This paper forms part of a special collection on the theme of corticosteroids and cardiovascular disease. The guest editors for this collection were Massimiliano Caprio and Morag Young.
Over the past decades, research has clearly established the important role of the mineralocorticoid receptor (MR) in both renal and extra-renal tissues. Recently, caveolin-1 (Cav-1) has emerged as a mediator of MR signaling in several tissues, with implications on cardiovascular and metabolic dysfunction. The main structural component of caveolae (plasma membrane invaginations with diverse functions), Cav-1 is a modulator of cardiovascular function, cellular glucose, and lipid homeostasis, via its effects on signal transduction pathways that mediate inflammatory responses and oxidative stress. In this review, we present evidence indicating an overlap between the roles of the MR and Cav-1 in cardiometabolic disease and the relevant signaling pathways involved. Furthermore, we discuss the potential use of Cav-1 as a biomarker and/or target for MR-mediated dysfunction.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 71 | 71 | 4 |
PDF Downloads | 85 | 85 | 5 |
Abaj F, Saeedy SAG & & Mirzaei K 2021 Mediation role of body fat distribution (FD) on the relationship between CAV1 rs3807992 polymorphism and metabolic syndrome in overweight and obese women. BMC Medical Genomics 14 202. (https://doi.org/10.1186/s12920-021-01050-6)
Adeyemo A, Luke A, Wu X, Cooper RS, Kan D, Omotade O & & Zhu X 2005 Genetic effects on blood pressure localized to chromosomes 6 and 7. Journal of Hypertension 23 1367–1373. (https://doi.org/10.1097/01.hjh.0000173519.06353.8b)
Ashton AW, Le TYL, Gomez-Sanchez CE, Morel-Kopp MC, Mcwhinney B, Hudson A & & Mihailidou AS 2015 Role of nongenomic signaling pathways activated by aldosterone during cardiac reperfusion injury. Molecular Endocrinology 29 1144–1155. (https://doi.org/10.1210/ME.2014-1410)
Asterholm IW, Mundy DI, Weng J, Anderson RGW & & Scherer PE 2012 Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metabolism 15 171–185. (https://doi.org/10.1016/j.cmet.2012.01.004)
Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, Remuzzi G, Rossing P, Schmieder RE, Nowack C, et al.2015 Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA 314 884–894. (https://doi.org/10.1001/jama.2015.10081)
Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, Kolkhof P, Nowack C, Schloemer P, Joseph A, et al.2020 Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. New England Journal of Medicine 383 2219–2229. (https://doi.org/10.1056/NEJMoa2025845)
Baudrand R, Goodarzi MO, Vaidya A, Underwood PC, Williams JS, Jeunemaitre X, Hopkins PN, Brown N, Raby BA, Lasky-Su J, et al.2015 A prevalent caveolin-1 gene variant is associated with the metabolic syndrome in Caucasians and Hispanics. Metabolism: Clinical and Experimental 64 1674–1681. (https://doi.org/10.1016/j.metabol.2015.09.005)
Baudrand R, Gupta N, Garza AE, Vaidya A, Leopold JA, Hopkins PN, Jeunemaitre X, Ferri C, Romero JR, Williams J, et al.2016 Caveolin 1 modulates aldosterone-mediated pathways of glucose and lipid homeostasis. Journal of the American Heart Association 5. (https://doi.org/10.1161/JAHA.116.003845)
Bauer PM, Yu J, Chen Y, Hickey R, Bernatchez PN, Looft-Wilson R, Huang Y, Giordano F, Stan RV & & Sessa WC 2005 Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America 102 204–209. (https://doi.org/10.1073/pnas.0406092102)
Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, Correa JW, Gagnon AM, Gomez-Sanchez CE, Gomez-Sanchez EP, et al.2012 Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 59 1069–1078. (https://doi.org/10.1161/HYPERTENSIONAHA.111.190223)
Burrello J, Gai C, Tetti M, Lopatina T, Deregibus MC, Veglio F, Mulatero P, Camussi G & & Monticone S 2019 Characterization and gene expression analysis of serum-derived extracellular vesicles in primary aldosteronism. Hypertension 74 359–367. (https://doi.org/10.1161/HYPERTENSIONAHA.119.12944)
Calhoun DA & & Sharma K 2010 The role of aldosteronism in causing obesity-related cardiovascular risk. Cardiology Clinics 28 517–527. (https://doi.org/10.1016/j.ccl.2010.04.001)
Calizo RC & & Scarlata S 2012 A role for G-proteins in directing G-protein-coupled receptor-caveolae localization. Biochemistry 51 9513–9523. (https://doi.org/10.1021/bi301107p)
Callera GE, Yogi A, Briones AM, Montezano AC, He Y, Tostes RC, Schiffrin EL & & Touyz RM 2011 Vascular proinflammatory responses by aldosterone are mediated via c-Src trafficking to cholesterol-rich microdomains: role of PDGFR. Cardiovascular Research 91 720–731. (https://doi.org/10.1093/cvr/cvr131)
Cao G, Yang G, Timme TL, Saika T, Truong LD, Satoh T, Goltsov A, Park SH, Men T, Kusaka N, et al.2003 Disruption of the caveolin-1 gene impairs renal calcium reabsorption and leads to hypercalciuria and urolithiasis. American Journal of Pathology 162 1241–1248. (https://doi.org/10.1016/S0002-9440(1063920-X)
Cao H, Alston L, Ruschman J & & Hegele RA 2008 Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids in Health and Disease 7 3. (https://doi.org/10.1186/1476-511X-7-3)
Chen F, Barman S, Yu Y, Haigh S, Wang Y, Black SM, Rafikov R, Dou H, Bagi Z, Han W, et al.2014 Caveolin-1 is a negative regulator of NADPH oxidase-derived reactive oxygen species. Free Radical Biology and Medicine 73 201–213. (https://doi.org/10.1016/j.freeradbiomed.2014.04.029)
Chen S, Wang X, Wang J, Zhao Y, Wang D, Tan C, Fa J, Zhang R, Wang F, Xu C, et al.2016 Genomic variant in CAV1 increases susceptibility to coronary artery disease and myocardial infarction. Atherosclerosis 246 148–156. (https://doi.org/10.1016/j.atherosclerosis.2016.01.008)
Cheng LS, Davis RC, Raffel LJ, Xiang AH, Wang N, Quinones M, Wen PZ, Toscano E, Diaz J, Pressman S, et al.2001 Coincident linkage of fasting plasma insulin and blood pressure to chromosome 7q in hypertensive Hispanic families. Circulation 104 1255–1260. (https://doi.org/10.1161/hc3601.096729)
Cohen AW, Park DS, Woodman SE, Williams TM, Chandra M, Shirani J, Pereira De Souza A, Kitsis RN, Russell RG, Weiss LM, et al.2003a Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. American Journal of Physiology. Cell Physiology 284 C457–C474. (https://doi.org/10.1152/ajpcell.00380.2002)
Cohen AW, Razani B, Wang XB, Combs TP, Williams TM, Scherer PE & & Lisanti MP 2003b Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. American Journal of Physiology. Cell Physiology 285 C222–C235. (https://doi.org/10.1152/ajpcell.00006.2003)
Crewe C, Joffin N, Rutkowski JM, Kim M, Zhang F, Towler DA, Gordillo R & & Scherer PE 2018 An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell 175 695–708.e13. (https://doi.org/10.1016/j.cell.2018.09.005)
Crewe C, Chen S, Bu D, Gliniak CM, Wernstedt Asterholm I, Yu XX, Joffin N, De Souza CO, Funcke JB, Oh DY, et al.2022 Deficient Caveolin-1 synthesis in adipocytes stimulates systemic insulin-independent glucose uptake via extracellular vesicles. Diabetes 71 2496–2512. (https://doi.org/10.2337/db22-0035)
Czikora I, Feher A, Lucas R, Fulton DJR & & Bagi Z 2015 Caveolin-1 prevents sustained angiotensin II-induced resistance artery constriction and obesity-induced high blood pressure. American Journal of Physiology. Heart and Circulatory Physiology 308 H376–H385. (https://doi.org/10.1152/ajpheart.00649.2014)
Dasari A, Bartholomew JN, Volonte D & & Galbiati F 2006 Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements. Cancer Research 66 10805–10814. (https://doi.org/10.1158/0008-5472.CAN-06-1236)
Davel AP, Anwar IJ & & Jaffe IZ 2017 The endothelial mineralocorticoid receptor: mediator of the switch from vascular health to disease. Current Opinion in Nephrology and Hypertension 26 97–104. (https://doi.org/10.1097/MNH.0000000000000306)
De Souza GM, De Albuquerque Borborema ME, De Lucena TMC, Da Silva Santos AF, De Lima BR, De Oliveira DC & & De Azevêdo Silva J 2020 Caveolin-1 (CAV-1) up regulation in metabolic syndrome: all roads leading to the same end. Molecular Biology Reports 47 9245–9250. (https://doi.org/10.1007/s11033-020-05945-y)
De Vries TI, Dorresteijn JAN, Van Der Graaf Y, Visseren FLJ & & Westerink J 2019 Heterogeneity of treatment effects from an intensive lifestyle weight loss intervention on cardiovascular events in patients with type 2 diabetes: data from the look AHEAD trial. Diabetes Care 42 1988–1994. (https://doi.org/10.2337/dc19-0776)
Desjardins F, Lobysheva I, Pelat M, Gallez B, Feron O, Dessy C & & Balligand JL 2008 Control of blood pressure variability in caveolin-1-deficient mice: role of nitric oxide identified in vivo through spectral analysis. Cardiovascular Research 79 527–536. (https://doi.org/10.1093/cvr/cvn080)
Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, et al.2001 Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293 2449–2452. (https://doi.org/10.1126/science.1062688)
Duprez D & & Toleuova A 2018 Mineralocorticoid receptor antagonists treatment in resistant hypertension and HFpEF: evidence and courage. American Journal of Hypertension 31 405–406. (https://doi.org/10.1093/ajh/hpy003)
Dwinell MR, Worthey EA, Shimoyama M, Bakir-Gungor B, Depons J, Laulederkind S, Lowry T, Nigram R, Petri V, Smith J, et al.2009 The Rat Genome Database 2009: variation, ontologies and pathways. Nucleic Acids Research 37 D744–D749. (https://doi.org/10.1093/nar/gkn842)
Epstein M, Williams GH, Weinberger M, Lewin A, Krause S, Mukherjee R, Patni R & & Beckerman B 2006 Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clinical Journal of the American Society of Nephrology 1 940–951. (https://doi.org/10.2215/CJN.00240106)
Feraco A, Marzolla V, Scuteri A, Armani A & & Caprio M 2020 Mineralocorticoid receptors in metabolic syndrome: from physiology to disease. Trends in Endocrinology and Metabolism 31 205–217. (https://doi.org/10.1016/j.tem.2019.11.006)
Fernández-Hernando C, Yu J, Suárez Y, Rahner C, Dávalos A, Lasunción MA & & Sessa WC 2009 Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metabolism 10 48–54. (https://doi.org/10.1016/j.cmet.2009.06.003)
Fisher E, Schreiber S, Joost HG, Boeing H & & Doring F 2011 A two-step association study identifies CAV2 rs2270188 single nucleotide polymorphism interaction with fat intake in type 2 diabetes risk. Journal of Nutrition 141 177–181. (https://doi.org/10.3945/jn.110.124206)
Flatt DM, Brown MC, Mizeracki AM, King BJ & & Weber KT 2016 Mineralocorticoid receptor antagonists in the management of heart failure and resistant hypertension: a review. JAMA Cardiology 1 607–612. (https://doi.org/10.1001/jamacardio.2016.1878)
Frank PG & & Lisanti MP 2007 Caveolin-1 and liver regeneration: role in proliferation and lipogenesis. Cell Cycle 6 115–116. (https://doi.org/10.4161/cc.6.2.3722)
Frank PG, Pavlides S, Cheung MW, Daumer K & & Lisanti MP 2008 Role of caveolin-1 in the regulation of lipoprotein metabolism. American Journal of Physiology. Cell Physiology 295 C242–C248. (https://doi.org/10.1152/ajpcell.00185.2008)
Fruhbeck G, Lopez M & & Dieguez C 2007 Role of caveolins in body weight and insulin resistance regulation. Trends in Endocrinology and Metabolism 18 177–182. (https://doi.org/10.1016/j.tem.2007.04.001)
Fujita T 2010 Mineralocorticoid receptors, salt-sensitive hypertension, and metabolic syndrome. Hypertension 55 813–818. (https://doi.org/10.1161/HYPERTENSIONAHA.109.149062)
Garg A & & Agarwal AK 2008 Caveolin-1: a new locus for human lipodystrophy. Journal of Clinical Endocrinology and Metabolism 93 1183–1185. (https://doi.org/10.1210/jc.2008-0426)
Gholami SK, Ranjit S, Abidin FF, Trefts E, Ngoo SK, Garza AE & & Pojoga LH 2022 Effect of Tie2-cre endothelial caveolin-1 deficiency mice on murine cardiovascular and metabolic phenotypes. Hypertension 79(Supplement 1) A122. (https://doi.org/10.1161/hyp.79.suppl_1.122)
Gomez-Sanchez E & & Gomez-Sanchez CE 2014 The multifaceted mineralocorticoid receptor. Comprehensive Physiology 4 965–994. (https://doi.org/10.1002/cphy.c130044)
Gorini S, Kim SK, Infante M, Mammi C, La Vignera S, Fabbri A, Jaffe IZ & & Caprio M 2019 Role of aldosterone and mineralocorticoid receptor in cardiovascular aging. Frontiers in Endocrinology (Lausanne) 10 584. (https://doi.org/10.3389/fendo.2019.00584)
Grande G, Rippe C, Rippe A, Rahman A, Sward K & & Rippe B 2009 Unaltered size selectivity of the glomerular filtration barrier in caveolin-1 knockout mice. American Journal of Physiology. Renal Physiology 297 F257–F262. (https://doi.org/10.1152/ajprenal.00075.2009)
Gratton JP, Fontana J, O'connor DS, Garcia-Cardena G, Mccabe TJ & & Sessa WC 2000 Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. Journal of Biological Chemistry 275 22268–22272. (https://doi.org/10.1074/jbc.M001644200)
Guo C, Martinez-Vasquez D, Mendez GP, Toniolo MF, Yao TM, Oestreicher EM, Kikuchi T, Lapointe N, Pojoga L, Williams GH, et al.2006 Mineralocorticoid receptor antagonist reduces renal injury in rodent models of types 1 and 2 diabetes mellitus. Endocrinology 147 5363–5373. (https://doi.org/10.1210/en.2006-0944)
Hill MA, Jaisser F & & Sowers JR 2022 Role of the vascular endothelial sodium channel activation in the genesis of pathologically increased cardiovascular stiffness. Cardiovascular Research 118 130–140. (https://doi.org/10.1093/cvr/cvaa326)
Hirode G & & Wong RJ 2020 Trends in the prevalence of metabolic syndrome in the United States, 2011–2016. JAMA 323 2526–2528. (https://doi.org/10.1001/jama.2020.4501)
Imamura T, Takata Y, Sasaoka T, Takada Y, Morioka H, Haruta T, Sawa T, Iwanishi M, Hu YG & & Suzuki Y 1994 Two naturally occurring mutations in the kinase domain of insulin receptor accelerate degradation of the insulin receptor and impair the kinase activity. Journal of Biological Chemistry 269 31019–31027. (https://doi.org/10.1016/S0021-9258(1847384-X)
Imamura T, Oshima A, Narang N & & Kinugawa K 2021 Implication of mineralocorticoid receptor antagonist esaxerenone in patients with heart failure with preserved ejection fraction. Circulation Reports 3 660–665. (https://doi.org/10.1253/circrep.CR-21-0115)
Imprialos KP, Bouloukou S, Kerpiniotis G, Katsimardou A, Patoulias D, Bakogiannis C & & Faselis C 2018 Mineralocorticoid receptor antagonists in essential and resistant hypertension. Current Pharmaceutical Design 24 5500–5507. (https://doi.org/10.2174/1381612825666190306163310)
Ito A, Shiroto T, Godo S, Saito H, Tanaka S, Ikumi Y, Kajitani S, Satoh K & & Shimokawa H 2019 Important roles of endothelial caveolin-1 in endothelium-dependent hyperpolarization and ischemic angiogenesis in mice. American Journal of Physiology. Heart and Circulatory Physiology 316 H900–H910. (https://doi.org/10.1152/ajpheart.00589.2018)
Iwanishi M, Haruta T, Takata Y, Ishibashi O, Sasaoka T, Egawa K, Imamura T, Naitou K, Itazu T & & Kobayashi M 1993 A mutation (Trp1193→Leu1193) in the tyrosine kinase domain of the insulin receptor associated with type A syndrome of insulin resistance. Diabetologia 36 414–422. (https://doi.org/10.1007/BF00402277)
Jasmin JF, Rengo G, Lymperopoulos A, Gupta R, Eaton GJ, Quann K, Gonzales DM, Mercier I, Koch WJ & & Lisanti MP 2011 Caveolin-1 deficiency exacerbates cardiac dysfunction and reduces survival in mice with myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology 300 H1274–H1281. (https://doi.org/10.1152/ajpheart.01173.2010)
Jia G, Habibi J, Demarco VG, Martinez-Lemus LA, Ma L, Whaley-Connell AT, Aroor AR, Domeier TL, Zhu Y, Meininger GA, et al.2015 Endothelial mineralocorticoid receptor deletion prevents diet-induced cardiac diastolic dysfunction in females. Hypertension 66 1159–1167. (https://doi.org/10.1161/HYPERTENSIONAHA.115.06015)
Jia G, Habibi J, Aroor AR, Martinez-Lemus LA, Demarco VG, Ramirez-Perez FI, Sun Z, Hayden MR, Meininger GA, Mueller KB, et al.2016 Endothelial mineralocorticoid receptor mediates diet-induced aortic stiffness in females. Circulation Research 118 935–943. (https://doi.org/10.1161/CIRCRESAHA.115.308269)
Jia G, Aroor AR & & Sowers JR 2017 The role of mineralocorticoid receptor signaling in the cross-talk between adipose tissue and the vascular wall. Cardiovascular Research 113 1055–1063. (https://doi.org/10.1093/cvr/cvx097)
Ju H, Zou R, Venema VJ & & Venema RC 1997 Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. Journal of Biological Chemistry 272 18522–18525. (https://doi.org/10.1074/jbc.272.30.18522)
Kim CA, Delépine M, Boutet E, El Mourabit H, Le Lay S, Meier M, Nemani M, Bridel E, Leite CC, Bertola DR, et al.2008 Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. Journal of Clinical Endocrinology and Metabolism 93 1129–1134. (https://doi.org/10.1210/jc.2007-1328)
Kolkhof P, Jaisser F, Kim SY, Filippatos G, Nowack C & & Pitt B 2017 Steroidal and novel non-steroidal mineralocorticoid receptor antagonists in heart failure and cardiorenal diseases: comparison at bench and bedside. Handbook of Experimental Pharmacology 243 271–305. (https://doi.org/10.1007/164_2016_76)
Koning A, Buurstede JC, Van Weert L & & Meijer OC 2019 Glucocorticoid and mineralocorticoid receptors in the brain: a transcriptional perspective. Journal of the Endocrine Society 3 1917–1930. (https://doi.org/10.1210/js.2019-00158)
Kronstein R, Seebach J, Grossklaus S, Minten C, Engelhardt B, Drab M, Liebner S, Arsenijevic Y, Taha AA, Afanasieva T, et al.2012 Caveolin-1 opens endothelial cell junctions by targeting catenins. Cardiovascular Research 93 130–140. (https://doi.org/10.1093/cvr/cvr256)
Krug AW, Pojoga LH, Williams GH & & Adler GK 2011 Cell membrane-associated mineralocorticoid receptors? New evidence. Hypertension 57 1019–1025. (https://doi.org/10.1161/HYPERTENSIONAHA.110.159459)
Kullo IJ, Turner ST, Kardia S, Mosley TH Jr, Boerwinkle E & & De Andrade M 2006 A genome-wide linkage scan for ankle-brachial index in African American and non-Hispanic white subjects participating in the GENOA study. Atherosclerosis 187 433–438. (https://doi.org/10.1016/j.atherosclerosis.2005.10.003)
Lakka TA, Rankinen T, Weisnagel SJ, Chagnon YC, Rice T, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C, et al.2003 A quantitative trait locus on 7q31 for the changes in plasma insulin in response to exercise training: the Heritage family study. Diabetes 52 1583–1587. (https://doi.org/10.2337/diabetes.52.6.1583)
Laramie JM, Wilk JB, Williamson SL, Nagle MW, Latourelle JC, Tobin JE, Province MA, Borecki IB & & Myers RH 2009 Multiple genes influence BMI on chromosome 7q31–34: the NHLBI Family Heart Study. Obesity (Silver Spring) 17 2182–2189. (https://doi.org/10.1038/oby.2009.141)
Lee IH, Campbell CR, Song SH, Day ML, Kumar S, Cook DI & & Dinudom A 2009 The activity of the epithelial sodium channels is regulated by caveolin-1 via a Nedd4-2-dependent mechanism. Journal of Biological Chemistry 284 12663–12669. (https://doi.org/10.1074/jbc.M809737200)
Li WP, Liu P, Pilcher BK & & Anderson RG 2001 Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. Journal of Cell Science 114 1397–1408. (https://doi.org/10.1242/jcs.114.7.1397)
Li WD, Li D, Wang S, Zhang S, Zhao H & & Price RA 2003 Linkage and linkage disequilibrium mapping of genes influencing human obesity in chromosome region 7q22.1-7q35. Diabetes 52 1557–1561. (https://doi.org/10.2337/diabetes.52.6.1557)
Li XC, Gu V, Miguel-Qin E & & Zhuo JL 2014 Role of caveolin 1 in AT1a receptor-mediated uptake of angiotensin II in the proximal tubule of the kidney. American Journal of Physiology. Renal Physiology 307 F949–F961. (https://doi.org/10.1152/ajprenal.00199.2014)
Lim GB 2021 Finerenone prevents atrial fibrillation in patients with CKD and diabetes. Nature Reviews. Cardiology 18 542. (https://doi.org/10.1038/s41569-021-00571-y)
Lima-Posada I, Stephan Y, Soulie M, Palacios-Ramirez R, Bonnard B, Nicol L, Kolkhof P, Jaisser F & & Mulder P 2023 Benefits of the non-steroidal mineralocorticoid receptor antagonist finerenone in metabolic syndrome-related heart failure with preserved ejection fraction. International Journal of Molecular Sciences 24. (https://doi.org/10.3390/ijms24032536)
Liu IF, Lin TC, Wang SC, Yen CH, Li CY, Kuo HF, Hsieh CC, Chang CY, Chang CR, Chen YH, et al.2023 Long-term administration of Western diet induced metabolic syndrome in mice and causes cardiac microvascular dysfunction, cardiomyocyte mitochondrial damage, and cardiac remodeling involving caveolae and caveolin-1 expression. Biology Direct 18 9. (https://doi.org/10.1186/s13062-023-00363-z)
Loos RJ, Katzmarzyk PT, Rao DC, Rice T, Leon AS, Skinner JS, Wilmore JH, Rankinen T, Bouchard C & HERITAGE Family Study 2003 Genome-wide linkage scan for the metabolic syndrome in the Heritage Family Study. Journal of Clinical Endocrinology and Metabolism 88 5935–5943. (https://doi.org/10.1210/jc.2003-030553)
Luo X, Dan W, Luo X, Zhu X, Wang G, Ning Z, Li Y, MA, ma X, Yang R, Jin S, et al.2017 Caveolin 1-related autophagy initiated by aldosterone-induced oxidation promotes liver sinusoidal endothelial cells defenestration. Redox Biology 13 508–521. (https://doi.org/10.1016/j.redox.2017.07.011)
Luo S, Yang M, Zhao H, Han Y, Jiang N, Yang J, Chen W, Li C, Liu Y, Zhao C, et al.2021 Caveolin-1 regulates cellular metabolism: a potential therapeutic target in kidney disease. Frontiers in Pharmacology 12 768100. (https://doi.org/10.3389/fphar.2021.768100)
Luther JM 2014 Is there a new dawn for selective mineralocorticoid receptor antagonism? Current Opinion in Nephrology and Hypertension 23 456–461. (https://doi.org/10.1097/MNH.0000000000000051)
Ma RC, Hu C, Tam CH, Zhang R, Kwan P, Leung TF, Thomas GN, Go MJ, Hara K, Sim X, et al.2013 Genome-wide association study in a Chinese population identifies a susceptibility locus for type 2 diabetes at 7q32 near PAX4. Diabetologia 56 1291–1305. (https://doi.org/10.1007/s00125-013-2874-4)
Mayurasakorn K, Hasanah N, Homma T, Homma M, Rangel IK, Garza AE, Romero JR, Adler GK, Williams GH & & Pojoga LH 2018 Caloric restriction improves glucose homeostasis, yet increases cardiometabolic risk in caveolin-1-deficient mice. Metabolism: Clinical and Experimental 83 92–101. (https://doi.org/10.1016/j.metabol.2018.01.012)
Minshall RD, Sessa WC, Stan RV, Anderson RGW & & Malik AB 2003 Caveolin regulation of endothelial function. American Journal of Physiology. Lung Cellular and Molecular Physiology 285 L1179–L1183. (https://doi.org/10.1152/ajplung.00242.2003)
Moller DE, Yokota A, White MF, Pazianos AG & & Flier JS 1990 A naturally occurring mutation of insulin receptor alanine 1134 impairs tyrosine kinase function and is associated with dominantly inherited insulin resistance. Journal of Biological Chemistry 265 14979–14985. (https://doi.org/10.1016/S0021-9258(1877212-8)
Mora-García G, Gómez-Camargo D, Alario Á & & Gómez-Alegría C 2018 A common variation in the caveolin 1 gene is associated with high serum triglycerides and metabolic syndrome in an admixed Latin American population. Metabolic Syndrome and Related Disorders 16 453–463. (https://doi.org/10.1089/met.2018.0004)
Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ & & Sessa WC 2007 Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. Journal of Experimental Medicine 204 2373–2382. (https://doi.org/10.1084/jem.20062340)
Nethe M, Anthony EC, Fernandez-Borja M, Dee R, Geerts D, Hensbergen PJ, Deelder AM, Schmidt G & & Hordijk PL 2010 Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway. Journal of Cell Science 123 1948–1958. (https://doi.org/10.1242/jcs.062919)
Neves KB & & Touyz RM 2019 Extracellular vesicles as biomarkers and biovectors in primary aldosteronism. Hypertension 74 250–252. (https://doi.org/10.1161/HYPERTENSIONAHA.119.13088)
Ni K, Wang C, Carnino JM & & Jin Y 2020 The evolving role of caveolin-1: a critical regulator of extracellular vesicles. Medical Sciences 8. (https://doi.org/10.3390/medsci8040046)
Nickless A, Bailis JM & & You Z 2017 Control of gene expression through the nonsense-mediated RNA decay pathway. Cell and Bioscience 7 26. (https://doi.org/10.1186/s13578-017-0153-7)
Nizam R, Al-Ozairi E, Goodson JM, Melhem M, Davidsson L, Alkhandari H, Al Madhoun A, Shamsah S, Qaddoumi M, Alghanim G, et al.2018 Caveolin-1 variant is associated with the metabolic syndrome in Kuwaiti children. Frontiers in Genetics 9 689. (https://doi.org/10.3389/fgene.2018.00689)
Odermatt A & & Kratschmar DV 2012 Tissue-specific modulation of mineralocorticoid receptor function by 11beta-hydroxysteroid dehydrogenases: an overview. Molecular and Cellular Endocrinology 350 168–186. (https://doi.org/10.1016/j.mce.2011.07.020)
Oh YS, Cho KA, Ryu SJ, Khil LY, Jun HS, Yoon JW & & Park SC 2006 Regulation of insulin response in skeletal muscle cell by caveolin status. Journal of Cellular Biochemistry 99 747–758. (https://doi.org/10.1002/jcb.20943)
Oh YS, Kim HJ, Ryu SJ, Cho KA, Park YS, Park H, Kim M, Kim CK & & Park SC 2007 Exercise type and muscle fiber specific induction of caveolin-1 expression for insulin sensitivity of skeletal muscle. Experimental and Molecular Medicine 39 395–401. (https://doi.org/10.1038/emm.2007.44)
Oh YS, Khil LY, Cho KA, Ryu SJ, Ha MK, Cheon GJ, Lee TS, Yoon JW, Jun HS & & Park SC 2008 A potential role for skeletal muscle caveolin-1 as an insulin sensitivity modulator in ageing-dependent non-obese type 2 diabetes: studies in a new mouse model. Diabetologia 51 1025–1034. (https://doi.org/10.1007/s00125-008-0993-0)
Oliveira SDS, Chen J, Castellon M, Mao M, Raj JU, Comhair S, Erzurum S, Silva CLM, Machado RF, Bonini MG, et al.2019 Injury-induced shedding of extracellular vesicles depletes endothelial cells of Cav-1 (Caveolin-1) and enables TGF-β (transforming growth factor-β)-dependent pulmonary arterial hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology 39 1191–1202. (https://doi.org/10.1161/ATVBAHA.118.312038)
Parton RG & & Del Pozo MA 2013 Caveolae as plasma membrane sensors, protectors and organizers. Nature Reviews. Molecular Cell Biology 14 98–112. (https://doi.org/10.1038/nrm3512)
Parton RG, Kozlov MM & & Ariotti N 2020 Caveolae and lipid sorting: shaping the cellular response to stress. Journal of Cell Biology 219. (https://doi.org/10.1083/jcb.201905071)
Patni N, Hegele RA & & Garg A 2022 Caveolar dysfunction and lipodystrophies. European Journal of Endocrinology 186 C1–C4. (https://doi.org/10.1530/EJE-21-1243)
Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J & & Wittes J 1999 The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone evaluation study investigators. New England Journal of Medicine 341 709–717. (https://doi.org/10.1056/NEJM199909023411001)
Pitt B, Reichek N, Willenbrock R, Zannad F, Phillips RA, Roniker B, Kleiman J, Krause S, Burns D & & Williams GH 2003a Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation 108 1831–1838. (https://doi.org/10.1161/01.CIR.0000091405.00772.6E)
Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M & Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study Investigators 2003b Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. New England Journal of Medicine 348 1309–1321. (https://doi.org/10.1056/NEJMoa030207)
Platte P, Papanicolaou GJ, Johnston J, Klein CM, Doheny KF, Pugh EW, Roy-Gagnon MH, Stunkard AJ, Francomano CA & & Wilson AF 2003 A study of linkage and association of body mass index in the Old Order Amish. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics 121C 71–80. (https://doi.org/10.1002/ajmg.c.20005)
Pojoga LH, Yao TM, Sinha S, Ross RL, Lin JC, Raffetto JD, Adler GK, Williams GH & & Khalil RA 2008 Effect of dietary sodium on vasoconstriction and eNOS-mediated vascular relaxation in caveolin-1-deficient mice. American Journal of Physiology. Heart and Circulatory Physiology 294 H1258–H1265. (https://doi.org/10.1152/ajpheart.01014.2007)
Pojoga LH, Adamová Z, Kumar A, Stennett AK, Romero JR, Adler GK, Williams GH & & Khalil RA 2010a Sensitivity of NOS-dependent vascular relaxation pathway to mineralocorticoid receptor blockade in caveolin-1-deficient mice. American Journal of Physiology. Heart and Circulatory Physiology 298 H1776–H1788. (https://doi.org/10.1152/ajpheart.00661.2009)
Pojoga LH, Romero JR, Yao TM, Loutraris P, Ricchiuti V, Coutinho P, Guo C, Lapointe N, Stone JR, Adler GK, et al.2010b Caveolin-1 ablation reduces the adverse cardiovascular effects of N-omega-nitro-L-arginine methyl ester and angiotensin II. Endocrinology 151 1236–1246. (https://doi.org/10.1210/en.2009-0514)
Pojoga LH, Underwood PC, Goodarzi MO, Williams JS, Adler GK, Jeunemaitre X, Hopkins PN, Raby BA, Lasky-Su J, Sun B, et al.2011 Variants of the caveolin-1 gene: a translational investigation linking insulin resistance and hypertension. Journal of Clinical Endocrinology and Metabolism 96 E1288–E1292. (https://doi.org/10.1210/jc.2010-2738)
Pojoga LH, Baudrand R & & Adler GK 2013 Mineralocorticoid receptor throughout the vessel: a key to vascular dysfunction in obesity. European Heart Journal 34 3475–3477. (https://doi.org/10.1093/eurheartj/eht158)
Pojoga LH, Yao TM, Opsasnick LA, Garza AE, Reslan OM, Adler GK, Williams GH & & Khalil RA 2014 Dissociation of hyperglycemia from altered vascular contraction and relaxation mechanisms in caveolin-1 null mice. Journal of Pharmacology and Experimental Therapeutics 348 260–270. (https://doi.org/10.1124/jpet.113.209189)
Pojoga LH, Yao TM, Opsasnick LA, Siddiqui WT, Reslan OM, Adler GK, Williams GH & & Khalil RA 2015 Cooperative role of mineralocorticoid receptor and caveolin-1 in regulating the vascular response to low nitric oxide-high angiotensin II-induced cardiovascular injury. Journal of Pharmacology and Experimental Therapeutics 355 32–47. (https://doi.org/10.1124/jpet.115.226043)
Pooley JR, Rivers CA, Kilcooley MT, Paul SN, Cavga AD, Kershaw YM, Muratcioglu S, Gursoy A, Keskin O & & Lightman SL 2020 Beyond the heterodimer model for mineralocorticoid and glucocorticoid receptor interactions in nuclei and at DNA. PLoS One 15 e0227520. (https://doi.org/10.1371/journal.pone.0227520)
Porta JC, Han B, Gulsevin A, Chung JM, Peskova Y, Connolly S, Mchaourab HS, Meiler J, Karakas E, Kenworthy AK, et al.2022 Molecular architecture of the human caveolin-1 complex. Science Advances 8 eabn7232. (https://doi.org/10.1126/sciadv.abn7232)
Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, et al.2001 Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. Journal of Biological Chemistry 276 38121–38138. (https://doi.org/10.1074/jbc.M105408200)
Razani B, Combs TP, Wang XB, Frank PG, Park DS, Russell RG, Li M, Tang B, Jelicks LA, Scherer PE, et al.2002a Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. Journal of Biological Chemistry 277 8635–8647. (https://doi.org/10.1074/jbc.M110970200)
Razani B, Woodman SE & & Lisanti MP 2002b Caveolae: from cell biology to animal physiology. Pharmacological Reviews 54 431–467. (https://doi.org/10.1124/pr.54.3.431)
Reiner M, Bloch W & & Addicks K 2001 Functional interaction of caveolin-1 and eNOS in myocardial capillary endothelium revealed by immunoelectron microscopy. Journal of Histochemistry and Cytochemistry 49 1605–1610. (https://doi.org/10.1177/002215540104901214)
Ricchiuti V, Lapointe N, Pojoga L, Yao T, Tran L, Williams GH & & Adler GK 2011 Dietary sodium intake regulates angiotensin II type 1, mineralocorticoid receptor, and associated signaling proteins in heart. Journal of Endocrinology 211 47–54. (https://doi.org/10.1530/JOE-10-0458)
Ruhs S, Nolze A, Hubschmann R & & Grossmann C 2017 30 years of the mineralocorticoid receptor: nongenomic effects via the mineralocorticoid receptor. Journal of Endocrinology 234 T107–T124. (https://doi.org/10.1530/JOE-16-0659)
Ryan DH, Espeland MA, Foster GD, Haffner SM, Hubbard VS, Johnson KC, Kahn SE, Knowler WC, Yanovski SZ & Look AHEAD Research Group 2003 Look AHEAD (Action for Health in Diabetes): design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes. Controlled Clinical Trials 24 610–628. (https://doi.org/10.1016/s0197-2456(0300064-3)
Safdar Z & & Cho E 2021 Effect of spironolactone use in pulmonary arterial hypertension - analysis from pivotal trial databases. Pulmonary Circulation 11 20458940211045618. (https://doi.org/10.1177/20458940211045618)
Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW & & Lisanti MP 2002 Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. Journal of Biological Chemistry 277 40091–40098. (https://doi.org/10.1074/jbc.M205948200)
Shao M, Yue Y, Sun GY, You QH, Wang N & & Zhang D 2013 Caveolin-1 regulates Rac1 activation and rat pulmonary microvascular endothelial hyperpermeability induced by TNF-alpha. PLoS One 8 e55213. (https://doi.org/10.1371/journal.pone.0055213)
Shetti AU, Ramakrishnan A, Romanova L, Li W, Vo K, Volety I, Ratnayake I, Stephen T, Minshall RD, Cologna SM, et al.2023 Reduced endothelial caveolin-1 underlies deficits in brain insulin signalling in type 2 diabetes. Brain 146 3014–3028. (https://doi.org/10.1093/brain/awad028)
Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, Miyoshi J, Takai Y & & Fujita T 2008 Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nature Medicine 14 1370–1376. (https://doi.org/10.1038/nm.1879)
Shihata WA, Putra MRA & & Chin-Dusting JPF 2017 Is there a potential therapeutic role for caveolin-1 in fibrosis? Frontiers in Pharmacology 8 567. (https://doi.org/10.3389/fphar.2017.00567)
Shivshankar P, Halade GV, Calhoun C, Escobar GP, Mehr AJ, Jimenez F, Martinez C, Bhatnagar H, Mjaatvedt CH, Lindsey ML, et al.2014 Caveolin-1 deletion exacerbates cardiac interstitial fibrosis by promoting M2 macrophage activation in mice after myocardial infarction. Journal of Molecular and Cellular Cardiology 76 84–93. (https://doi.org/10.1016/j.yjmcc.2014.07.020)
Shyu HY, Chen MH, Hsieh YH, Shieh JC, Yen LR, Wang HW & & Cheng CW 2017 Association of eNOS and Cav-1 gene polymorphisms with susceptibility risk of large artery atherosclerotic stroke. PLoS One 12 e0174110. (https://doi.org/10.1371/journal.pone.0174110)
Smith CL, Blake JA, Kadin JA, Richardson JE, Bult CJ & Mouse Genome Database Group 2018 Mouse genome database (MGD)-2018: knowledgebase for the laboratory mouse. Nucleic Acids Research 46 D836–D842. (https://doi.org/10.1093/nar/gkx1006)
Stralfors P 2012 Caveolins and caveolae, roles in insulin signalling and diabetes. Advances in Experimental Medicine and Biology 729 111–126. (https://doi.org/10.1007/978-1-4614-1222-9_8)
Tam CH, Lam VK, So WY, Ma RC, Chan JC & & Ng MC 2010 Genome-wide linkage scan for factors of metabolic syndrome in a Chinese population. BMC Genetics 11 14. (https://doi.org/10.1186/1471-2156-11-14)
Tang W, Miller MB, Rich SS, North KE, Pankow JS, Borecki IB, Myers RH, Hopkins PN, Leppert M, Arnett DK, et al.2003 Linkage analysis of a composite factor for the multiple metabolic syndrome: the National Heart, Lung, and Blood Institute Family Heart Study. Diabetes 52 2840–2847. (https://doi.org/10.2337/diabetes.52.11.2840)
Tang D, Zhang Y, Mei J, Zhao J, Miao C & & Jiu Y 2023 Interactive mechanisms between caveolin-1 and actin filaments or vimentin intermediate filaments instruct cell mechanosensing and migration. Journal of Molecular Cell Biology 14. (https://doi.org/10.1093/jmcb/mjac066)
Tian J, Popal MS, Huang R, Zhang M, Zhao X, Zhang M & & Song X 2020 Caveolin as a novel potential therapeutic target in cardiac and vascular diseases: a mini review. Aging and Disease 11 378–389. (https://doi.org/10.14336/AD.2019.09603)
Van Batenburg MF, Li H, Polman JA, Lachize S, Datson NA, Bussemaker HJ & & Meijer OC 2010 Paired hormone response elements predict caveolin-1 as a glucocorticoid target gene. PLoS One 5 e8839. (https://doi.org/10.1371/journal.pone.0008839)
Van Krieken R & & Krepinsky JC 2017 Caveolin-1 in the pathogenesis of diabetic nephropathy: potential therapeutic target? Current Diabetes Reports 17 19. (https://doi.org/10.1007/s11892-017-0844-9)
White