproduction and Genetics 36 14571469. (https://doi.org/10.1007/s10815-019-01489-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Korytowski W, Pilat A, Schmitt JC & & Girotti AW 2013 Deleterious cholesterol hydroperoxide trafficking in steroidogenic acute regulatory (StAR) protein-expressing MA-10 Leydig cells: implications for oxidative stress-impaired steroidogenesis. Journal of Biological Chemistry 288 1150911519. (https://doi.org/10.1074/jbc.M113.452151)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kranc W, Brązert M, Ożegowska K, Nawrocki MJ, Budna J, Celichowski P, Dyszkiewicz-Konwińska M, Jankowski M, Jeseta M, Pawelczyk L, et al.2017 Expression profile of genes regulating steroid biosynthesis and metabolism in human ovarian granulosa cells-a primary culture approach. International Journal of Molecular Sciences 18 2673. (https://doi.org/10.3390/ijms18122673)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LaVoie HA 2017 Transcriptional control of genes mediating ovarian follicular growth, differentiation, and steroidogenesis in pigs. Molecular Reproduction and Development 84 788801. (https://doi.org/10.1002/mrd.22827)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LaVoie HA & & King SR 2009 Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Experimental Biology and Medicine 234 880907. (https://doi.org/10.3181/0903-MR-97)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LaVoie HA, DeSimone DC, Gillio-Meina C & & Hui YY 2002 Cloning and characterization of porcine ovarian estrogen receptor beta isoforms. Biology of Reproduction 66 616623. (https://doi.org/10.1095/biolreprod66.3.616)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LaVoie HA, Whitfield NE, Shi B, King SR, Bose HS & & Hui YY 2014 STARD6 is expressed in steroidogenic cells of the ovary and can enhance de novo steroidogenesis. Experimental Biology and Medicine 239 430435. (https://doi.org/10.1177/1535370213517616)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lejeune F 2022 Nonsense-mediated mRNA decay, a finely regulated mechanism. Biomedicines 10 141. (https://doi.org/10.3390/biomedicines10010141)

  • Letourneau D, Bedard M, Cabana J, Lefebvre A, LeHoux JG & & Lavigne P 2016 STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism. Scientific Reports 6 28486. (https://doi.org/10.1038/srep28486)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li T, Wang Y, Xiang X & & Chen C 2022 Development and validation of a ferroptosis-related lncRNAs prognosis model in oral squamous cell carcinoma. Frontiers in Genetics 13 847940. (https://doi.org/10.3389/fgene.2022.847940)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Manna PR, Huhtaniemi IT & & Stocco DM 2009 Mechanisms of protein kinase C signaling in the modulation of 3',5'-cyclic adenosine monophosphate-mediated steroidogenesis in mouse gonadal cells. Endocrinology 150 33083317. (https://doi.org/10.1210/en.2008-1668)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Manna PR, Cohen-Tannoudji J, Counis R, Garner CW, Huhtaniemi I, Kraemer FB & & Stocco DM 2013 Mechanisms of action of hormone-sensitive lipase in mouse Leydig cells: its role in the regulation of the steroidogenic acute regulatory protein. Journal of Biological Chemistry 288 85058518. (https://doi.org/10.1074/jbc.M112.417873)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moravek MB, Shang M, Menon B & & Menon K 2016 HCG-mediated activation of mTORC1 signaling plays a crucial role in steroidogenesis in human granulosa lutein cells. Endocrine 54 217224. (https://doi.org/10.1007/s12020-016-1065-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mutsuga M, Asaoka Y, Imura N, Miyoshi T & & Togashi Y 2017 Aminoglutethimide-induced lysosomal changes in adrenal gland in mice. Experimental and Toxicologic Pathology 69 424429. (https://doi.org/10.1016/j.etp.2017.04.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naito T & & Saheki Y 2021 GRAMD1-mediated accessible cholesterol sensing and transport. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1866 158957. (https://doi.org/10.1016/j.bbalip.2021.158957)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pescador N, Houde A, Stocco DM & & Murphy BD 1997 Follicle-stimulating hormone and intracellular second messengers regulate steroidogenic acute regulatory protein messenger ribonucleic acid in luteinized porcine granulosa cells. Biology of Reproduction 57 660668. (https://doi.org/10.1095/biolreprod57.3.660)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pfaffl MW 2001 A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29 e45. (https://doi.org/10.1093/nar/29.9.e45)

  • Pon LA & & Orme-Johnson NR 1988 Acute stimulation of corpus luteum cells by gonadotrophin or adenosine 3',5'-monophosphate causes accumulation of a phosphoprotein concurrent with acceleration of steroid synthesis. Endocrinology 123 19421948. (https://doi.org/10.1210/endo-123-4-1942)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reyland ME, Evans RM & & White EK 2000 Lipoproteins regulate expression of the steroidogenic acute regulatory protein (StAR) in mouse adrenocortical cells. Journal of Biological Chemistry 275 3663736644. (https://doi.org/10.1074/jbc.M006456200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richards JS 2018 The ovarian cycle. Vitamins and Hormones 107 125. (https://doi.org/10.1016/bs.vh.2018.01.009)

  • Riegelhaupt JJ, Waase MP, Garbarino J, Cruz DE & & Breslow JL 2010 Targeted disruption of steroidogenic acute regulatory protein D4 leads to modest weight reduction and minor alterations in lipid metabolism. Journal of Lipid Research 51 11341143. (https://doi.org/10.1194/jlr.M003095)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodriguez-Agudo D, Ren S, Wong E, Marques D, Redford K, Gil G, Hylemon P & & Pandak WM 2008 Intracellular cholesterol transporter StarD4 binds free cholesterol and increases cholesteryl ester formation. Journal of Lipid Research 49 14091419. (https://doi.org/10.1194/jlr.M700537-JLR200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodriguez-Agudo D, Calderon-Dominguez M, Ren S, Marques D, Redford K, Medina-Torres MA, Hylemon P, Gil G & & Pandak WM 2011 Subcellular localization and regulation of StarD4 protein in macrophages and fibroblasts. Biochimica et Biophysica Acta 1811 597606. (https://doi.org/10.1016/j.bbalip.2011.06.028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schwarzenbach H, Manna PR, Stocco DM, Chakrabarti G & & Mukhopadhyay AK 2003 Stimulatory effect of progesterone on the expression of steroidogenic acute regulatory protein in MA-10 Leydig cells. Biology of Reproduction 68 10541063. (https://doi.org/10.1095/biolreprod.102.009266)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skiadas CC, Duan S, Correll M, Rubio R, Karaca N, Ginsburg ES, Quackenbush J & & Racowsky C 2012 Ovarian reserve status in young women is associated with altered gene expression in membrana granulosa cells. Molecular Human Reproduction 18 362371. (https://doi.org/10.1093/molehr/gas008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Soccio RE, Adams RM, Romanowski MJ, Sehayek E, Burley SK & & Breslow JL 2002 The cholesterol-regulated StarD4 gene encodes a StAR-related lipid transfer protein with two closely related homologues, StarD5 and StarD6. PNAS 99 69436948. (https://doi.org/10.1073/pnas.052143799)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Soccio RE, Adams RM, Maxwell KN & & Breslow JL 2005 Differential gene regulation of StarD4 and StarD5 cholesterol transfer proteins. Activation of StarD4 by sterol regulatory element-binding protein-2 and StarD5 by endoplasmic reticulum stress. Journal of Biological Chemistry 280 1941019418. (https://doi.org/10.1074/jbc.M501778200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stocco DM 1999 An update on the mechanism of action of the steroidogenic acute regulatory (StAR) protein. Experimental and Clinical Endocrinology and Diabetes 107 229235. (https://doi.org/10.1055/s-0029-1212105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tai CJ, Kang SK & & Leung PC 2001 Adenosine triphosphate-evoked cytosolic calcium oscillations in human granulosa-luteal cells: role of protein kinase C. Journal of Clinical Endocrinology and Metabolism 86 773777. (https://doi.org/10.1210/jcem.86.2.7231)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang L, Lu P, Yang X, Li K, Chen X & & Qu S 2021 Excavating novel diagnostic and prognostic long non-coding RNAs (lncRNAs) for head and neck squamous cell carcinoma: an integrated bioinformatics analysis of competing endogenous RNAs (ceRNAs) and gene co-expression networks. Bioengineered 12 1282112838. (https://doi.org/10.1080/21655979.2021.2003925)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yue X, Kong Y, Zhang Y, Sun M, Liu S, Wu Z, Gao L, Liang X & & Ma C 2023 SREBF2-STARD4 axis confers sorafenib resistance in hepatocellular carcinoma by regulating mitochondrial cholesterol homeostasis. Cancer Science 114 477489. (https://doi.org/10.1111/cas.15449)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang JY, Wu Y, Zhao S, Liu ZX, Zeng SM & & Zhang GX 2015 Lysosomes are involved in induction of steroidogenic acute regulatory protein (StAR) gene expression and progesterone synthesis through low-density lipoprotein in cultured bovine granulosa cells. Theriogenology 84 811817. (https://doi.org/10.1016/j.theriogenology.2015.05.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang X, Xie H, Iaea D, Khelashvili G, Weinstein H & & Maxfield FR 2022 Phosphatidylinositol phosphates modulate interactions between the StarD4 sterol trafficking protein and lipid membranes. Journal of Biological Chemistry 298 102058. (https://doi.org/10.1016/j.jbc.2022.102058)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ziecik AJ, Przygrodzka E, Jalali BM & & Kaczmarek MM 2018 Regulation of the porcine corpus luteum during pregnancy. Reproduction 156 R57R67. (https://doi.org/10.1530/REP-17-0662)

    • PubMed
    • Search Google Scholar
    • Export Citation