The complexity of coffee and its impact on metabolism

in Journal of Endocrinology
Authors:
Huanan Zhang School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

Search for other papers by Huanan Zhang in
Current site
Google Scholar
PubMed
Close
and
John R Speakman Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China

Search for other papers by John R Speakman in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2457-1823

Correspondence should be addressed to J Speakman: j.speakman@abdn.ac.uk
Restricted access
Rent on DeepDyve

Sign up for journal news

Coffee is one of the three most consumed beverages in the world. It is made by first roasting coffee beans, and then grinding and boiling or steeping the roasted beans in water (brewing). The process of roasting and brewing produces a complex mix of bioactive compounds, including methylxanthines (caffeine, theobromine, theophylline), diterpenes, chlorogenic acid, trigonelline, flavonoids, and hydroxycinnamic acid. In the body, these compounds may be metabolized to produce other bioactive compounds. For example, caffeine is primarily (80%) broken down by demethylation to produce paraxanthine. In the post-ingestion period, levels of paraxanthine may be higher than caffeine due to its slower elimination. Hence, while paraxanthine is not found in coffee itself, it has many of the same properties as caffeine and may be a major contributor to its metabolic effects. The impacts of caffeine and paraxanthine on metabolism relate to their impact on adenosine receptors (notably the A2A receptor). It has been known for almost 100 years that intake of coffee stimulates metabolism by between 5% and 20% for at least 3 h. About half of the increase in metabolic rate after drinking coffee is due to caffeine and derivatives, but the source of the other half is unclear. There are large differences in the response to the same amount of coffee in different individuals, which may be related to caffeine clearance rates, effects of other unknown pathways, genetic polymorphism, age, sex, and body composition.

 

  • Collapse
  • Expand
  • Acar-Tek N, Aǧagündüz D & & Ayhan B 2018 Effect of green coffee consumption on resting energy expenditure, blood pressure, and body temperature in healthy women: a pilot study. Journal of the American College of Nutrition 37 691700. (https://doi.org/10.1080/07315724.2018.1461147)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Acheson KJ, Zahorska-Markiewicz B, Pittet P, Anantharaman K & & Jéquier E 1980 Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. American Journal of Clinical Nutrition 33 989997. (https://doi.org/10.1093/ajcn/33.5.989)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Acheson KJ, Gremaud G, Meirim I, Montigon F, Krebs Y, Fay LB, Gay LJ, Schneiter P, Schindler C & & Tappy L 2004 Metabolic effects of caffeine in humans: lipid oxidation or futile cycling? American Journal of Clinical Nutrition 79 4046. (https://doi.org/10.1093/ajcn/79.1.40)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aguiar LM, Nobre HV Jr, Macêdo DS, Oliveira AA, Freitas RM, Vasconcelos SM, Cunha GM, Sousa FC & & Viana GS 2006 Neuroprotective effects of caffeine in the model of 6-hydroxydopamine lesion in rats. Pharmacology, Biochemistry, and Behavior 84 415419. (https://doi.org/10.1016/j.pbb.2006.05.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aldridge A, Parsons WD & & Neims AH 1977 Stimulation of caffeine metabolism in the rat by 3-methylcholanthrene. Life Sciences 21 967974. (https://doi.org/10.1016/0024-3205(7790263-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aldridge A, Bailey J & & Neims AH 1981 The disposition of caffeine during and after pregnancy. Seminars in Perinatology 5 310314.

  • Alsene K, Deckert J, Sand P & & de Wit H 2003 Association between A2a receptor gene polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 28 16941702. (https://doi.org/10.1038/sj.npp.1300232)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anh-Dao L-T, Minh-Huy D, Bui-Phuc T, Nhut-Truong N, Tu-Chi T, Thi-Hoa L, Diem-My H-L, Thanh-Nho N & & Cong-Hau N 2024 Determination of caffeine, chlorogenic acid, total phenolic contents, and antioxidant capacities for arabica and robusta coffee from Vietnam. Analytical Letters 115. (https://doi.org/10.1080/00032719.2024.2304126)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anzueto F, Baumann T, Graziosi G, Piccin C & & van der Vossen H 2005 The plant. In Espresso Coffee. The Science of Quality, pp. 2186. Amsterdam, Netherland: Elsevier. (https://doi.org/10.1016/B978-012370371-2/50003-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aranda JV, Cook CE, Gorman W, Collinge JM, Loughnan PM, Outerbridge EW, Aldridge A & & Neims AH 1979 Pharmacokinetic profile of caffeine in the premature newborn infant with apnea. Journal of Pediatrics 94 663668. (https://doi.org/10.1016/s0022-3476(7980047-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse ML, Schreiber S & & Schäfer H 2013 Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32 48254835. (https://doi.org/10.1038/onc.2012.493)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arnaud MJ 1993 Components of coffee. In Caffeine, Coffee and Health, Ed. Garattini S. New York, NY, USA: Raven Press.

  • Arnaud MJ, Thelin-Doerner A, Ravussin E & & Acheson KJ 1980 Study of the demethylation of [1,3,7-Me-13C] caffeine in man using respiratory exchange measurements. Biomedical Mass Spectrometry 7 521524. (https://doi.org/10.1002/bms.1200071113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Astrup A, Toubro S, Cannon S, Hein P, Breum L & & Madsen J 1990 Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. American Journal of Clinical Nutrition 51 759767. (https://doi.org/10.1093/ajcn/51.5.759)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Axelrod J & & Reichenthal J 1953 The fate of caffeine in man and a method for its estimation in biological material. Journal of Pharmacology and Experimental Therapeutics 107 519523.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baeza G, Sarriá B, Bravo L & & Mateos R 2016 Exhaustive qualitative LC-DAD-MS(n) analysis of arabica green coffee beans: cinnamoyl-glycosides and Cinnamoylshikimic acids as new polyphenols in green coffee. Journal of Agricultural and Food Chemistry 64 96639674. (https://doi.org/10.1021/acs.jafc.6b04022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Banks NF, Tomko PM, Colquhoun RJ, Muddle TWD, Emerson SR & & Jenkins NDM 2019 Genetic polymorphisms in ADORA2A and CYP1A2 influence caffeine's effect on postprandial glycaemia. Scientific Reports 9 10532. (https://doi.org/10.1038/s41598-019-46931-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baraldi PG, Tabrizi MA, Gessi S & & Borea PA 2008 Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chemical Reviews 108 238263. (https://doi.org/10.1021/cr0682195)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barbosa MSG, Scholz M, Kitzberger CSG & & Benassi MT 2019 Correlation between the composition of green arabica coffee beans and the sensory quality of coffee brews. Food Chemistry 292 275280. (https://doi.org/10.1016/j.foodchem.2019.04.072)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barnes PJ 2006 Theophylline for COPD. Thorax 61 742744. (https://doi.org/10.1136/thx.2006.061002)

  • Barone JJ & & Roberts HR 1996 Caffeine consumption. Food and Chemical Toxicology 34 119129. (https://doi.org/10.1016/0278-6915(9500093-3)

  • Batista L, de Souza SC, Batista CS & & Schwan R 2016 Coffee: types and production, pp. 244251. Amsterdam, Netherland: Elsevier. (https://doi.org/10.1016/B978-0-12-384947-2.00184-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beavo JA, Rogers NL, Crofford OB, Baird CE, Hardman JG, Sutherland EW & & Newman EV 1971 Effects of phosphodiesterase inhibitors on cyclic AMP levels and on lipolysis. Annals of the New York Academy of Sciences 185 129136. (https://doi.org/10.1111/j.1749-6632.1971.tb45243.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Belitz H-D, Grosch W & & Schieberle P 2009 Coffee, tea, cocoa. In Food Chemistry, pp. 938970. Berlin, Germany: Springer. (https://doi.org/10.1007/978-3-540-69934-7_22)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Benowitz NL, Jacob P 3rd, Mayan H & & Denaro C 1995 Sympathomimetic effects of paraxanthine and caffeine in humans. Clinical Pharmacology and Therapeutics 58 684691. (https://doi.org/10.1016/0009-9236(9590025-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blanchard J & & Sawers SJ 1983a The absolute bioavailability of caffeine in man. European Journal of Clinical Pharmacology 24 9398. (https://doi.org/10.1007/BF00613933)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blanchard J & & Sawers SJ 1983b Comparative pharmacokinetics of caffeine in young and elderly men. Journal of Pharmacokinetics and Biopharmaceutics 11 109126. (https://doi.org/10.1007/BF01061844)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bonati M, Latini R, Galletti F, Young JF, Tognoni G & & Garattini S 1982 Caffeine disposition after oral doses. Clinical Pharmacology and Therapeutics 32 98106. (https://doi.org/10.1038/clpt.1982.132)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boswell-Smith V, Cazzola M & & Page CP 2006 Are phosphodiesterase 4 inhibitors just more theophylline? Journal of Allergy and Clinical Immunology 117 12371243. (https://doi.org/10.1016/j.jaci.2006.02.045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bruckbauer A & & Zemel MB 2014 Synergistic effects of polyphenols and methylxanthines with leucine on AMPK/sirtuin-mediated metabolism in muscle cells and adipocytes. PLoS One 9 e89166. (https://doi.org/10.1371/journal.pone.0089166)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Callahan MM, Robertson RS, Arnaud MJ, Branfman AR, McComish MF & & Yesair DW 1982 Human metabolism of [1-methyl-14C]- and [2–14C]caffeine after oral administration. Drug Metabolism and Disposition: the Biological Fate of Chemicals 10 417423.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Caporaso N, Whitworth MB, Grebby S & & Fisk ID 2018 Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging. Food Research International 106 193203. (https://doi.org/10.1016/j.foodres.2017.12.031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carrillo JA & & Benitez J 1996 CYP1A2 activity, gender and smoking, as variables influencing the toxicity of caffeine. British Journal of Clinical Pharmacology 41 605608. (https://doi.org/10.1046/j.1365-2125.1996.35418.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chauhan PS, Satti NK, Sharma P, Sharma VK, Suri KA & & Bani S 2012 Differential effects of chlorogenic acid on various immunological parameters relevant to rheumatoid arthritis. Phytotherapy Research 26 11561165. (https://doi.org/10.1002/ptr.3684)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen X, Wang L, Zhi L, Zhou G, Wang H, Zhang X, Hao B, Zhu Y, Cheng Z & & He F 2005 The G-113A polymorphism in CYP1A2 affects the caffeine metabolic ratio in a Chinese population. Clinical Pharmacology and Therapeutics 78 249259. (https://doi.org/10.1016/j.clpt.2005.05.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cheng WS, Murphy TL, Smith MT, Cooksley WG, Halliday JW & & Powell LW 1990 Dose-dependent pharmacokinetics of caffeine in humans: relevance as a test of quantitative liver function. Clinical Pharmacology and Therapeutics 47 516524. (https://doi.org/10.1038/clpt.1990.66)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chida M, Yokoi T, Fukui T, Kinoshita M, Yokota J & & Kamataki T 1999 Detection of three genetic polymorphisms in the 5'-flanking region and intron 1 of human CYP1A2 in the Japanese population. Japanese Journal of Cancer Research: Gann 90 899902. (https://doi.org/10.1111/j.1349-7006.1999.tb00832.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Childs E, Hohoff C, Deckert J, Xu K, Badner J & & de Wit H 2008 Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 33 27912800. (https://doi.org/10.1038/npp.2008.17)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chvasta TE & & Cooke AR 1971 Emptying and absorption of caffeine from the human stomach. Gastroenterology 61 838843. (https://doi.org/10.1016/S0016-5085(1933396-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clarke ND, Kirwan NA & & Richardson DL 2019 Coffee ingestion improves 5 km cycling performance in men and women by a similar magnitude. Nutrients 11. (https://doi.org/10.3390/nu11112575)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clifford MN 2000 Chlorogenic acids and other cinnamates–nature, occurrence, dietary burden, absorption and metabolism. Journal of the Science of Food and Agriculture 80 10331043. (https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1033::AID-JSFA595>3.0.CO;2-T)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collins LC, Cornelius MF, Vogel RL, Walker JF & & Stamford BA 1994 Effect of caffeine and/or cigarette smoking on resting energy expenditure. International Journal of Obesity and Related Metabolic Disorders 18 551556.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cornelis MC 2015 Toward systems epidemiology of coffee and health. Current Opinion in Lipidology 26 2029. (https://doi.org/10.1097/MOL.0000000000000143)

  • Cornelis MC, Monda KL, Yu K, Paynter N, Azzato EM, Bennett SN, Berndt SI, Boerwinkle E, Chanock S, Chatterjee N, et al.2011 Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. PLoS Genetics 7 e1002033. (https://doi.org/10.1371/journal.pgen.1002033)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Corrêa CLO, das Merces Penha E, Dos Anjos MR, Pacheco S, Freitas-Silva O, Luna AS & & Gottschalk LMF 2021 Use of asparaginase for acrylamide mitigation in coffee and its influence on the content of caffeine, chlorogenic acid, and caffeic acid. Food Chemistry 338 128045. (https://doi.org/10.1016/j.foodchem.2020.128045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Czerwensky F, Leucht S & & Steimer W 2015 CYP1A2*1D and *1F polymorphisms have a significant impact on olanzapine serum concentrations. Therapeutic Drug Monitoring 37 152160. (https://doi.org/10.1097/FTD.0000000000000119)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • da Costa BRB, El Haddad LP & & De Martinis BS 2022 Caffeine content of energy drinks marketed in Brazil. Drug Testing and Analysis 14 16601664. (https://doi.org/10.1002/dta.3323)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Daglia M, Papetti A, Aceti C, Sordelli B, Gregotti C & & Gazzani G 2008 Isolation of high molecular weight components and contribution to the protective activity of coffee against lipid peroxidation in a rat liver microsome system. Journal of Agricultural and Food Chemistry 56 1165311660. (https://doi.org/10.1021/jf802018c)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Daly JW, Bruns RF & & Snyder SH 1981 Adenosine receptors in the central nervous system: relationship to the central actions of methylxanthines. Life Sciences 28 20832097. (https://doi.org/10.1016/0024-3205(8190614-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Daly JW, Shi D, Nikodijevic O & & Jacobson KA 1994 The role of adenosine receptors in the central action of caffeine. Pharmacopsychoecologia 7 201213.

  • Davídek T & & Blank I 2005 Elucidating the secrets of the Maillard reaction cascade–the role of Amadori compounds: highlights of analytical chemistry in Switzerland. Chimia 59 862862. (https://doi.org/10.2533/000942905777675642)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davis AP, Tosh J, Ruch N & & Fay MF 2011 Growing coffee: psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea. Botanical Journal of the Linnean Society 167 357377. (https://doi.org/10.1111/j.1095-8339.2011.01177.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davoodi SH, Hajimiresmaiel SJ, Ajami M, Mohseni-Bandpei A, Ayatollahi SA, Dowlatshahi K, Javedan G & & Pazoki-Toroudi H 2014 Caffeine treatment prevented from weight regain after calorie shifting diet induced weight loss. Iranian Journal of Pharmaceutical Research 13 707718.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Denaro CP, Brown CR, Wilson M, Jacob P 3rd & & Benowitz NL 1990 Dose-dependency of caffeine metabolism with repeated dosing. Clinical Pharmacology and Therapeutics 48 277285. (https://doi.org/10.1038/clpt.1990.150)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G, et al.2014 The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345 11811184. (https://doi.org/10.1126/science.1255274)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Di Gioacchino M, Ricci MA & & Bruni F 2024 Science in a cup of coffee: a structural study of a trigonelline aqueous solution. Journal of Molecular Liquids 396 123972. (https://doi.org/10.1016/j.molliq.2024.123972)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Djordjevic N, Ghotbi R, Bertilsson L, Jankovic S & & Aklillu E 2008 Induction of CYP1A2 by heavy coffee consumption in Serbs and Swedes. European Journal of Clinical Pharmacology 64 381385. (https://doi.org/10.1007/s00228-007-0438-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dos Santos ÉJ & & de Oliveira E 2001 Determination of mineral nutrients and toxic elements in Brazilian soluble coffee by ICP-AES. Journal of Food Composition and Analysis 14 523531. (https://doi.org/10.1006/jfca.2001.1012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Drouillard DD, Vesell ES & & Dvorchik BH 1978 Studies on theobromine disposition in normal subjects. Alterations induced by dietary abstention from or exposure to methylxanthines. Clinical Pharmacology and Therapeutics 23 296302. (https://doi.org/10.1002/cpt1978233296)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dulloo AG, Geissler CA, Horton T, Collins A & & Miller DS 1989 Normal caffeine consumption: influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. American Journal of Clinical Nutrition 49 4450. (https://doi.org/10.1093/ajcn/49.1.44)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Erblang M, Drogou C, Gomez-Merino D, Metlaine A, Boland A, Deleuze JF, Thomas C, Sauvet F & & Chennaoui M 2019 The impact of genetic variations in ADORA2A in the association between caffeine consumption and sleep. Genes 10. (https://doi.org/10.3390/genes10121021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Essayan DM 2001 Cyclic nucleotide phosphodiesterases. Journal of Allergy and Clinical Immunology 108 671680. (https://doi.org/10.1067/mai.2001.119555)

  • Farah A 2012 Coffee constituents. In Coffee: emerging health effects and disease prevention, ch 2, pp. 2258. (https://doi.org/10.1002/9781119949893.ch2)

  • Ferré S, Guix T, Sallés J, Badia A, Parra P, Jané F, Herrera-Marschitz M, Ungerstedt U & & Casas M 1990 Paraxanthine displaces the binding of [3H] SCH 23390 from rat striatal membranes. European Journal of Pharmacology 179 295299. (https://doi.org/10.1016/0014-2999(9090168-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fisone G, Borgkvist A & & Usiello A 2004 Caffeine as a psychomotor stimulant: mechanism of action. Cellular and Molecular Life Sciences 61 857872. (https://doi.org/10.1007/s00018-003-3269-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foskett A, Ali A & & Gant N 2009 Caffeine enhances cognitive function and skill performance during simulated soccer activity. International Journal of Sport Nutrition and Exercise Metabolism 19 410423. (https://doi.org/10.1123/ijsnem.19.4.410)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Francis SH, Blount MA & & Corbin JD 2011 Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiological Reviews 91 651690. (https://doi.org/10.1152/physrev.00030.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fredholm BB 1984 Cardiovascular and renal actions of methylxanthines. Progress in Clinical and Biological Research 158 303330.

  • Fredholm BB, Bättig K, Holmén J, Nehlig A & & Zvartau EE 1999 Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacological Reviews 51 83133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G & & Wasserman W 2000 Structure and function of adenosine receptors and their genes. Naunyn-Schmiedeberg’s Archives of Pharmacology 362 364374. (https://doi.org/10.1007/s002100000313)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN & & Linden J 2001 International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacological Reviews 53 527552.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fuxe K, Ferré S, Canals M, Torvinen M, Terasmaa A, Marcellino D, Goldberg SR, Staines W, Jacobsen KX, Lluis C, et al.2005 Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. Journal of Molecular Neuroscience 26 209220. (https://doi.org/10.1385/JMN:26:2-3:209)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fuxe K, Ferré S, Genedani S, Franco R & & Agnati LF 2007 Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiology and Behavior 92 210217. (https://doi.org/10.1016/j.physbeh.2007.05.034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gans JH, Korson R, Cater MR & & Ackerly CC 1980 Effects of short-term and long-term theobromine administration to male dogs. Toxicology and Applied Pharmacology 53 481496. (https://doi.org/10.1016/0041-008x(8090360-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garrett R, Rezende CM & & Ifa DR 2016 Revealing the spatial distribution of chlorogenic acids and sucrose across coffee bean endosperm by desorption electrospray ionization-mass spectrometry imaging. LWT – Food Science and Technology 65 711717. (https://doi.org/10.1016/j.lwt.2015.08.062)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garthwaite J 2008 Concepts of neural nitric oxide-mediated transmission. European Journal of Neuroscience 27 27832802. (https://doi.org/10.1111/j.1460-9568.2008.06285.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gates S & & Miners JO 1999 Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism. British Journal of Clinical Pharmacology 47 299305. (https://doi.org/10.1046/j.1365-2125.1999.00890.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ge Y, Wang B, Shi X, Zhang Z, Qi M, Du H, Qu P, Jiang K, Chen Z & & Li X 2024 Multi-omics analyses unravel genetic relationship of Chinese coffee germplasm resources. Forests 15 163. (https://doi.org/10.3390/f15010163)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gebreselassie H, Tesfaye B & & Gedebo A 2024 Genetic diversity of arabica coffee genotypes in south Ethiopia using quantitative agro-morphological traits. Genetic Resources and Crop Evolution 122. (https://doi.org/10.1007/s10722-023-01853-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • George J, Murphy T, Roberts R, Cooksley WG, Halliday JW & & Powell LW 1986 Influence of alcohol and caffeine consumption on caffeine elimination. Clinical and Experimental Pharmacology and Physiology 13 731736. (https://doi.org/10.1111/j.1440-1681.1986.tb02414.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Geromel C, Ferreira LP, Guerreiro SM, Cavalari AA, Pot D, Pereira LF, Leroy T, Vieira LG, Mazzafera P & & Marraccini P 2006 Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development. Journal of Experimental Botany 57 32433258. (https://doi.org/10.1093/jxb/erl084)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gloess AN, Yeretzian C, Knochenmuss R & & Groessl M 2018 On-line analysis of coffee roasting with ion mobility spectrometry–mass spectrometry (IMS–MS). International Journal of Mass Spectrometry 424 4957. (https://doi.org/10.1016/j.ijms.2017.11.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gniechwitz D, Reichardt N, Meiss E, Ralph J, Steinhart H, Blaut M & & Bunzel M 2008 Characterization and fermentability of an ethanol soluble high molecular weight coffee fraction. Journal of Agricultural and Food Chemistry 56 59605969. (https://doi.org/10.1021/jf800231q)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gonzales-Yépez KA, Vilela JL & & Reátegui O 2023 Determination of caffeine, theobromine, and theophylline by HPLC-DAD in beverages commonly consumed in Lima, Peru. International Journal of Food Science 2023 4323645. (https://doi.org/10.1155/2023/4323645)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gottstein V, Krumbügel K, Kuballa T, Schwarz S, Walch E, Walch P & & Lachenmeier DW 2023 Monitoring of chemical changes in coffee beans during the roasting process using different roasting technologies with nuclear magnetic resonance spectroscopy. Beverages 9 87. (https://doi.org/10.3390/beverages9040087)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grant DM, Tang BK & & Kalow W 1983 Variability in caffeine metabolism. Clinical Pharmacology and Therapeutics 33 591602. (https://doi.org/10.1038/clpt.1983.80)

  • Grembecka M, Malinowska E & & Szefer P 2007 Differentiation of market coffee and its infusions in view of their mineral composition. Science of the Total Environment 383 5969. (https://doi.org/10.1016/j.scitotenv.2007.04.031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gu L, Gonzalez FJ, Kalow W & & Tang BK 1992 Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics 2 7377. (https://doi.org/10.1097/00008571-199204000-00004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guerrero G, Suárez M & & Moreno G 2005 Chemosystematic study of diterpenoids in green coffee beans. 20th International Colloquium on the Chemistry of Coffee, vol 292. Paris, France: ASIC.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P & & Michel PP 2008 Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Molecular Pharmacology 74 980989. (https://doi.org/10.1124/mol.108.048207)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guest N, Corey P, Vescovi J & & El-Sohemy A 2018 Caffeine, CYP1A2 genotype, and endurance performance in athletes. Medicine and Science in Sports and Exercise 50 15701578. (https://doi.org/10.1249/MSS.0000000000001596)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hall RD, Trevisan F & & de Vos RCH 2022 Coffee berry and green bean chemistry - Opportunities for improving cup quality and crop circularity. Food Research International 151 110825. (https://doi.org/10.1016/j.foodres.2021.110825)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harpaz E, Tamir S, Weinstein A & & Weinstein Y 2017 The effect of caffeine on energy balance. Journal of Basic and Clinical Physiology and Pharmacology 28 110. (https://doi.org/10.1515/jbcpp-2016-0090)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haskó G & & Cronstein B 2011 Methylxanthines and inflammatory cells. Handbook of Experimental Pharmacology 200 457468. (https://doi.org/10.1007/978-3-642-13443-2_18)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herling AW, Burger H-J, Schubert G, Hemmerle H, Schaefer H-L & & Kramer W 1999 Alterations of carbohydrate and lipid intermediary metabolism during inhibition of glucose-6-phosphatase in rats. European Journal of Pharmacology 386 7582. (https://doi.org/10.1016/s0014-2999(9900748-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hirakawa N, Okauchi R, Miura Y & & Yagasaki K 2005 Anti-invasive activity of niacin and trigonelline against cancer cells. Bioscience, Biotechnology, and Biochemistry 69 653658. (https://doi.org/10.1271/bbb.69.653)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hobhouse H 2005 Seeds of wealth: five plants that made men rich. New York, NY, USA: Catapult.

  • Hollands MA, Arch JR & & Cawthorne MA 1981 A simple apparatus for comparative measurements of energy expenditure in human subjects: the thermic effect of caffeine. American Journal of Clinical Nutrition 34 22912294. (https://doi.org/10.1093/ajcn/34.10.2291)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu GL, Wang X, Zhang L & & Qiu MH 2019 The sources and mechanisms of bioactive ingredients in coffee. Food and Function 10 31133126. (https://doi.org/10.1039/c9fo00288j)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • IARC 1991 IARC working group on the evaluation of carcinogenic risks to humans. Lyon, 27 February to 6 March 1990. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 51 1513.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ito K, Lim S, Caramori G, Cosio B, Chung KF, Adcock IM & & Barnes PJ 2002 A molecular mechanism of action of theophylline: induction of histone deacetylase activity to decrease inflammatory gene expression. Proceedings of the National Academy of Sciences of the United States of America 99 89218926. (https://doi.org/10.1073/pnas.132556899)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jaiswal R, Patras MA, Eravuchira PJ & & Kuhnert N 2010 Profile and characterization of the chlorogenic acids in green robusta coffee beans by LC-MS(n): identification of seven new classes of compounds. Journal of Agricultural and Food Chemistry 58 87228737. (https://doi.org/10.1021/jf1014457)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jenne JW, Wyze MS, Rood FS & & MacDonald FM 1972 Pharmacokinetics of theophylline. Application to adjustment of the clinical dose of aminophylline. Clinical Pharmacology and Therapeutics 13 349360. (https://doi.org/10.1002/cpt1972133349)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Johnston KL, Clifford MN & & Morgan LM 2003 Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. American Journal of Clinical Nutrition 78 728733. (https://doi.org/10.1093/ajcn/78.4.728)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jonasson O 1933 Natural conditions for coffee culture. Economic Geography 9 356367. (https://doi.org/10.2307/140490)

  • Kadlec GJ, Jarboe CH, Pollard SJ & & Sublett JL 1978 Acute theophylline intoxication. Biphasic first order elimination kinetics in a child. Annals of Allergy 41 337339.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Khemira H, Mahdhi M, Afzal M, Oteef MD, Tounekti T, Zarraq AF & & Alsolami W 2023 Assessment of genetic diversity and phylogenetic relationship of local coffee populations in southwestern Saudi Arabia using DNA barcoding. PeerJ 11 e16486. (https://doi.org/10.7717/peerj.16486)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kitagawa M, Houzen H & & Tashiro K 2007 Effects of caffeine on the freezing of gait in Parkinson's disease. Movement Disorders 22 710712. (https://doi.org/10.1002/mds.21208)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kleinwächter M & & Selmar DJFC 2010 Influence of drying on the content of sugars in wet processed green Arabica coffees. Food Chemistry 119 500504. (https://doi.org/10.1016/j.foodchem.2009.06.048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Knutti R, Rothweiler H & & Schlatter C 1981 Effect of pregnancy on the pharmacokinetics of caffeine. European Journal of Clinical Pharmacology 21 121126. (https://doi.org/10.1007/BF00637512)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koot P & & Deurenberg P 1995 Comparison of changes in energy expenditure and body temperatures after caffeine consumption. Annals of Nutrition and Metabolism 39 135142. (https://doi.org/10.1159/000177854)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kotake AN, Schoeller DA, Lambert GH, Baker AL, Schaffer DD & & Josephs H 1982 The caffeine CO2 breath test: dose response and route of N-demethylation in smokers and nonsmokers. Clinical Pharmacology and Therapeutics 32 261269. (https://doi.org/10.1038/clpt.1982.157)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kramer D, Breitenstein B, Kleinwächter M & & Selmar D 2010 Stress metabolism in green coffee beans (Coffea arabica L.): expression of dehydrins and accumulation of GABA during drying. Plant and Cell Physiology 51 546553. (https://doi.org/10.1093/pcp/pcq019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lam LK, Sparnins VL & & Wattenberg LW 1987 Effects of derivatives of kahweol and cafestol on the activity of glutathione S-transferase in mice. Journal of Medicinal Chemistry 30 13991403. (https://doi.org/10.1021/jm00391a022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Landi MT, Sinha R, Lang NP & & Kadlubar FF 1999 Human cytochrome P4501A2. IARC Scientific Publications 148 173195.

  • Lang R, Wahl A, Stark T & & Hofmann T 2011 Urinary N-methylpyridinium and trigonelline as candidate dietary biomarkers of coffee consumption. Molecular Nutrition and Food Research 55 16131623. (https://doi.org/10.1002/mnfr.201000656)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee KJ, Choi JH & & Jeong HG 2007 Hepatoprotective and antioxidant effects of the coffee diterpenes kahweol and cafestol on carbon tetrachloride-induced liver damage in mice. Food and Chemical Toxicology 45 21182125. (https://doi.org/10.1016/j.fct.2007.05.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lima CS, Spindola DG, Bechara A, Garcia DM, Palmeira-Dos-Santos C, Peixoto-da-Silva J, Erustes AG, Michelin LFG, Pereira GJS, Smaili SS, et al.2017 Cafestol, a diterpene molecule found in coffee, induces leukemia cell death. Biomedicine and Pharmacotherapy 92 10451054. (https://doi.org/10.1016/j.biopha.2017.05.109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lopane SN, McGregor JU & & Rieck JR 2024 An investigation of the shelf life of cold brew coffee and the influence of extraction temperature using chemical, microbial, and sensory analysis. Food Science and Nutrition 12 985996. (https://doi.org/10.1002/fsn3.3812)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • López-Galilea I, Fournier N, Cid C & & Guichard E 2006 Changes in headspace volatile concentrations of coffee brews caused by the roasting process and the brewing procedure. Journal of Agricultural and Food Chemistry 54 85608566. (https://doi.org/10.1021/jf061178t)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ludwig IA, Clifford MN, Lean ME, Ashihara H & & Crozier A 2014 Coffee: biochemistry and potential impact on health. Food and Function 5 16951717. (https://doi.org/10.1039/c4fo00042k)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Magkos F & & Kavouras SA 2005 Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Critical Reviews in Food Science and Nutrition 45 535562. (https://doi.org/10.1080/1040-830491379245)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mahdavi S, Palatini P & & El-Sohemy A 2023 CYP1A2 genetic variation, coffee intake, and kidney dysfunction. JAMA Network Open 6 e2247868. (https://doi.org/10.1001/jamanetworkopen.2022.47868)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCusker RR, Goldberger BA & & Cone EJ 2003 Caffeine content of specialty coffees. Journal of Analytical Toxicology 27 520522. (https://doi.org/10.1093/jat/27.7.520)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McPherson PS, Kim YK, Valdivia H, Knudson CM, Takekura H, Franzini-Armstrong C, Coronado R & & Campbell KP 1991 The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron 7 1725. (https://doi.org/10.1016/0896-6273(9190070-g)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miller CA, Slusher LB & & Vesell ES 1985 Polymorphism of theophylline metabolism in man. Journal of Clinical Investigation 75 14151425. (https://doi.org/10.1172/JCI111843)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mitani T, Watanabe S, Yoshioka Y, Katayama S, Nakamura S & & Ashida H 2017 Theobromine suppresses adipogenesis through enhancement of CCAAT-enhancer-binding protein β degradation by adenosine receptor A1. Biochimica et Biophysica Acta. Molecular Cell Research 1864 24382448. (https://doi.org/10.1016/j.bbamcr.2017.09.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Monteiro MC & & Farah A 2012 Chlorogenic acids in Brazilian Coffea arabica cultivars from various consecutive crops. Food Chemistry 134 611614. (https://doi.org/10.1016/j.foodchem.2012.02.118)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moreira RFA, Trugo LC & & De Maria CAB 2000 Componentes voláteis do café torrado. Parte II. Compostos alifáticos, alicíclicos e aromáticos. Quimica Nova 23 195203. (https://doi.org/10.1590/S0100-40422000000200010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mosier K, Renvall MJ, Ramsdell JW & & Spindler AA 1996 The effects of theophylline on metabolic rate in chronic obstructive lung disease patients. Journal of the American College of Nutrition 15 403407. (https://doi.org/10.1080/07315724.1996.10718616)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Muriel P & & Arauz J 2010 Coffee and liver diseases. Fitoterapia 81 297305. (https://doi.org/10.1016/j.fitote.2009.10.003)

  • Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M & & Kamataki T 1999 Genetic polymorphism in the 5'-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. Journal of Biochemistry 125 803808. (https://doi.org/10.1093/oxfordjournals.jbchem.a022352)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Navarro G, Borroto-Escuela DO, Fuxe K & & Franco R 2016 Purinergic signaling in Parkinson's disease. Relevance for treatment. Neuropharmacology 104 161168. (https://doi.org/10.1016/j.neuropharm.2015.07.024)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nawrot P, Jordan S, Eastwood J, Rotstein J, Hugenholtz A & & Feeley M 2003 Effects of caffeine on human health. Food Additives and Contaminants 20 130. (https://doi.org/10.1080/0265203021000007840)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nehlig A 2018 Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacological Reviews 70 384411. (https://doi.org/10.1124/pr.117.014407)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Newton R, Broughton LJ, Lind MJ, Morrison PJ, Rogers HJ & & Bradbrook ID 1981 Plasma and salivary pharmacokinetics of caffeine in man. European Journal of Clinical Pharmacology 21 4552. (https://doi.org/10.1007/BF00609587)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nogrady B 2024 All arabica coffee is genetically similar: how can beans taste so different? Nature. (https://doi.org/10.1038/d41586-024-00165-x)

  • Noirot M, Charrier A, Stoffelen P & & Anthony F 2016 Reproductive isolation, gene flow and speciation in the former Coffea subgenus: a review. Trees 30 597608. (https://doi.org/10.1007/s00468-015-1335-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nomura S & & Monobe M 2023 Comparing effects of caffeine and theobromine on adrenal hypertrophy and social behavior in psychosocial stressed mice. Journal of Nutritional Science and Vitaminology 69 145149. (https://doi.org/10.3177/jnsv.69.145)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Novaes FJM, Oigman SS, de Souza ROMA, Rezende CM & & de Aquino Neto FR 2015 New approaches on the analyses of thermolabile coffee diterpenes by gas chromatography and its relationship with cup quality. Talanta 139 159166. (https://doi.org/10.1016/j.talanta.2014.12.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Novaes FJM, da Silva MAE, Silva DC, Aquino Neto FRD & & Rezende CM 2023 Extraction of diterpene-phytochemicals in raw and roasted coffee beans and beverage preparations and their relationship. Plants 12 1580.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nunes RA, Mazzotti DR, Hirotsu C, Andersen ML, Tufik S & & Bittencourt L 2017 The association between caffeine consumption and objective sleep variables is dependent on ADORA2A c.1083T>C genotypes. Sleep Medicine 30 210215. (https://doi.org/10.1016/j.sleep.2016.06.038)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Orrú M, Guitart X, Karcz-Kubicha M, Solinas M, Justinova Z, Barodia SK, Zanoveli J, Cortes A, Lluis C, Casado V, et al.2013 Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans. Neuropharmacology 67 476484. (https://doi.org/10.1016/j.neuropharm.2012.11.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patwardhan RV, Desmond PV, Johnson RF & & Schenker S 1980 Impaired elimination of caffeine by oral contraceptive steroids. Journal of Laboratory and Clinical Medicine 95 603608.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reichardt N, Gniechwitz D, Steinhart H, Bunzel M & & Blaut M 2009 Characterization of high molecular weight coffee fractions and their fermentation by human intestinal microbiota. Molecular Nutrition and Food Research 53 287299. (https://doi.org/10.1002/mnfr.200700509)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Relling MV, Lin JS, Ayers GD & & Evans WE 1992 Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities. Clinical Pharmacology and Therapeutics 52 643658. (https://doi.org/10.1038/clpt.1992.203)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ribeiro JA & & Sebastião AM 2010 Caffeine and adenosine. Journal of Alzheimer's Disease 20(Supplement 1) S3S15. (https://doi.org/10.3233/JAD-2010-1379)

  • Roberts EA, Furuya KN, Tang BK & & Kalow W 1994 Caffeine biotransformation in human hepatocyte lines derived from normal liver tissue. Biochemical and Biophysical Research Communications 201 559566. (https://doi.org/10.1006/bbrc.1994.1738)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rocha PLA, Lima ALC, Saunders B & & Reis CEG 2022 Development of a caffeine content table for foods, drinks, medications and supplements typically consumed by the Brazilian population. Nutrients 14. (https://doi.org/10.3390/nu14204417)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rudelle S, Ferruzzi MG, Cristiani I, Moulin J, Macé K, Acheson KJ & & Tappy L 2007 Effect of a thermogenic beverage on 24-hour energy metabolism in humans. Obesity (Silver Spring) 15 349355. (https://doi.org/10.1038/oby.2007.529)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rufián-Henares JA & & Morales FJ 2007 Effect of in vitro enzymatic digestion on antioxidant activity of coffee melanoidins and fractions. Journal of Agricultural and Food Chemistry 55 1001610021. (https://doi.org/10.1021/jf0718291)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rufián-Henares JA & & de la Cueva SP 2009 Antimicrobial activity of coffee melanoidins-a study of their metal-chelating properties. Journal of Agricultural and Food Chemistry 57 432438. (https://doi.org/10.1021/jf8027842)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rusinek R, Dobrzański B Jr, Gawrysiak-Witulska M, Siger A, Żytek A, Karami H, Umar A, Lipa T & & Gancarz M 2024 Effect of the roasting level on the content of bioactive and aromatic compounds in arabica coffee beans. International Agrophysics 38 3142. (https://doi.org/10.31545/intagr/176300)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sachse C, Brockmöller J, Bauer S & & Roots I 1999 Functional significance of a C-->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. British Journal of Clinical Pharmacology 47 445449. (https://doi.org/10.1046/j.1365-2125.1999.00898.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanchez JM 2017 Methylxanthine content in commonly consumed foods in Spain and determination of its intake during consumption. Foods 6. (https://doi.org/10.3390/foods6120109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sattin A & & Rall TW 1970 The effect of adenosine and adenine nucleotides on the cyclic adenosine 3', 5'-phosphate content of guinea pig cerebral cortex slices. Molecular Pharmacology 6 1323.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sawynok J & & Yaksh TL 1993 Caffeine as an analgesic adjuvant: a review of pharmacology and mechanisms of action. Pharmacological Reviews 45 4385.

  • Shofinita D, Lestari D, Aliwarga L, Sumampouw GA, Ambarwati SA, Gunawan KC & & Achmadi AB 2024 Drying methods of coffee extracts and their effects on physicochemical properties: a review. Food and Bioprocess Technology 17 4772. (https://doi.org/10.1007/s11947-023-03067-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simon C, Herling AW, Preibisch G & & Burger HJ 2000 Upregulation of hepatic glucose 6-phosphatase gene expression in rats treated with an inhibitor of glucose-6-phosphate translocase. Archives of Biochemistry and Biophysics 373 418428. (https://doi.org/10.1006/abbi.1999.1560)

    • PubMed
    • Search Google Scholar