Liraglutide alleviates experimental diabetic cardiomyopathy in a PDH-dependent manner

in Journal of Endocrinology
Authors:
Jordan S F Chan Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Jordan S F Chan in
Current site
Google Scholar
PubMed
Close
,
Amanda A Greenwell Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Amanda A Greenwell in
Current site
Google Scholar
PubMed
Close
,
Christina T Saed Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Christina T Saed in
Current site
Google Scholar
PubMed
Close
,
Magnus J Stenlund Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Magnus J Stenlund in
Current site
Google Scholar
PubMed
Close
,
Indiresh A Mangra-Bala Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Indiresh A Mangra-Bala in
Current site
Google Scholar
PubMed
Close
,
Seyed Amirhossein Tabatabaei Dakhili Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Seyed Amirhossein Tabatabaei Dakhili in
Current site
Google Scholar
PubMed
Close
,
Kunyan Yang Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Kunyan Yang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5586-5875
,
Sally R Ferrari Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Sally R Ferrari in
Current site
Google Scholar
PubMed
Close
,
Farah Eaton Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Farah Eaton in
Current site
Google Scholar
PubMed
Close
,
Keshav Gopal Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Keshav Gopal in
Current site
Google Scholar
PubMed
Close
, and
John R Ussher Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by John R Ussher in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9574-5707

Correspondence should be addressed to J R Ussher: jussher@ualberta.ca

*(J S F Chan and A A Greenwell contributed equally to this work)

This paper forms part of a special collection on Incretins. The guest editors for this collection were Timo D Müller and Erin Mulvihill.

Restricted access
Rent on DeepDyve

Sign up for journal news

Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist used for the treatment of T2D, has been shown to alleviate diabetic cardiomyopathy (DbCM) in experimental T2D, which was associated with increased myocardial glucose oxidation. To determine whether this increase in glucose oxidation is necessary for cardioprotection, we hypothesized that liraglutide’s ability to alleviate DbCM would be abolished in mice with cardiomyocyte-specific deletion of pyruvate dehydrogenase (PDH; Pdha1CM−/− mice), the rate-limiting enzyme of glucose oxidation. Male Pdha1CM−/− mice and their α-myosin heavy chain Cre expressing littermates (αMHCCre mice) were subjected to experimental T2D via 10 weeks of high-fat diet supplementation, with a single low-dose injection of streptozotocin (75 mg/kg) provided at week 4. All mice were randomized to treatment with either vehicle control or liraglutide (30 µg/kg) twice daily during the final 2.5 weeks, with cardiac function assessed via ultrasound echocardiography. As expected, liraglutide treatment improved glucose homeostasis in both αMHCCre and Pdha1CM−/− mice with T2D, in the presence of mild weight loss. Parameters of systolic function were unaffected by liraglutide treatment in both αMHCCre and Pdha1CM−/− mice with T2D. However, liraglutide treatment alleviated diastolic dysfunction in αMHCCre mice, as indicated by an increase and decrease in the e′/a′ and E/e′ ratios, respectively. Conversely, liraglutide failed to rescue these indices of diastolic dysfunction in Pdha1CM−/− mice. Our findings suggest that increases in glucose oxidation are necessary for GLP-1R agonist mediated alleviation of DbCM. As such, strategies aimed at increasing PDH activity may represent a novel approach for the treatment of DbCM.

 

  • Collapse
  • Expand
  • Almutairi M, Gopal K, Greenwell AA, Young A, Gill R, Aburasayn H, Al Batran R, Chahade JJ, Gandhi M, Eaton F, et al.2021 The GLP-1 receptor agonist liraglutide increases myocardial glucose oxidation rates via indirect mechanisms and mitigates experimental diabetic cardiomyopathy. Canadian Journal of Cardiology 37 140150. (https://doi.org/10.1016/j.cjca.2020.02.098)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brownsey RW, Boone AN & & Allard MF 1997 Actions of insulin on the mammalian heart: metabolism, pathology and biochemical mechanisms. Cardiovascular Research 34 324. (https://doi.org/10.1016/s0008-6363(9700051-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Campbell JE & & Drucker DJ 2013 Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metabolism 17 819837. (https://doi.org/10.1016/j.cmet.2013.04.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen WR, Hu SY, Chen YD, Zhang Y, Qian G, Wang J, Yang JJ, Wang ZF, Tian F & & Ning QX 2015 Effects of liraglutide on left ventricular function in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. American Heart Journal 170 845854. (https://doi.org/10.1016/j.ahj.2015.07.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davies MJ, D'Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, Rossing P, Tsapas A, Wexler DJ & & Buse JB 2018 Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41 26692701. (https://doi.org/10.2337/dci18-0033)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diabetes Canada Clinical Practice Guidelines Expert Committee , Lipscombe L, Booth G, Butalia S, Dasgupta K, Eurich DT, Goldenberg R, Khan N, MacCallum L, Shah BR, et al.2018 Pharmacologic glycemic management of type 2 diabetes in adults. Canadian Journal of Diabetes 42(Supplement 1) S88S103. (https://doi.org/10.1016/j.jcjd.2017.10.034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dyck JR, Cheng JF, Stanley WC, Barr R, Chandler MP, Brown S, Wallace D, Arrhenius T, Harmon C, Yang G, et al.2004 Malonyl coenzyme A decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circulation Research 94 e78e84. (https://doi.org/10.1161/01.RES.0000129255.19569.8f)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dyck JR, Hopkins TA, Bonnet S, Michelakis ED, Young ME, Watanabe M, Kawase Y, Jishage K & & Lopaschuk GD 2006 Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury. Circulation 114 17211728. (https://doi.org/10.1161/CIRCULATIONAHA.106.642009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, Probstfield J, Riesmeyer JS, Riddle MC, Rydén L, et al.2019 Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394 121130. (https://doi.org/10.1016/S0140-6736(1931149-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gerstein HC, Sattar N, Rosenstock J, Ramasundarahettige C, Pratley R, Lopes RD, Lam CSP, Khurmi NS, Heenan L, Del Prato S, et al.2021 Cardiovascular and renal outcomes with Efpeglenatide in type 2 diabetes. New England Journal of Medicine 385 896907. (https://doi.org/10.1056/NEJMoa2108269)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gopal K, Almutairi M, Al Batran R, Eaton F, Gandhi M & & Ussher JR 2018 Cardiac-specific deletion of pyruvate dehydrogenase impairs glucose oxidation rates and induces diastolic dysfunction. Frontiers in Cardiovascular Medicine 5 17. (https://doi.org/10.3389/fcvm.2018.00017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gopal K, Chahade JJ, Kim R & & Ussher JR 2020 The impact of antidiabetic therapies on diastolic dysfunction and diabetic cardiomyopathy. Frontiers in Physiology 11 603247. (https://doi.org/10.3389/fphys.2020.603247)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gopal K, Al Batran R, Altamimi TR, Greenwell AA, Saed CT, Tabatabaei Dakhili SA, Dimaano MTE, Zhang Y, Eaton F, Sutendra G, et al.2021 FoxO1 inhibition alleviates type 2 diabetes-related diastolic dysfunction by increasing myocardial pyruvate dehydrogenase activity. Cell Reports 35 108935. (https://doi.org/10.1016/j.celrep.2021.108935)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Greenwell AA, Saed CT, Tabatabaei Dakhili SA, Ho KL, Gopal K, Chan JSF, Kaczmar OO, Dyer SA, Eaton F, Lopaschuk GD, et al.2022 An isoproteic cocoa butter-based ketogenic diet fails to improve glucose homeostasis and promote weight loss in obese mice. American Journal of Physiology. Endocrinology and Metabolism 323 E8E20. (https://doi.org/10.1152/ajpendo.00435.2021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heather LC, Hafstad AD, Halade GV, Harmancey R, Mellor KM, Mishra PK, Mulvihill EE, Nabben M, Nakamura M, Rider OJ, et al.2022 Guidelines on models of diabetic heart disease. American Journal of Physiology. Heart and Circulatory Physiology 323 H176H200. (https://doi.org/10.1152/ajpheart.00058.2022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heather LC, Gopal K, Srnic N & & Ussher JR 2024 Redefining diabetic cardiomyopathy: perturbations in substrate metabolism at the heart of its pathology. Diabetes 73 659670. (https://doi.org/10.2337/dbi23-0019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hernandez AF, Green JB, Janmohamed S, D'Agostino RB Sr, Granger CB, Jones NP, Leiter LA, Rosenberg AE, Sigmon KN, Somerville MC, et al.2018 Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392 15191529. (https://doi.org/10.1016/S0140-6736(1832261-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, Chan JC, Choi J, Gustavson SM, Iqbal N, et al.2017 Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine 377 12281239. (https://doi.org/10.1056/NEJMoa1612917)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jenca D, Melenovsky V, Stehlik J, Stanek V, Kettner J, Kautzner J, Adamkova V & & Wohlfahrt P 2021 Heart failure after myocardial infarction: incidence and predictors. ESC Heart Failure 8 222237. (https://doi.org/10.1002/ehf2.13144)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kosiborod MN, Abildstrøm SZ, Borlaug BA, Butler J, Rasmussen S, Davies M, Hovingh GK, Kitzman DW, Lindegaard ML, Møller DV, et al.2023 Semaglutide in patients with heart failure with preserved ejection fraction and obesity. New England Journal of Medicine 389 10691084. (https://doi.org/10.1056/NEJMoa2306963)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K & & Imaizumi T 2002 Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 106 130135. (https://doi.org/10.1161/01.cir.0000020689.12472.e0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Le Page LM, Rider OJ, Lewis AJ, Ball V, Clarke K, Johansson E, Carr CA, Heather LC & & Tyler DJ 2015 Increasing pyruvate dehydrogenase flux as a treatment for diabetic cardiomyopathy: a combined 13C hyperpolarized magnetic resonance and echocardiography study. Diabetes 64 27352743. (https://doi.org/10.2337/db14-1560)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Q, Docherty JC, Rendell JCT, Clanachan AS & & Lopaschuk GD 2002 High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. Journal of the American College of Cardiology 39 718725. (https://doi.org/10.1016/s0735-1097(0101803-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lopaschuk GD, Folmes CD & & Stanley WC 2007 Cardiac energy metabolism in obesity. Circulation Research 101 335347. (https://doi.org/10.1161/CIRCRESAHA.107.150417)

  • Mansor LS, Sousa Fialho MDL, Yea G, Coumans WA, West JA, Kerr M, Carr CA, Luiken J, Glatz JFC, Evans RD, et al.2017 Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation. Cardiovascular Research 113 737748. (https://doi.org/10.1093/cvr/cvx045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, et al.2016a Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. New England Journal of Medicine 375 18341844. (https://doi.org/10.1056/NEJMoa1607141)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, et al.2016b Liraglutide and cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine 375 311322. (https://doi.org/10.1056/NEJMoa1603827)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mulvihill EE, Varin EM, Ussher JR, Campbell JE, Bang KW, Abdullah T, Baggio LL & & Drucker DJ 2016c Inhibition of dipeptidyl peptidase-4 impairs ventricular function and promotes cardiac fibrosis in high fat-fed diabetic mice. Diabetes 65 742754. (https://doi.org/10.2337/db15-1224)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Noyan-Ashraf MH, Shikatani EA, Schuiki I, Mukovozov I, Wu J, Li RK, Volchuk A, Robinson LA, Billia F, Drucker DJ, et al.2013 A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation 127 7485. (https://doi.org/10.1161/CIRCULATIONAHA.112.091215)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patel MS, Nemeria NS, Furey W & & Jordan F 2014 The pyruvate dehydrogenase complexes: structure-based function and regulation. Journal of Biological Chemistry 289 1661516623. (https://doi.org/10.1074/jbc.R114.563148)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peters AE, Tromp J, Shah SJ, Lam CSP, Lewis GD, Borlaug BA, Sharma K, Pandey A, Sweitzer NK, Kitzman DW, et al.2023 Phenomapping in heart failure with preserved ejection fraction: insights, limitations, and future directions. Cardiovascular Research 118 34033415. (https://doi.org/10.1093/cvr/cvac179)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, Lawson FC, Ping L, Wei X, Lewis EF, et al.2015 Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. New England Journal of Medicine 373 22472257. (https://doi.org/10.1056/NEJMoa1509225)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pouleur H 1990 Diastolic dysfunction and myocardial energetics. European Heart Journal 11(Supplement C) 3034. (https://doi.org/10.1093/eurheartj/11.suppl_c.30)

  • Pound KM, Sorokina N, Ballal K, Berkich DA, Fasano M, Lanoue KF, Taegtmeyer H, O'Donnell JM & & Lewandowski ED 2009 Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circulation Research 104 805812. (https://doi.org/10.1161/CIRCRESAHA.108.189951)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ritchie RH & & Abel ED 2020 Basic mechanisms of diabetic heart disease. Circulation Research 126 15011525. (https://doi.org/10.1161/CIRCRESAHA.120.315913)

  • Sun Q, Wagg CS, Guven B, Wei K, de Oliveira AA, Silver H, Zhang L, Vergara A, Chen B, Wong N, et al.2023 Stimulating cardiac glucose oxidation lessens the severity of heart failure in aged female mice. Basic Research in Cardiology 119 133150. (https://doi.org/10.1007/s00395-023-01020-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Toedebusch R, Belenchia A & & Pulakat L 2018 Diabetic cardiomyopathy: impact of biological sex on disease development and molecular signatures. Frontiers in Physiology 9 453. (https://doi.org/10.3389/fphys.2018.00453)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ussher JR & & Drucker DJ 2014 Cardiovascular actions of incretin-based therapies. Circulation Research 114 17881803. (https://doi.org/10.1161/CIRCRESAHA.114.301958)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ussher JR & & Drucker DJ 2023 Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nature Reviews. Cardiology 20 463474. (https://doi.org/10.1038/s41569-023-00849-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ussher JR, Wang W, Gandhi M, Keung W, Samokhvalov V, Oka T, Wagg CS, Jaswal JS, Harris RA, Clanachan AS, et al.2012 Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovascular Research 94 359369. (https://doi.org/10.1093/cvr/cvs129)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ussher JR, Baggio LL, Campbell JE, Mulvihill EE, Kim M, Kabir MG, Cao X, Baranek BM, Stoffers DA, Seeley RJ, et al.2014 Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection. Molecular Metabolism 3 507517. (https://doi.org/10.1016/j.molmet.2014.04.009)

    • PubMed
    • Search Google Scholar
    • Export Citation