*(X Huang and J Liu contributed equally to this work)
This paper forms part of a special collection on Incretins. The guest editors for this collection were Timo D Müller and Erin Mulvihill.
The rapidly rising incidence of obesity, coupled with type 2 diabetes mellitus (T2DM), is a growing concern. Glucagon-like peptide 1 (GLP-1), an endogenous peptide secreted by enteroendocrine L-cells, demonstrates exceptional pharmacological potential for the treatment of T2DM and obesity, primarily through its pivotal roles in regulating glucose homeostasis, stimulating glucose-dependent insulin secretion, and promoting satiety. Considering its proven efficacy in glucoregulation and weight loss, GLP-1 receptor agonists (GLP-1RAs) have emerged as a revolutionary breakthrough in the arena of diabetes management and weight control. Additional gastrointestinal hormones, such as glucose-dependent insulinotropic peptide (GIP) and glucagon, exhibit structural similarities to GLP-1 and work synergistically to lower blood glucose levels or aid in weight loss. Today, various classes of gut hormone receptor multiple agonists are steadily progressing through development and clinical trials, including dual GLP-1/glucagon receptor agonists (first discovered in 2009), dual GLP-1/GIP receptor agonists (first described in 2013), and triple GLP-1/GIP/glucagon receptor agonists (initially designed in 2015). The GLP-1/GIP receptor co-agonist, tirzepatide, was approved by the U.S. Food and Drug Administration (FDA) for the treatment of T2DM, outperforming basal insulin or selective GLP-1RAs by providing superior HbA1c reductions. Remarkably, tirzepatide also facilitated unprecedented weight loss of up to 22.5% in non-diabetic individuals living with obesity. This result is comparable to those achieved with certain types of bariatric surgery. Therefore, the advent of gut hormone multi-agonists signifies the dawn of an exciting new era in peptide-based therapy for obesity and T2DM. This review offers a comprehensive summary of the various types of gut hormone multiple agonists, including their discovery, development, action of mechanisms, and clinical effectiveness. We further delve into potential hurdles, limitations, and prospective advancements in the field.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 169 | 169 | 64 |
PDF Downloads | 148 | 148 | 60 |
Alba M, Yee J, Frustaci ME, Samtani MN & & Fleck P 2021 Efficacy and safety of glucagon-like peptide-1/glucagon receptor co-agonist JNJ-64565111 in individuals with obesity without type 2 diabetes mellitus: a randomized dose-ranging study. Clinical Obesity 11 e12432. (https://doi.org/10.1111/cob.12432)
Amiranoff B, Vauclin-Jacques N & & Laburthe M 1985 Interaction of gastric inhibitory polypeptide (GIP) with the insulin-secreting pancreatic beta cell line, In lll: characteristics of GIP binding sites. Life Sciences 36 807–813. (https://doi.org/10.1016/0024-3205(8590203-6)
Aroda VR, Aberle J, Bardtrum L, Christiansen E, Knop FK, Gabery S, Pedersen SD & & Buse JB 2023 Efficacy and safety of once-daily oral semaglutide 25 mg and 50 mg compared with 14 mg in adults with type 2 diabetes (Pioneer PLUS): a multicentre, randomised, phase 3b trial. Lancet 402 693–704. (https://doi.org/10.1016/S0140-6736(2301127-3)
Aronne LJ, Sattar N, Horn DB, Bays HE, Wharton S, Lin WY, Ahmad NN, Zhang S, Liao R, Bunck MC, et al.2024 Continued treatment with tirzepatide for maintenance of weight reduction in adults with obesity: the SURMOUNT-4 randomized clinical trial. JAMA 331 38–48. (https://doi.org/10.1001/jama.2023.24945)
Asmar M, Tangaa W, Madsbad S, Hare K, Astrup A, Flint A, Bülow J & & Holst JJ 2010 On the role of glucose-dependent insulintropic polypeptide in postprandial metabolism in humans. American Journal of Physiology. Endocrinology and Metabolism 298 E614–E621. (https://doi.org/10.1152/ajpendo.00639.2009)
Asmar M, Simonsen L, Asmar A, Holst JJ, Dela F & & Bülow J 2016 Insulin plays a permissive role for the vasoactive effect of GIP regulating adipose tissue metabolism in humans. Journal of Clinical Endocrinology and Metabolism 101 3155–3162. (https://doi.org/10.1210/jc.2016-1933)
Behary P, Tharakan G, Alexiadou K, Johnson N, Wewer Albrechtsen NJ, Kenkre J, Cuenco J, Hope D, Anyiam O, Choudhury S, et al.2019 Combined GLP-1, oxyntomodulin, and peptide YY improves body weight and glycemia in obesity and prediabetes/type 2 diabetes: a randomized, single-blinded, placebo-controlled study. Diabetes Care 42 1446–1453. (https://doi.org/10.2337/dc19-0449)
Bettge K, Kahle M, Abd El Aziz MS, Meier JJ & & Nauck MA 2017 Occurrence of nausea, vomiting and diarrhoea reported as adverse events in clinical trials studying glucagon-like peptide-1 receptor agonists: a systematic analysis of published clinical trials. Diabetes, Obesity and Metabolism 19 336–347. (https://doi.org/10.1111/dom.12824)
Bossart M, Wagner M, Elvert R, Evers A, Hübschle T, Kloeckener T, Lorenz K, Moessinger C, Eriksson O, Velikyan I, et al.2022 Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. Cell Metabolism 34 59–74.e10. (https://doi.org/10.1016/j.cmet.2021.12.005)
Bramante CT, Lee CJ & & Gudzune KA 2017 Treatment of obesity in patients with diabetes. Diabetes Spectrum 30 237–243. (https://doi.org/10.2337/ds17-0030)
Brown JC & & Dryburgh JR 1971 A gastric inhibitory polypeptide. II. The complete amino acid sequence. Canadian Journal of Biochemistry 49 867–872. (https://doi.org/10.1139/o71-122)
Campbell JE, Ussher JR, Mulvihill EE, Kolic J, Baggio LL, Cao X, Liu Y, Lamont BJ, Morii T, Streutker CJ, et al.2016 TCF1 links GIPR signaling to the control of beta cell function and survival. Nature Medicine 22 84–90. (https://doi.org/10.1038/nm.3997)
Cegla J, Troke RC, Jones B, Tharakan G, Kenkre J, McCullough KA, Lim CT, Parvizi N, Hussein M, Chambers ES, et al.2014 Coinfusion of low-dose GLP-1 and glucagon in man results in a reduction in food intake. Diabetes 63 3711–3720. (https://doi.org/10.2337/db14-0242)
Choi IY, Lee JS, Kim JK, Park YJ, Jung SY, Kim YH & & Kwon SC 2017 Potent body weight loss and efficacy in a NASH animal model by a novel long-acting GLP-1/glucagon/GIP triple-agonist (HM15211). Presented at EASD 2017, Lisbon, Portugal. Abstract/Oral Presentation #109. (available at: https://www.easd.org/media-centre/home.html#!resources/potent-body-weight-loss-and-therapeutic-efficacy-in-a-nash-animal-model-by-a-novel-long-acting-glp-1-glucagon-gip-tri-agonist-hm15211)
Choi JD, Baek S, Kim Y, Eun K, Kwon SC, Morrow L & & Hompesch M 2019 A double-blinded, placebo controlled single ascen ding dose study to assess safety, tolerability, pharmacokinetics, and pharmacodynamics of a novel long-acting GLP-1/GIP/glucagon triple agonist (HM15211) in healthy obese subjects. Diabetes 68(Supplement 1) 982-P. (https://doi.org/10.2337/db19-982-P)
Christensen M, Vedtofte L, Holst JJ, Vilsbøll T & & Knop FK 2011 Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. Diabetes 60 3103–3109. (https://doi.org/10.2337/db11-0979)
Christensen MB, Gasbjerg LS, Heimbürger SM, Stensen S, Vilsbøll T & & Knop FK 2020 GIP's involvement in the pathophysiology of type 2 diabetes. Peptides 125 170178. (https://doi.org/10.1016/j.peptides.2019.170178)
Clemmensen C, Chabenne J, Finan B, Sullivan L, Fischer K, Küchler D, Sehrer L, Ograjsek T, Hofmann SM, Schriever SC, et al.2014 GLP-1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet. Diabetes 63 1422–1427. (https://doi.org/10.2337/db13-1609)
Clemmensen C, Finan B, Müller TD, DiMarchi RD, Tschöp MH & & Hofmann SM 2019 Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases. Nature Reviews. Endocrinology 15 90–104. (https://doi.org/10.1038/s41574-018-0118-x)
Coskun T, Sloop KW, Loghin C, Alsina-Fernandez J, Urva S, Bokvist KB, Cui X, Briere DA, Cabrera O, Roell WC, et al.2018 LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Molecular Metabolism 18 3–14. (https://doi.org/10.1016/j.molmet.2018.09.009)
Coskun T, Moyers JS, Roell W, O'Farrell L, Regmi A, Showalter A, Sloop K, Wainscott D, Willard F, Ficorilli J, et al.2021 The novel GIP, GLP-1, and glucagon triple receptor agonist LY3437943 exhibits robust efficacy in preclinical models of obesity and diabetes. Diabetes 70 (Supplement_1) 679-P.(https://doi.org/10.2337/db21-679-P)
Coskun T, Urva S, Roell WC, Qu H, Loghin C, Moyers JS, O'Farrell LS, Briere DA, Sloop KW, Thomas MK, et al.2022 LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: from discovery to clinical proof of concept. Cell Metabolism 34 1234–1247.e9. (https://doi.org/10.1016/j.cmet.2022.07.013)
Dahl D, Onishi Y, Norwood P, Huh R, Bray R, Patel H & & Rodríguez Á 2022 Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: the SURPASS-5 randomized clinical trial. JAMA 327 534–545. (https://doi.org/10.1001/jama.2022.0078)
Daousi C, Wilding JP, Aditya S, Durham BH, Cleator J, Pinkney JH & & Ranganath LR 2009 Effects of peripheral administration of synthetic human glucose-dependent insulinotropic peptide (GIP) on energy expenditure and subjective appetite sensations in healthy normal weight subjects and obese patients with type 2 diabetes. Clinical Endocrinology 71 195–201. (https://doi.org/10.1111/j.1365-2265.2008.03451.x)
De Barra C, Khalil M, Mat A, O'Donnell C, Shaamile F, Brennan K, O'Shea D & & Hogan AE 2023 Glucagon-like peptide-1 therapy in people with obesity restores natural killer cell metabolism and effector function. Obesity (Silver Spring) 31 1787–1797. (https://doi.org/10.1002/oby.23772)
De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, Rabiner EA, Ghatei MA, Bloom SR, Matthews PM, Beaver JD, et al.2011 The gut hormones PYY 3–36 and GLP-1 7–36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metabolism 14 700–706. (https://doi.org/10.1016/j.cmet.2011.09.010)
Del Prato S, Kahn SE, Pavo I, Weerakkody GJ, Yang Z, Doupis J, Aizenberg D, Wynne AG, Riesmeyer JS, Heine RJ, et al.2021 Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet 398 1811–1824. (https://doi.org/10.1016/S0140-6736(2102188-7)
Diakogiannaki E, Gribble FM & & Reimann F 2012 Nutrient detection by incretin hormone secreting cells. Physiology and Behavior 106 387–393. (https://doi.org/10.1016/j.physbeh.2011.12.001)
Enebo LB, Berthelsen KK, Kankam M, Lund MT, Rubino DM, Satylganova A & & Lau DCW 2021 Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2·4 mg for weight management: a randomised, controlled, phase 1b trial. Lancet 397 1736–1748. (https://doi.org/10.1016/S0140-6736(2100845-X)
Eng J, Kleinman WA, Singh L, Singh G & & Raufman JP 1992 Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. Journal of Biological Chemistry 267 7402–7405. (https://doi.org/10.1016/S0021-9258(1842531-8)
Eriksson O, Haack T, Hijazi Y, Teichert L, Tavernier V, Laitinen I, Berglund JE, Antoni G, Velikyan I, Johansson L, et al.2020 Receptor occupancy of dual glucagon-like peptide 1/glucagon receptor agonist SAR425899 in individuals with type 2 diabetes. Scientific Reports 10 16758. (https://doi.org/10.1038/s41598-020-73815-5)
Finan B & & Douros JD 2022 GLP-1/GIP/glucagon receptor triagonism gets its try in humans. Cell Metabolism 34 3–4. (https://doi.org/10.1016/j.cmet.2021.12.010)
Finan B, Ma T, Ottaway N, Müller TD, Habegger KM, Heppner KM, Kirchner H, Holland J, Hembree J, Raver C, et al.2013 Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Science Translational Medicine 5 209ra151. (https://doi.org/10.1126/scitranslmed.3007218)
Finan B, Yang B, Ottaway N, Smiley DL, Ma T, Clemmensen C, Chabenne J, Zhang L, Habegger KM, Fischer K, et al.2015 A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nature Medicine 21 27–36. (https://doi.org/10.1038/nm.3761)
Finan B, Müller TD, Clemmensen C, Perez-Tilve D, DiMarchi RD & & Tschöp MH 2016 Reappraisal of GIP pharmacology for metabolic diseases. Trends in Molecular Medicine 22 359–376. (https://doi.org/10.1016/j.molmed.2016.03.005)
Finan B, Capozzi ME & & Campbell JE 2020 Repositioning glucagon action in the physiology and pharmacology of diabetes. Diabetes 69 532–541. (https://doi.org/10.2337/dbi19-0004)
Flint A, Raben A, Astrup A & & Holst JJ 1998 Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. Journal of Clinical Investigation 101 515–520. (https://doi.org/10.1172/JCI990)
Fosgerau K, Jessen L, Lind Tolborg J, Østerlund T, Schæffer Larsen K, Rolsted K, Brorson M, Jelsing J & & Skovlund Ryge Neerup T 2013 The novel GLP-1-gastrin dual agonist, ZP3022, increases β-cell mass and prevents diabetes in db/db mice. Diabetes, Obesity and Metabolism 15 62–71. (https://doi.org/10.1111/j.1463-1326.2012.01676.x)
Frías JP, Davies MJ, Rosenstock J, Pérez Manghi FC, Fernández Landó L, Bergman BK, Liu B, Cui X & & Brown K 2021 Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. New England Journal of Medicine 385 503–515. (https://doi.org/10.1056/NEJMoa2107519)
Garvey WT, Frias JP, Jastreboff AM, le Roux CW, Sattar N, Aizenberg D, Mao H, Zhang S, Ahmad NN & & Bunck MC 2023 Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 402 613–626. (https://doi.org/10.1016/s0140-6736(2301200-x)
Gastaldelli A, Cusi K, Fernández Landó L, Bray R, Brouwers B & & Rodríguez Á 2022 Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): a substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet. Diabetes and Endocrinology 10 393–406. (https://doi.org/10.1016/S2213-8587(2200070-5)
Guzman CB, Zhang XM, Liu R, Regev A, Shankar S, Garhyan P, Pillai SG, Kazda C, Chalasani N & & Hardy TA 2017 Treatment with LY2409021, a glucagon receptor antagonist, increases liver fat in patients with type 2 diabetes. Diabetes, Obesity and Metabolism 19 1521–1528. (https://doi.org/10.1111/dom.12958)
Gydesen S, Andreassen KV, Hjuler ST, Hellgren LI, Karsdal MA & & Henriksen K 2017 Optimization of tolerability and efficacy of the novel dual amylin and calcitonin receptor agonist KBP-089 through dose escalation and combination with a GLP-1 analog. American Journal of Physiology. Endocrinology and Metabolism 313 E598–E607. (https://doi.org/10.1152/ajpendo.00419.2016)
Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R & & Tschöp MH 2010 The metabolic actions of glucagon revisited. Nature Reviews. Endocrinology 6 689–697. (https://doi.org/10.1038/nrendo.2010.187)
Hædersdal S, Lund A, Knop FK & & Vilsbøll T 2018 The role of glucagon in the pathophysiology and treatment of type 2 diabetes. Mayo Clinic Proceedings 93 217–239. (https://doi.org/10.1016/j.mayocp.2017.12.003)
Hædersdal S, Andersen A, Knop FK & & Vilsbøll T 2023 Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nature Reviews. Endocrinology 19 321–335. (https://doi.org/10.1038/s41574-023-00817-4)
Hagerich K, Durkee M & & Goldstein MG 2022 Tirzepatide once weekly for the treatment of obesity. New England Journal of Medicine 387 1433. (https://doi.org/10.1056/NEJMc2211120)
Heerspink HJL, Sattar N, Pavo I, Haupt A, Duffin KL, Yang Z, Wiese RJ, Tuttle KR & & Cherney DZI 2022 Effects of tirzepatide versus insulin glargine on kidney outcomes in type 2 diabetes in the SURPASS-4 trial: post-hoc analysis of an open-label, randomised, phase 3 trial. Lancet. Diabetes and Endocrinology 10 774–785. (https://doi.org/10.1016/S2213-8587(2200243-1)
Højberg PV, Vilsbøll T, Rabøl R, Knop FK, Bache M, Krarup T, Holst JJ & & Madsbad S 2009 Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia 52 199–207. (https://doi.org/10.1007/s00125-008-1195-5)
Holst JJ 2007 The physiology of glucagon-like peptide 1. Physiological Reviews 87 1409–1439. (https://doi.org/10.1152/physrev.00034.2006)
Holz GG, Kühtreiber WM & & Habener JF 1993 Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 361 362–365. (https://doi.org/10.1038/361362a0)
Ingelsson E & & McCarthy MI 2018 Human genetics of obesity and type 2 diabetes mellitus past, present, and future. Circulation. Genomic and Precision Medicine 11 e002090. (https://doi.org/10.1161/CIRCGEN.118.002090)
Biologics Innovent 2023 Innovent Biologics Clinical Data Update: Mazdutide (IBI362) higher dose 9mg phase 2 clinical study in obesity. Suzhou, Jiangsu, China: Innovent Biologics (Suzhou) Co., Ltd. (available at: https://investor.innoventbio.com/media/1184/final_mazdutide-ibi362-higher-dose-9mg-phase-2-clinical-study-in-obesity_for-website.pdf)
Jastreboff AM, Kaplan LM, Frías JP, Wu Q, Du Y, Gurbuz S, Coskun T, Haupt A, Milicevic Z, Hartman ML, et al.2023 Triple-hormone-receptor agonist Retatrutide for obesity - A Phase 2 trial. New England Journal of Medicine 389 514–526. (https://doi.org/10.1056/NEJMoa2301972)
Ji L, Jiang H, An P, Deng H, Liu M, Li L, Feng L, Song B, Han-Zhang H, Ma Q, et al.2021 IBI362 (LY3305677), a weekly-dose GLP-1 and glucagon receptor dual agonist, in Chinese adults with overweight or obesity: a randomised, placebo-controlled, multiple ascending dose phase 1b study. EClinicalmedicine 39 101088. (https://doi.org/10.1016/j.eclinm.2021.101088)
Ji L, Gao L, Jiang H, Yang J, Yu L, Wen J, Cai C, Deng H, Feng L, Song B, et al.2022 Safety and efficacy of a GLP-1 and glucagon receptor dual agonist mazdutide (IBI362) 9 mg and 10 mg in Chinese adults with overweight or obesity: a randomised, placebo-controlled, multiple-ascending-dose phase 1b trial. EClinicalmedicine 54 101691. (https://doi.org/10.1016/j.eclinm.2022.101691)
Jiang N, Jing L, Li Q, Su S, Yang Q, Zhou F, Chen X, Han J, Tang C & & Tang W 2021 Design of novel Xenopus GLP-1-based dual glucagon-like peptide 1 (GLP-1)/glucagon receptor agonists. European Journal of Medicinal Chemistry 212 113118. (https://doi.org/10.1016/j.ejmech.2020.113118)
Kazda CM, Frias J, Foga I, Cui X, Guzman CB, Garhyan P, Heilmann C, Yang JA & & Hardy TA 2017 Treatment with the glucagon receptor antagonist LY2409021 increases ambulatory blood pressure in patients with type 2 diabetes. Diabetes, Obesity and Metabolism 19 1071–1077. (https://doi.org/10.1111/dom.12904)
Killion EA, Wang J, Yie J, Shi SDH, Bates D, Min X, Komorowski R, Hager T, Deng L, Atangan L, et al.2018 Anti-obesity effects of GIPR antagonists alone and in combination with GLP-1R agonists in preclinical models. Science Translational Medicine 10. (https://doi.org/10.1126/scitranslmed.aat3392)
Kim W & & Egan JM 2008 The role of incretins in glucose homeostasis and diabetes treatment. Pharmacological Reviews 60 470–512. (https://doi.org/10.1124/pr.108.000604)
Kim JA, Lee S-H, Choi IY, Kim YH, Lee YM & & Kwon SC 2012a Neuroprotective effects of HM15211, a novel long-acting GLP-1/glucagon/GIP triple agonist in the MPTP Parkinson’s disease mouse model. Journal of Neuroinflammation 9 47.
Kim SJ, Nian C, Karunakaran S, Clee SM, Isales CM & & McIntosh CHS 2012b GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS One 7 e40156. (https://doi.org/10.1371/journal.pone.0040156)
Kim ER, Park JS, Kim JH, Oh JY, Oh IJ, Choi DH, Lee YS, Park IS, Kim S, Lee DH, et al.2022 A GLP-1/GLP-2 receptor dual agonist to treat NASH: targeting the gut-liver axis and microbiome. Hepatology 75 1523–1538. (https://doi.org/10.1002/hep.32235)
Klausen MK, Thomsen M, Wortwein G & & Fink-Jensen A 2022 The role of glucagon-like peptide 1 (GLP-1) in addictive disorders. British Journal of Pharmacology 179 625–641. (https://doi.org/10.1111/bph.15677)
Klein S, Nestor JJ, Jr., Harris MS, Suyundikov A, Casper R, Steele SM, Payne JD, Krishnan V, Roberts MS & & Browne SK 2022 334-OR: Pemvidutide (ALT-801), a balanced (1:1) GLP-1/glucagon dual receptor agonist, induces rapid and marked weight loss without the need for dose titration in people with overweight/obesity. Diabetes 71 (Supplement_1) 334-OR. (https://doi.org/10.2337/db22-334-OR)
Knop FK, Aroda VR, do Vale RD, Holst-Hansen T, Laursen PN, Rosenstock J, Rubino DM & & Garvey WT 2023 Oral semaglutide 50 mg taken once per day in adults with overweight or obesity (OASIS 1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 402 705–719. (https://doi.org/10.1016/S0140-6736(2301185-6)
Kochar B, Long MD, Shelton E, Young L, Farraye FA, Yajnik V & & Herfarth H 2017 Safety and efficacy of teduglutide (Gattex) in patients with Crohn's disease and need for parenteral support due to short bowel syndrome-associated intestinal failure. Journal of Clinical Gastroenterology 51 508–511. (https://doi.org/10.1097/MCG.0000000000000604)
Le Roux CW, Aylwin SJB, Batterham RL, Borg CM, Coyle F, Prasad V, Shurey S, Ghatei MA, Patel AG & & Bloom SR 2006 Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Annals of Surgery 243 108–114. (https://doi.org/10.1097/01.sla.0000183349.16877.84)
Le Roux C, Steen O, Lucas KJ, Startseva E, Unseld A & & Hennige AM 2023 A phase 2, randomized, double-blind, placebo-controlled, dose-finding study of BI 456906 in people with overweight/obesity. Diabetes 72(Supplement 1) 51-OR.(https://doi.org/10.2337/db23-51-OR)
Li C, Yang M, Wang X, Zhang H, Yao C, Sun S, Liu Q, Pan H, Liu S, Huan Y, et al.2018 Glutazumab, a novel long-lasting GLP-1/anti-GLP-1R antibody fusion protein, exerts anti-diabetic effects through targeting dual receptor binding sites. Biochemical Pharmacology 150 46–53. (https://doi.org/10.1016/j.bcp.2018.01.029)
Lu W, Zhou Z, Jiang N & & Han J 2023 An updated patent review of GLP-1 receptor agonists (2020-present). Expert Opinion on Therapeutic Patents 33 597–612. (https://doi.org/10.1080/13543776.2023.2274905)
Ludvik B, Giorgino F, Jódar E, Frias JP, Fernández Landó L, Brown K, Bray R & & Rodríguez Á 2021 Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): a randomised, open-label, parallel-group, phase 3 trial. Lancet 398 583–598. (https://doi.org/10.1016/S0140-6736(2101443-4)
McClean PL, Irwin N, Cassidy RS, Holst JJ, Gault VA & & Flatt PR 2007 GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. American Journal of Physiology. Endocrinology and Metabolism 293 E1746–E1755. (https://doi.org/10.1152/ajpendo.00460.2007)
Medeiros MD & & Turner AJ 1994 Processing and metabolism of peptide-YY: pivotal roles of dipeptidylpeptidase-IV, aminopeptidase-P, and endopeptidase-24.11. Endocrinology 134 2088–2094. (https://doi.org/10.1210/endo.134.5.7908871)
Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H, Fujimoto S, Oku A, Tsuda K, Toyokuni S, et al.2002 Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nature Medicine 8 738–742. (https://doi.org/10.1038/nm727)
Müller TD, Finan B, Clemmensen C, DiMarchi RD & & Tschöp MH 2017 The new biology and pharmacology of glucagon. Physiological Reviews 97 721–766. (https://doi.org/10.1152/physrev.00025.2016)
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, et al.2019 Glucagon-like peptide 1 (GLP-1). Molecular Metabolism 30 72–130. (https://doi.org/10.1016/j.molmet.2019.09.010)
Müller TD, Blüher M, Tschöp MH & & DiMarchi RD 2022 Anti-obesity drug discovery: advances and challenges. Nature Reviews. Drug Discovery 21 201–223. (https://doi.org/10.1038/s41573-021-00337-8)
Murphy MC, Isherwood SG, Sethi S, Gould BJ, Wright JW, Knapper JA & & Williams CM 1995 Postprandial lipid and hormone responses to meals of varying fat contents: modulatory role of lipoprotein lipase? European Journal of Clinical Nutrition 49 578–588.
Nahra R, Wang T, Gadde KM, Oscarsson J, Stumvoll M, Jermutus L, Hirshberg B & & Ambery P 2021 Effects of cotadutide on metabolic and hepatic parameters in adults with overweight or obesity and type 2 diabetes: a 54-week randomized phase 2b study. Diabetes Care 44 1433–1442. (https://doi.org/10.2337/dc20-2151)
Nair KS 1987 Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency. Journal of Clinical Endocrinology and Metabolism 64 896–901. (https://doi.org/10.1210/jcem-64-5-896)
Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R & & Creutzfeldt W 1993 Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. Journal of Clinical Investigation 91 301–307. (https://doi.org/10.1172/JCI116186)
Nielsen LL, Young AA & & Parkes DG 2004 Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regulatory Peptides 117 77–88. (https://doi.org/10.1016/j.regpep.2003.10.028)
Olsen MB, Hövelmann U, Griffin J, Knudsen KM, Eriksson P-O & & Agersnap MA 2022 335-OR: Dapiglutide, a once-weekly GLP-1R/GLP-2R dual agonist, was safe and well tolerated and showed dose-dependent body weight loss over four weeks in healthy subjects Diabetes 71 (Supplement 1) 335-OR. (https://doi.org/10.2337/db22-335-OR)
Onaga T, Zabielski R & & Kato S 2002 Multiple regulation of peptide YY secretion in the digestive tract. Peptides 23 279–290. (https://doi.org/10.1016/s0196-9781(0100609-x)
Østergaard S, Paulsson JF, Kjaergaard Gerstenberg M & & Wulff BS 2021 The design of a GLP-1/PYY dual acting agonist. Angewandte Chemie 60 8268–8275. (https://doi.org/10.1002/anie.202016464)
Pearson MJ, Unger RH & & Holland WL 2016 Clinical trials, triumphs, and tribulations of glucagon receptor antagonists. Diabetes Care 39 1075–1077. (https://doi.org/10.2337/dci15-0033)
Pratley R, Amod A, Hoff ST, Kadowaki T, Lingvay I, Nauck M, Pedersen KB, Saugstrup T & & Meier JJ 2019 Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (Pioneer 4): a randomised, double-blind, phase 3a trial. Lancet 394 39–50. (https://doi.org/10.1016/S0140-6736(1931271-1)
Rosenstock J, Wysham C, Frías JP, Kaneko S, Lee CJ, Fernández Landó L, Mao H, Cui X, Karanikas CA & & Thieu VT 2021 Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet 398 143–155. (https://doi.org/10.1016/S0140-6736(2101324-6)
Roth JD, Roland BL, Cole RL, Trevaskis JL, Weyer C, Koda JE, Anderson CM, Parkes DG & & Baron AD 2008 Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proceedings of the National Academy of Sciences of the United States of America 105 7257–7262. (https://doi.org/10.1073/pnas.0706473105)
Rubino DM, Greenway FL, Khalid U, O'Neil PM, Rosenstock J, Sørrig R, Wadden TA, Wizert A & & Garvey WT 2022 Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: the STEP 8 randomized clinical trial. JAMA 327 138–150. (https://doi.org/10.1001/jama.2021.23619)
Samms RJ, Christe ME, Ruan X, Moyers J, Regmi A & & Roell WC 2019 1009-P: The dual GIP and GLP-1 receptor agonist tirzepatide regulates lipid and carbohydrate metabolism through GIPR in adipose tissue. Diabetes 68(Supplement 1) 1009-P(https://doi.org/10.2337/db19-1009-P)
Schiavon M, Visentin R, Göbel B, Riz M, Cobelli C, Klabunde T & & Dalla Man C 2021 Improved postprandial glucose metabolism in type 2 diabetes by the dual glucagon-like peptide-1/glucagon receptor agonist SAR425899 in comparison with liraglutide. Diabetes, Obesity and Metabolism 23 1795–1805. (https://doi.org/10.1111/dom.14394)
Schmidt WE, Siegel EG & & Creutzfeldt W 1985 Glucagon-like peptide-1 but not glucagon-like peptide-2 stimulates insulin release from isolated rat pancreatic islets. Diabetologia 28 704–707. (https://doi.org/10.1007/BF00291980)
Sharma AX, Quittner-Strom EB, Lee Y, Johnson JA, Martin SA, Yu X, Li J, Lu J, Cai Z, Chen S, et al.2018 Glucagon receptor antagonism improves glucose metabolism and cardiac function by promoting AMP-mediated protein kinase in diabetic mice. Cell Reports 22 1760–1773. (https://doi.org/10.1016/j.celrep.2018.01.065)
Sodhi M, Rezaeianzadeh R, Kezouh A & & Etminan M 2023 Risk of gastrointestinal adverse events associated with glucagon-like Peptide-1 receptor agonists for weight loss. JAMA 330 1795–1797. (https://doi.org/10.1001/jama.2023.19574)
Sparre-Ulrich AH, Hansen LS, Svendsen B, Christensen M, Knop FK, Hartmann B, Holst JJ & & Rosenkilde MM 2016 Species-specific action of (Pro3)GIP - a full agonist at human GIP receptors, but a partial agonist and competitive antagonist at rat and mouse GIP receptors. British Journal of Pharmacology 173 27–38. (https://doi.org/10.1111/bph.13323)
Steinert RE, Poller B, Castelli MC, Drewe J & & Beglinger C 2010 Oral administration of glucagon-like peptide 1 or peptide YY 3–36 affects food intake in healthy male subjects. American Journal of Clinical Nutrition 92 810–817. (https://doi.org/10.3945/ajcn.2010.29663)
Su W, Huang J, Chen F, Iacobucci W, Mocarski M, Dall TM & & Perreault L 2015 Modeling the clinical and economic implications of obesity using microsimulation. Journal of Medical Economics 18 886–897. (https://doi.org/10.3111/13696998.2015.1058805)
Svendsen B, Larsen O, Gabe MBN, Christiansen CB, Rosenkilde MM, Drucker DJ & & Holst JJ 2018 Insulin secretion depends on intra-islet glucagon signaling. Cell Reports 25 1127–1134.e2. (https://doi.org/10.1016/j.celrep.2018.10.018)
Tan TM, Salem V, Troke RC, Alsafi A, Field BCT, De Silva A, Misra S, Baynes KCR, Donaldson M, Minnion J, et al.2014 Combination of peptide YY3-36 with GLP-1(7–36) amide causes an increase in first-phase insulin secretion after IV glucose. Journal of Clinical Endocrinology and Metabolism 99 E2317–E2324. (https://doi.org/10.1210/jc.2014-2143)
Thorens B 1992 Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proceedings of the National Academy of Sciences of the United States of America 89 8641–8645. (https://doi.org/10.1073/pnas.89.18.8641)
Tillner J, Posch MG, Wagner F, Teichert L, Hijazi Y, Einig C, Keil S, Haack T, Wagner M, Bossart M, et al.2019 A novel dual glucagon-like peptide and glucagon receptor agonist SAR425899: results of randomized, placebo-controlled first-in-human and first-in-patient trials. Diabetes, Obesity and Metabolism 21 120–128. (https://doi.org/10.1111/dom.13494)
Unger RH & & Orci L 1975 The essential role of glucagon in the pathogenesis of diabetes mellitus. Lancet 1 14–16. (https://doi.org/10.1016/s0140-6736(7592375-2)
Urva S, Coskun T, Loh MT, Du Y, Thomas MK, Gurbuz S, Haupt A, Benson CT, Hernandez-Illas M, D'Alessio DA, et al.2022 LY3437943, a novel triple GIP, GLP-1, and glucagon receptor agonist in people with type 2 diabetes: a phase 1b, multicentre, double-blind, placebo-controlled, randomised, multiple-ascending dose trial. Lancet 400 1869–1881. (https://doi.org/10.1016/S0140-6736(2202033-5)
van Bloemendaal L, ten Kulve JS, la Fleur SE, Ijzerman RG & & Diamant M 2014 Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS. Journal of Endocrinology 221 T1–T16. (https://doi.org/10.1530/JOE-13-0414)
Véniant MM, Lu SC, Atangan L, Komorowski R, Stanislaus S, Cheng Y, Wu B, Falsey JR, Hager T, Thomas VA, et al.2024 A GIPR antagonist conjugated to GLP-1 analogues promotes weight loss with improved metabolic parameters in preclinical and phase 1 settings. Nature Metabolism 6 290–303. (https://doi.org/10.1038/s42255-023-00966-w)
Vilsbøll T, Krarup T, Madsbad S & & Holst JJ 2002 Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia 45 1111–1119. (https://doi.org/10.1007/s00125-002-0878-6)
Visentin R, Schiavon M, Göbel B, Riz M, Cobelli C, Klabunde T & & Dalla Man C 2020 Dual glucagon-like peptide-1 receptor/glucagon receptor agonist SAR425899 improves beta-cell function in type 2 diabetes. Diabetes, Obesity and Metabolism 22 640–647. (https://doi.org/10.1111/dom.13939)
Wadden TA, Chao AM, Machineni S, Kushner R, Ard J, Srivastava G, Halpern B, Zhang S, Chen J & & Bunck MC 2023 Tirzepatide after intensive lifestyle intervention in adults with overweight or obesity: the SURMOUNT-3 phase 3 trial. Nature Medicine 29 2909–2918. (https://doi.org/10.1038/s41591-023-02597-w)
Wei T, Cui X, Jiang Y, Wang K, Wang D, Li F, Lin X, Gu L, Yang K, Yang J, et al.2023 Glucagon acting at the GLP-1 receptor contributes to β-cell regeneration induced by glucagon receptor antagonism in diabetic mice. Diabetes 72 599–610. (https://doi.org/10.2337/db22-0784)
Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, McGowan BM, Rosenstock J, Tran MTD, Wadden TA, et al.2021 Once-weekly semaglutide in adults with overweight or obesity. New England Journal of Medicine 384 989–1002. (https://doi.org/10.1056/NEJMoa2032183)
Winer DA, Luck H, Tsai S & & Winer S 2016 The intestinal immune system in obesity and insulin resistance. Cell Metabolism 23 413–426. (https://doi.org/10.1016/j.cmet.2016.01.003)
Wismann P, Pedersen SL, Hansen G, Mannerstedt K, Pedersen PJ, Jeppesen PB, Vrang N, Fosgerau K & & Jelsing J 2018 Novel GLP-1/GLP-2 co-agonists display marked effects on gut volume and improves glycemic control in mice. Physiology and Behavior 192 72–81. (https://doi.org/10.1016/j.physbeh.2018.03.004)
World Health Organization 2023 World health statistics 2023: monitoring health for the SDGs, sustainable development goals. Geneva, Switzerland: WHO. (available at: https://www.who.int/publications/i/item/9789240074323)
Xi Y, Song B, Ngan I, Solloway MJ, Humphrey M, Wang Y, Mondal K, Wu H, Liu W, Lindhout DA, et al.2022 Glucagon-receptor-antagonism-mediated β-cell regeneration as an effective anti-diabetic therapy. Cell Reports 39 110872. (https://doi.org/10.1016/j.celrep.2022.110872)
Yang Q, Tang W, Sun L, Yan Z, Tang C, Yuan Y, Zhou H, Zhou F, Zhou S, Wu Q, et al.2022a Design of Xenopus GLP-1-based long-acting dual GLP-1/Y(2) receptor agonists. Journal of Medicinal Chemistry 65 14201–14220. (https://doi.org/10.1021/acs.jmedchem.2c01385)
Yang Q, Zhou F, Tang X, Wang J, Feng H, Jiang W, Jin L, Jiang N, Yuan Y, Han J, et al.2022b Peptide-based long-acting co-agonists of GLP-1 and cholecystokinin 1 receptors as novel anti-diabesity agents. European Journal of Medicinal Chemistry 233 114214. (https://doi.org/10.1016/j.ejmech.2022.114214)
Yárnoz-Esquiroz P, Olazarán L, Aguas-Ayesa M, Perdomo CM, García-Goñi M, Silva C, Fernández-Formoso JA, Escalada J, Montecucco F, Portincasa P, et al.2022 ‘Obesities’: position statement on a complex disease entity with multifaceted drivers. European Journal of Clinical Investigation 52 e13811. (https://doi.org/10.1111/eci.13811)
Zhang Q, Delessa CT, Augustin R, Bakhti M, Colldén G, Drucker DJ, Feuchtinger A, Caceres CG, Grandl G, Harger A, et al.2021a The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metabolism 33 833–844.e5. (https://doi.org/10.1016/j.cmet.2021.01.015)
Zhang Y, Rahematpura S, Ragnini KH, Moreno A, Stecyk KS, Kahng MW, Milliken BT, Hayes MR, Doyle RP & & Schmidt HD 2021b A novel dual agonist of glucagon-like peptide-1 receptors and neuropeptide Y2 receptors attenuates fentanyl taking and seeking in male rats. Neuropharmacology 192 108599. (https://doi.org/10.1016/j.neuropharm.2021.108599)
Zhang B, Cheng Z, Chen J, Zhang X, Liu D, Jiang H, Ma G, Wang X, Gan S, Sun J, et al.2023 Efficacy and safety of mazdutide in Chinese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled Phase 2 trial. Diabetes Care 47 160–168. (https://doi.org/10.2337/dc23-1287)
Zhao S, Yan Z, Du Y, Li Z, Tang C, Jing L, Sun L, Yang Q, Tang X, Yuan Y, et al.2022 A GLP-1/glucagon (GCG)/CCK(2) receptors tri-agonist provides new therapy for obesity and diabetes. British Journal of Pharmacology 179 4360–4377. (https://doi.org/10.1111/bph.15860)
Online ISSN: 1479-6805
Print ISSN: 0022-0795
CONTACT US
Bioscientifica Ltd | Starling House | 1600 Bristol Parkway North | Bristol BS34 8YU | UK
Bioscientifica Ltd | Registered in England no 3190519